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Introduction and Outline

Genomics covers the use of DNA technology and is generally appli-
cable to the whole range of bacteria, yeast, plants, vertebrates, livestock 
species, and humans. Genetic improvement in livestock species aims at 
increasing sustainability and efficiency of animal products. Pig produc-
tion centers around the use of crossbred animals (just like laying hens 
and broiler chickens) and, in that sense, differs from dairy cattle, where 
emphasis still tends to be on improvement of purebred performance.

In this paper, we give a narrative on genomic selection in commer-
cial pig breeding to describe the current status and potential future and to 
highlight differences with other species; some examples will clarify status 
and developments.

Historical Developments

Marker-assisted selection
DNA technology was first applied in commercial pig breeding in the 

early 1990s when the Hal-1843 marker test became available for marker-

assisted selection (MAS) against a recessive mutant allele that causes ma-
lignant hyperthermia (which is often lethal) in stressful conditions, and poor 
meat quality. This first marker test quickly became immensely popular for 
three reasons. First: susceptibility to this disorder in the pig is controlled by 
this single gene only. Second: conventional selection against this disorder 
involved halothane testing and is therefore labor-intensive. Third: because 
the target allele is recessive, conventional selection involves progeny test-
ing and is therefore slow and expensive. In other words, Hal-1843 provid-
ed a simple and 100% effective alternative to an expensive and cumber-
some procedure. Another early DNA marker linked to meat quality is the 
PRKAG3 locus (Leroy et al., 1990), which influences curing and cooking 
yield (Rendement Napole) particularly in Hampshire pigs.

A few other single-gene traits, such as resistance to Escherichia coli-
induced diarrhea, got their own DNA markers with similarly successful 
results. Most of them are still in use.

But most livestock production traits are of a quantitative nature (i.e., not 
all-or-nothing events) and are controlled by large numbers of genes that were 
dubbed quantitative trait loci (QTLs) by Geldermann (1975). The first avail-
able QTL marker in pigs (Rothschild et al., 1996) targeted an estrogen recep-
tor locus and was found to control roughly 12% of the phenotypic standard 
deviation of litter size. Several other major genes followed, but the conven-
tional notion of the infinitesimal model in animal breeding (Fisher, 1930) was 
quickly confirmed: most QTL have only small effects on the traits of interest, 
and the probability of ever finding them is strongly constrained by experimen-
tal sample size (e.g., Hayes and Goddard 2001; Visscher 2008). As a conse-
quence, the initial vision of getting the main breeding goal traits under control 
via MAS on their underlying QTLs had to be abandoned.

Marker-assisted BLUP
Instead, since the late 1990s, DNA marker genotypes were included 

into the conventional BLUP analyses following Fernando and Grossman 
(1989): add the marker genotype (0, 1, or 2, for an animal) as a fixed ef-
fect to the statistical model for a trait, obtain the BLUP solutions for the 
additive polygenic effect as before, and also obtain the properly adjusted 
BLUE solution for the marker’s allele substitution effect; multiply this 
BLUE by 0, 1, or 2 (specific for the animal) and add the result to the ani-
mal’s BLUP to obtain its final marker-enhanced EBV. A logical next step 
was to treat the marker genotypes as semi-random effects, making use of 
several different shrinkage strategies all based on the marker heritability 
(e.g., Tsuruta et al., 2001); by 2007, breeding value estimation packages 
such as PEST (Neumaier and Groeneveld, 1998) supported this strategy 
as part of their internal calculations. At that time, a typical genetic evalua-
tion run for a production trait would involve up to 30 markers.
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Implications

•  Leading pig breeding companies have implemented single-step 
evaluation for genomic selection. Overall, this increases EBV ac-
curacies by half.

•  Further improvement requires focus on trait- and line-specific 
QTLs, exploitation of crossbred performance for non-additive ge-
netic effects, and training for hard-to-measure traits.

•  The multi-breeding-company multi-line crossbred pig production 
structure limits very high accuracies. Increased genotyping and 
phenotyping will lead to improved training data and may increase 
accuracies by two-thirds rather than half.

