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Background

Animal breeding, i.e., the selective breeding for economically impor-
tant traits, was traditionally based on phenotypic recordings. Best linear 

unbiased prediction (BLUP) combined individual records and those of 
relatives into estimates of breeding values (EBV). From 1990 onward, 
advances in molecular genetics held the promise that information at the 
DNA level would lead to more genetic improvement than using only phe-
notypic records. This resulted in research into MAS, which consists of 
two steps: 1) detect and (fine) map genes underlying the traits of interest, 
i.e., so called quantitative trait loci (QTL); 2) include the QTL informa-
tion into the BLUP-EBV (Fernando and Grossman,1989).

The QTL mapping step (1) was successful in the sense that most map-
ping studies detected QTL. But the repeatability of the mapping studies 
was low, i.e., QTL positions moved/(dis)appeared from one study to the 
next. One reason for this is that the majority of QTL have very small 
effects. When this is combined with testing a large number of markers, 
there is a marked “Beavis effect” in which the estimated effect of sig-
nificant markers is overestimated (Beavis, 1994). For instance, if we test 
100 markers for their statistical significance using a P-value of 1%, we 
expect one (false) positive result even if all true marker effects are zero. 
Conversely, if all of the markers have very small effects, few (randomly 
picked) markers will reach higher levels of significance and most will fail 
to reach the threshold and be declared nonsignificant. In genome-wide 
association studies (GWAS), the number of tests equals the number of 
genotyped independent SNPs, which is typically many thousands in live-
stock and hundreds of thousands in human genetics. With so many SNPs, 
the multiple-testing problem becomes so large that in human genetics, 
P-values of < 5 × 10-8 are commonly used. In addition, human genetics 
journals demand a confirmation of the QTL in an independent dataset.

These very stringent tests resulted in only the largest QTL being found. For 
some traits, such large QTL were detected, e.g., DGAT1 affecting fat content 
in milk (Grisart et al., 2001) and CDH1 affecting infectious pancreatic necro-
sis virus (IPNV) resistance in Atlantic salmon (Moen et al., 2015). However, 
for many other traits, no reliable QTL were found, and less than 10% of the 
variation of the overall breeding objective, i.e., a combination of all the eco-
nomically important traits, was explained by QTL. This was even the case for 
dairy cattle, where many powerful QTL mapping studies were conducted. Less 
than 10% of the genetic variance of the breeding objective explained by QTL 
implied that more than 90% of the genetic differences between animals had 
to be handled by traditional selection. Hence, by 2005, the uptake of MAS in 
livestock breeding was very limited. In human genetics, the result that very 
powerful GWAS studies (e.g., 160,000 individuals genotyped for 500,000 
SNPs) explained only a (very) limited fraction of the total genetic variance was 
termed the missing heritability paradox (Manolio et al., 2009), i.e., a large part 
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Implications

•  Traditional marker-assisted selection (MAS) did not result in a 
widespread use of DNA information in animal breeding. The main 
reason was that the traits of interest in livestock production were 
much more complex than expected: they were determined by thou-
sands of genes with small effects on phenotype. These effects were 
usually too small to be statistically significant and so were ignored.

•  Genomic selection (GS) assumes that all markers might be linked 
to a gene affecting the trait and concentrates on estimating their ef-
fect rather than testing its significance. Three technological break-
throughs resulted in the current wide-spread use of DNA informa-
tion in animal breeding: the development of the genomic selection 
technology, the discovery of massive numbers of genetic markers 
(single nucleotide polymorphisms; SNPs), and high-throughput 
technology to genotype animals for (hundreds of) thousands of 
SNPs in a cost-effective manner.

•  Here we review current methods for GS, including how they deal 
with practical data, where genotypes are missing on a large scale. 
The use of whole-genome sequence data is anticipated, and its ad-
vantages and disadvantages are depicted. Current and predicted fu-
ture impacts of GS on dairy and beef cattle, pigs, and poultry breed-
ing are described. Finally, future directions for GS are discussed.

•  It is anticipated that future GS applications will either be: within breed 
(wbGS), where accuracy is obtained by maintaining huge within-
breed reference populations; or across breed (abGS) where accuracy 
is obtained from across-breed reference populations and high-density 
GS methods that focus on causative genomic regions. We argue that 
future GS applications will increasingly turn toward abGS.
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of the heritable variation was not accounted for by these 
powerful GWAS studies.

Many explanations for the missing heritability 
problem have been published (Manolio et al., 2009). 
The most likely explanation seems to be a combina-
tion of very stringent statistical tests and many genes 
with small effects affecting the traits, i.e., the gene ef-
fects are too small to pass the stringent statistical tests 
despite the large number of genotyped individuals. 
All these small genes together explain the vast major-
ity of the genetic variation for most traits (Yang et al., 
2010). In 2001, Hayes and Goddard (2001) predicted 
50–100 genes affected dairy traits, which was con-
sidered a high estimate at that time. Based on current 
GWAS and genomic selection results, we believe that 
dairy traits are affected by 2,000–10,000 genes. Thus, 
the number of genes that are believed to affect com-
plex traits, such as dairy traits, has increased ~100 
fold during the last 15 yr, i.e., complex traits turned 
out to be much more complex than expected one to 
two decades ago. Many genes affecting a trait implies 
that individual genes have small effects, which limits 
the efficiency of the MAS approach.

Three breakthroughs have resulted in the cur-
rent widespread use of DNA information: 1) the GS 
methodology (Meuwissen et al., 2001), 2) the identi-
fication of many thousands of SNP markers, and 3) SNP-chip genotyping 
technologies that render the genotyping of all these SNPs cost effective. In 
MAS, a small number of significant markers were used, and the rest were 
treated as having zero effect. In GS, the effects of all these SNPs are esti-
mated simultaneously without any significance testing. If there are ~10,000 
genes affecting a trait, there are genes everywhere on the genome, which 
may be associated with many thousands of SNPs distributed across the ge-
nome. Hence, the assumption that all SNPs have an effect may be approxi-
mately valid, and we should change our focus from significance testing to 
estimating the effects of all markers. The (second generation) sequencing 
efforts that have resulted in discovery of the genome sequence of many 
of the livestock species have as a by-product revealed many thousands of 
SNP markers. In cattle, the 1,000-bulls sequencing project has revealed 30+ 
million SNP markers (Daetwyler et al., 2014). The SNP-chip genotyping 
technologies were mainly developed by Illumina and Affymetrix, and first-