•  Novel technologies will allow for genotyping all selection candi-
dates, reducing the generation interval and emphasizing the need 
for inbreeding control, more efficient breeding structures, and 
higher selection intensities.
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SNPs: Anonymous markers
Around 2009, a new class of DNA markers (SNPs) became commer-

cially available, which introduced the principle of very large numbers of 
anonymous markers (the currently most commonly used SNP chip in pig 
breeding holds 64,232 markers; typically about two-thirds of these pass 
quality control tests and qualify for usage in analyses), most of them with-
out a clearly known biological function in sharp contrast to the previous 
version described above: those earlier markers had typically been devel-
oped using the candidate gene approach, deliberately exploring associa-
tions to genes with known functions in the regulation of the target trait.

In the meantime, Meuwissen et al. (2001) had described how to use 
Bayesian statistics to relate all those markers to the target trait phenotype 
simultaneously. With sufficient marker density, this technique produces 
properly adjusted estimates for all the marker allele substitution effects, 
and these can be matched to an animal’s marker genotypes (0, 1, and 2 as 
above) into a genomic EBV (gEBV).

Genome-wide prediction and genomic selection
Following developments in dairy cattle breeding (e.g., Harris and 

Johnson, 2009), the gEBV can be combined (blended, making use of 
blending factors that represent each element’s statistical accuracy) with 
the conventional BLUP value that takes no account of genomic informa-
tion (a polygenic EBV: pEBV) into the final marker-enhanced EBV. See 
Fig. 1 for an example from 2011. Nielsen et al. (2010) showed that blend-
ing SNP information into the BLUP evaluation increases the reliability of 
EBVs for both genotyped and non-genotyped animals.

The Meuwissen method calculates the gEBV without worrying about 
the individual significance of each marker: all the marker effect estimates 
(up to 64,232 in the above example) are included, implicitly assuming that 
the (very many) nonsignificant ones will cancel each other out. Again, this 
is in sharp contrast to the earlier approaches, where significance testing 
was performed very rigorously as is common practice in genome-wide 
association studies (GWAS).

An alternative approach makes use of marker panels that hold a relatively 
small subset (up to a few hundred, as in Fig. 1) of the full anonymous SNP 
set, selected based on the significance of their effects on the target trait al-
though the biological function of their marked QTLs is still unknown (and 
typically not explored). Such panels are trait specific and usually popula-
tion specific; examples were described by Otto et al. (2007) for meat quality, 
Deeb et al. (2010) for litter size and for scrotal hernia, and Mathur et al. 
(2011) and Jafarikia et al. (2015) for boar taint. Note that if the subset has 
been selected properly, and if the Meuwissen method functions as it should, 
then both approaches should have the same predictive power because they 
exploit the same subset of significant markers; the main advantage of the 
small panel is that it is cheaper to genotype a few hundred markers than 
several tens of thousands. The main disadvantage is that the panel has to be 
generated as such, and it will work for one trait in one line only; with the 
decreasing cost of genotyping (Fig. 2), the larger panels gain in popularity 
because of ease and uniformity in database handling.

Estimating the SNP effects: Reference populations
All the above approaches rely on the estimation of marker allele substitu-

tion effects by regressing the target trait phenotype (or in a more sophisticated 

Figure 1. An example of blending factors for the conventional polygenic BLUP EBV (pEBV) and the genomic EBV (gEBV) for litter size in a single pig line. Each data-
point represents an animal with its specific accuracies of the two EBVs. Note that the two axes have the same scale: the pEBV blending factor is always larger than the 
one for the gEBV, and its range is twice as wide. This reflects the limited accuracy of this 2011 gEBV, based on a panel of 196 markers. 
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version, high-accuracy conventional EBVs for that same trait: Garrick et al., 
2009; Ostersen et al., 2011) on the marker genotypes (Whittaker et al., 1996). 
This requires a reference or training population of genotyped animals with 
trait phenotype records (or high-accuracy EBVs, typically based on progeny 
testing)—likely, different reference populations for different groups of traits 
(e.g., growing pigs vs. sows). These marker effect estimates are then used to 
calculate gEBVs for genotyped selection candidates from the main breeding 
population; those are typically not part of the reference population to avoid 
double counting, and they don’t need to have a phenotype record.

This creates a dilemma: marker effects must be estimated in the reference 
population, and this requires genotyping (Henryon et al., 2015). But selection 
candidates in the main breeding population must be genotyped too so that 
their gEBVs can be calculated. Because genotyping costs money, the system 
must be optimized: sufficient genotyping in the reference population to make 
the marker effect estimates reliable enough, and sufficient genotyping of se-
lection candidates to support a good selection intensity: strategic genotyping. 
A key element here is the genetic relationship of selection candidates to the 
reference population: the reliability of the gEBV is directly proportional to 
this parameter (e.g., Clark et al., 2012). Therefore, the reference population 
will have to be updated on a regular basis to keep the marker effect estimates 
in sync with new generations of the breeding population.

So, the reference populations and the main breeding population are not 
the same, and this can be exploited by keeping the reference pigs in com-
mercial production farms—with infectious, nutritional, climatic, and social 
conditions much closer to the “real world” than what the typical nucleus 
farm with its high biosecurity has to offer. That way, the nucleus population 
can be directly selected for performance in commercial conditions without 
actually housing it there because the markers have been trained on that: an 

extension of the conventional combined crossbred and purebred selection 
(CCPS) schemes described by Casey et al. (2006). It would then be logical 
to have a crossbred reference population (e.g., Dekkers 2007; Zeng et al., 
2013) and use the marker effect estimates in both parental lines—although 
that halves the genetic connection of the reference population to each of 
those lines, so the reference population will have to be larger to compensate 
for that, and even more regularly updated. Other obvious factors that influ-
ence the reliability of such a gEBV for commercial performance are the 
purebred/nucleus versus crossbred/commercial genetic correlation of the 
trait, and the volume and recording quality of purebred versus crossbred 
phenotypes (Ibáñez-Escriche et al., 2014; Hidalgo et al., 2015). In other 
words, the optimum information design is likely to be line and trait specific.

Single-step evaluation
Still, blending the gEBV and the non-genomic pEBV takes place after 

calculating them separately, and that is awkward because they will need 
standardization. This was remedied by Legarra et al. (2009) and Chris-
tensen and Lund (2010) who proposed a high-marker-density method 
to do the blending inside the mixed-model equations; see Aguilar et al. 
(2010) for useful detail. This single-step evaluation pulls all the pheno-
typic, genomic, and pedigree information together into a single model, 
and it can successfully deal with EBVs for purebreds and crossbreds in a 
CCPS-based system (Christensen et al., 2014).

An important element here is that the marker effect estimation does 
take place internally, but the estimates do not form explicit output of the 
system. With that, the concept of a reference population as such becomes 
fuzzy, particularly in CCPS-based systems where entry of the relevant 
phenotypic data (i.e., training data) is a regular routine. Strategic genotyp-
ing remains important to ensure selection of the best candidates for the 
next generation (Henryon et al., 2015).

Genomic relationship-based prediction
At the same time, Hayes et al. (2009) showed that for a system with 

high enough marker density and with normally distributed QTL effects, 
the gEBV can be interpreted in two equivalent ways: 1) as above: the 
result of combining the estimated marker effects with the animal’s marker 
genotypes, or 2) as the result of a BLUP evaluation where the relationship 
matrix among the animals in the system contains genomic relationships 
(based on how many marker alleles two animals have in common) instead 
of pedigree-based ones. Option 2 is delightfully simple, mainly because 
it is trait independent; it is much easier to explain (particularly to non-
geneticists) and has become the standard mode of interpretation.

Although the datapoint cost of genotyping has come down more than 
10,000-fold since 1990 (Fig. 2) and is still falling rapidly, the number 
of datapoints (markers and animals) demanded by the recent methods is 
growing at least as fast as that—so the approach continues to be costly, 
certainly when compared with the much more large-scale sequencing 
technologies in the human field. Much of this was resolved by the imputa-
tion methodology proposed by Habier et al. (2009), where low-density 
genotypes are scaled up to high-density ones. Fig. 3 (based on Huang et 
al., 2012) shows the associated cost-benefit relationships.

Comparisons to Other Species Systems

Following from the above, the most advanced genomic selection appli-
cations in commercial pig breeding at this moment (late-2015) are single-

Figure 2. Timetrends of the cost of genotyping, in US dollars per datapoint 
(one marker, one individual). Black line: commercial genotyping of pig DNA. 
White line: human full genome sequencing (data from www.genome.gov/ 
sequencingcosts). Note that the vertical axis is logarithmic.
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step evaluations based on imputed genotypes, to produce gEBVs that are 
used for selection the same way as before. There are some important dif-
ferences with the dairy cattle and poultry systems, as follows.

Bacon and cheese
Genetic improvement depends on existing genetic variation, selection 

intensity (i), generation interval (L), and EBV accuracy. For the sake of 
discussion, genetic variation is assumed constant, i/L is a matter of design, 
and EBV accuracy has to do with accurate phenotyping and optimum ge-
netic evaluation. This basic concept still fully holds in the genomic age, 
but the optimization of genetic improvement is different.

Generation interval versus accuracy. The most accurate EBVs 
come from progeny testing, and this must be balanced against time. In 
dairy cattle breeding, the balance has always been toward high accuracy, 
whereas in pig breeding, the balance tipped about 30 yr ago toward a short 
generation interval. An important factor here is that cattle AI produces sig-
nificantly more progeny than pig AI, allowing for a higher male selection 
intensity in cattle. Genomics improve accuracy most at a young age; in 
dairy cattle breeding, this allows for a dramatic shortening of the genera-
tion interval with marginally lower accuracies, but in pig breeding, the 
benefit comes from a considerable increase in accuracy at the same age of 
selection as before. This contrast relates to the type of traits that dominate 
the breeding goals, as follows.

Trait-related differences. Milk production traits form the dominant 
objective in most dairy cattle populations: these are single-sex late-in-life 
traits, so that selection decisions must be made before phenotypes are avail-
able, particularly in males. Pig breeding is ultimately about a low produc-
tion cost of quality pork. Many relevant traits can be recorded on selection 
candidates of both sexes before selection takes place (growth rate, feed in-
take, mortality, and ultrasound body composition). Other traits like meat 
quality require the slaughter of relatives but can be recorded at that same 
time. The similarity to the cattle system is in the relevance of lowering the 
cost price of piglets through improvement of reproduction traits: this creates 
the same single-sex and late-in-life issues as in milk production.

High-value bulls. Dairy bulls are conventionally “proven” at a high 
age (when their daughters are at the end of their first lactation), so the in-
vestments in the system are huge. A bull has to be reared, a large number 
of semen doses must be collected, and then progeny test commences with 
lots of waiting time. The cost of genotyping or even sequencing such ani-
mals is very low compared with the conventional testing costs. This situ-
ation is very different in pigs where the production cost of the animal is 
relatively low and the pool of selection candidates contains all the tested, 
pedigreed, and purebred male piglets—this makes the cost of genotyping 
a more important issue.

Population stratification and power of analysis. Successful applica-
tion of genomics depends on the size and structure of the training popula-
tion and its relatedness to selection candidates. The dominant dairy breed 
Holstein is mostly used purebred, giving rise to huge numbers of more 
or less closely related cows around the world (all of them selection can-
didates). Potentially all of these contribute phenotypes to the reference 
population; genotypes enter the equation through their sires or through 
(low density) genotyping of females themselves. The first genomic ap-
plications in Holstein involved about 1,500 progeny-tested bulls, each 
with easily more than 100 daughter phenotypes. The second step involved 
4,000 bulls, followed by collaboration between countries and organiza-
tions to achieve 16,000 bulls as a reference population.

By contrast, pig breeding is organized by separate herdbook societies 
and breeding companies; phenotype availability is therefore highly frag-
mented. The typical large pureline pig population has about 2,000 sows—
with about 50 sires selected per year, this produces 40 daughters per sire 
on average; it would then take 30 yr of data recording to achieve the initial 
Holstein setup. The crossbred end products derive from multiple breeds 
and lines (pig breeding programs involve one to four sirelines and two to 
five damlines); the reference populations for sirelines and damlines com-
prise crossbred commercial slaughter pigs and ditto sows, respectively. In 
the current stratified situation, collaboration between programs is hardly 
feasible—GWAS and gBLUP efforts are therefore much more challeng-
ing in terms of costs and income, triggering alternative approaches.

Male domination versus female repeated records. The average sow 
at parity 5 has 5 × 15 = 75 progeny. A nucleus population with 2,000 
sows and a replacement rate of, say, 40% then generates a yearly training 
population of 750 sows with 75 progeny, half the size of the basic situa-
tion in dairy cattle. In pigs, analysis is mostly driven from the maternal 
side where dairy cattle is a paternally driven system (see Lillehammer et 
al., 2011, for simulations).

Bacon and eggs
Costs. In cattle, the production cost of the animal is considerable and 

in pigs a bit less so, but the slaughter value and hence the production cost 
of poultry (particularly broiler chickens) is very low, and genotyping an 
individual has to compete, cost-wise, with phenotyping several individu-
als—thus balancing higher selection intensity against higher accuracy.

Structure. The production column of broilers and layers involves at 
least one extra pureline multiplication step; this makes the tracking and 
tracing of QTL at the crossbred commercial level even more challenging 
than it is in pigs. This is theoretically solved by tracing haplotype blocks 
back to the line of origin and then selecting the pure lines on the presence 
of the favorable blocks.

Figure 3. Cost and benefits of imputing high-density (64,232 markers: 60k) geno-
types of selection candidate pigs, for several scenarios of genotyping various sub-
groups of the population at different densities (384, 3,071 or 5,963 markers: 384, 
3k, 6k) and scaling them all up to 60k by imputation. Cost in US dollars per selec-
tion candidate (based on 2011 genotyping cost), benefits in terms of the reliability 
of the imputed 60k genotype. Data from Huang et al (2012).
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Bacon and chips
Potato breeding (and most of plant breeding in general) is entirely dif-

ferent. While some production crops follow index selection for increased 
yield, genetic improvement of many plant species is based on clone lines, 
testing of clones in different environments; breeding goals aim at creat-
ing clone products with clear benefits in disease resistance and individual 
gene actions. The huge benefit of working with clones is that genomic 
evaluation can be done once very thoroughly, where repeated phenotypes 
can follow over time.

Application of Genomics in Pigs in Three Examples

Example 1: Teat number
Genomics add most information for traits that are difficult to improve 

with the conventional methods: hard to measure, late-in-life, single-sex, 
and/or with a low heritability. By contrast, teat number can be recorded 
without measurement error on newborn piglets (on time for every selec-
tion moment) of both sexes, and it has a heritability of about 0.4. Because 
of this favorable phenotyping structure, this is probably the trait in pig 
production where genetic analysis reaches its highest accuracy. Duijves-
teijn et al. (2014) report on an in-depth analysis describing methodology, 
QTLs, comparison with literature results on microsatellite markers, and 
candidate genes relating the formation of teats in the pig to the formation 
in other species and to the regulation of vertebra number. 

Figure 4 gives the mean accuracy of teat number EBVs in a single pig 
line, calculated from the conventional pedigree-based and genomic rela-
tionship matrixes and from these same with explicit addition of the most 
significant one, two, three, or four SNPs. The single most significant SNP 
increases the accuracy of the pedigree-based pEBV by 7%, and the four 
most significant ones do so by 27%. Replacing the pedigree-based rela-
tionship matrix by the genomic one gives a very interesting 50% increase. 
Not surprisingly, addition of SNPs to the genomic system has little effect.

It is interesting that the use of genomic information creates a substan-
tial increase in accuracy for this trait, even if not theoretically anticipated 
given the favorable information structure of the conventional situation. 
This example shows that genomic evaluation in pigs has considerable 
added value; it also raises the question of how to efficiently generate rel-
evant training information for late-in-life and/or single-sex traits.

Example 2: Post-weaning mortality
Post-weaning mortality easily qualifies as a hard-to-measure trait: 

a binary (0–1) trait with low incidence and heritability (p ≈ 0.05, h2 ≈ 
0.05), strong and erratic environmental influences, and cumbersome in-
dividual recording—but with a very high economic value (Knap, 2014). 
The main challenge here is proper phenotyping: any type of breeding 
value estimation will require very high data volumes to achieve reason-
able statistical power for such a trait. The first requirement for breeding 
value estimation is always variation, and the variation of a binary trait 
is proportional to its incidence: recall that its variance equals p×(1– p). 
Therefore, the ideal farm for recording this trait is very large, has a high 
mortality incidence, continues with that for a long time, and has staff 
strongly motivated toward high-quality data recording. Such farms are 
difficult to find; they will necessarily be commercial production farms 
(as opposed to the breeding company’s nucleus units), and the pigs will 
be crossbreds. To maintain a close genetic connection to the nucleus 
selection candidates, the pigs will be produced from nucleus semen: a 
classical CCPS system.

Figure 4. EBV accuracies for teat number in a pig line, based on pedigree (a) versus genomic 
(b) relationship coefficients. pEBV: polygenic EBV from conventional BLUP analysis; gEBV: 
genomic EBV based on 1, 2, 3, or 4 most significant markers fitted explicitly (which diverts 
genetic variation away from the pEBV). The blended EBV is a weighted combination of pEBV 
and gEBV. Data from Lopes et al. (2016).

Figure 5. Post-weaning mortality recording and EBV accuracy in a pig 
line; spline interpolation plots through quarterly data. Black line: num-
ber of crossbred commercial CCPS records per quarter (not cumulative). 
White line: variance based on the mortality incidence per quarter; the re-
cording base was extended to farms with a more stable health status during 
2005 and 2006. Red line: mean accuracy of the EBV of 6-mo-old nucleus 
selection candidates; genomic selection was implemented in 2010. 
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Our example gives the mean accuracy of the post-weaning mortality 
EBV for nucleus selection candidates, based on data recorded in such a 
CCPS system. In 2005, MAS was set up for this trait, using 5 to 20 mark-
ers in various lines. Genomic selection was implemented in 2010 using a 
dedicated small marker panel, followed by single-step evaluation in 2012. 
In Fig. 5, we see that this increased the EBV accuracy by 50%, from 0.14 
to 0.22; for a binary trait with a 0.05 incidence and a ditto heritability, 
the latter value is equivalent to a progeny test on 101 progeny. Recording 
volume increases steadily up to late 2010; the mortality incidence and its 
associated variance in these records drops just as rapidly from an alarm-
ing (but for EBV purposes, highly useful) initial 10% on a few selected 
farms to a more representative 5% level by 2006. These opposite trends 
might be taken to explain the horizontal trend in the accuracies in that 
early period—but the incidence stabilizes by 2006 and the volume contin-
ues to increase with no apparent effect on the accuracies until the start of 
genomic prediction in 2010. Obviously, some other factor played a role to 
neutralize the increasing recording volume between 2006 and 2010.

Example 3: Blending in the single-step  
evaluation of culling after first litter

Single-step evaluation blends the pedigree-based relationship coeffi-
cients with the genomic ones inside the mixed-model equations; the focus 
on each differs by trait and by line. This example uses the trait culling 
after first litter (CAFL): a 0–1 trait recorded on sows in multiplier farms 
only—nucleus sows are culled on a selection index that disqualifies them 
for this trait. Hence, the nucleus has no CAFL phenotypes, and the infor-

mation must be transferred to it through genetic relationships. Genomic 
information would be expected to be very useful here.

The culling rate after first litter is 20%, i.e., a variance of 0.2 × (1 – 
0.2) = 0.16; the heritability is 0.25. Single-step evaluation is based here 
on a reference dataset that holds 319,320 CAFL records and 22,065 geno-
typed animals (a mix of 8k and 60k) up to 2013; records from 2014 on-
ward serve as the validation dataset for which EBVs were produced with 
blending factors w that were varied from 0.1 to 0.9: higher w values focus 
more on the pedigree information. For the validation, adjusted phenotypes 
were obtained in a non-genomic single-trait BLUP evaluation, as the ani-
mal’s EBV plus its residual value. The validation criterion was the corre-
lation of EBV with the adjusted phenotype, by month in 2014.

Figure 6 shows how this correlation decreases over time and how the 
highest correlations are obtained with w = 0.9: genomic and pedigree re-
lationships are best weighted 1:9 here. By contrast, in the same pig line, 
similar analyses for growth rate and feed conversion ratio (Christensen et 
al., 2012) produced optimum w values around 0.25: genomic and pedigree 
relationships are best weighted 3:1 for these traits. So, in this line, genom-
ics provide much less added value for CAFL than for growing pig traits; 
similarly Guo et al. (2014) found high optimum w values (around 0.5) for 
litter size and piglet mortality in this line. Compare this to Fig. 1, where 
the litter size pEBV is always weighted more heavily than the gEBV. 
Clearly, strategic genotyping (and phenotyping) for these sow traits must 
follow a different pattern than for growing pig traits.

Summing up examples 1, 2, and 3
Figures 4 and 5 show a 50% increase in EBV accuracy due to a shift 

to genomics technology in two very different pig lines for traits as widely 
different as teat number and post-weaning mortality rate. Figure 6 illus-
trates another trait in another line where genomic information is less sig-

Figure 6. EBV accuracies (correlations to adjusted phenotype) for sow culling rate 
after first litter in a pig line, with different values for the blending factor w: higher 
w values give more weighting to the pEBV (based on pedigree relationships among 
animals) and less to the gEBV (based on genomic relationships). The reference 
dataset runs to December 2013; the horizontal axis shows the first three months of 
the subsequent validation data. 

Figure 7. Genetic trend in the overall selection index of a pig line before and after 
implementation of genomic selection in 2012. Black line: weekly means of the 
index; white lines: one standard deviation interval; red lines: linear regressions be-
fore and after.
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nificant; but Fig. 7 shows again a 50% increase in overall genetic change 
across eight index traits in that same line.

Future Developments

Genomic selection in pig breeding may develop along two paths that 
are likely to converge on the medium term. The first is via increased marker 
density in combination with increased genotyping and phenotyping volume 
(the raw statistical power approach). This is obviously a diminishing-returns 
system, neatly quantified by Erbe et al. (2013) for two cattle breeds, in terms 
of marker density and size of the reference population. Full genome se-
quencing would guarantee that the actual functional mutations are included 
in the system (Meuwissen and Goddard 2010); Hickey et al. (2014) suggest 
how to explore this for the next generation of genomic selection.

The second path is via a move away from the black-box approach of 
breeding value estimation, weighting markers into the gEBV according to 
their effect on the trait of interest (as estimated in GWAS analyses: the bi-
ological approach). Obviously this would be useful mainly for traits with 
a genetic background that deviates from the infinitesimal pattern of very 
many QTL, each with small effects. Figure 8 illustrates to what extent this 
is the case for 31 traits in seven pig lines: obviously the vast majority of 
cases do not really qualify (similar to the blue line in Fig. 4b which ben-
efits from improved pedigree and from individual marker contributions, 
yet shows little improvement from the latter); but a subset in Fig. 8 with 
clear non-infinitesimal patterns comprises traits of all the categories iden-
tified here—with very line-specific patterns as expected.

An interesting approach is backsolving the genomic relationship matrix 
on the gEBVs to obtain estimates for the marker effects (e.g., Zhang et al., 
2010; Wang et al., 2012), which would allow for blending such estimates 
with the regular gEBVs (Zhang et al., 2015) within a single analysis.

Heterosis plays an important role for many traits in crossbred pig pro-
duction, and when gEBVs are based on crossbred performance data, it 

would seem obvious to include the non-additive genetic effects that cause 
heterosis in the statistical model: that should increase the reliability of the 
gEBV and reduce its bias. Su et al. (2012) and Zeng et al. (2013) present 
methods to deal with this in a gEBV setting. Dams and sires of two pure 
lines allow for the estimation of dominance effects even when progeny are 
not genotyped: dominance probabilities can be quantified via the combi-
nation of known sire and dam genotypes (Boysen et al., 2013).
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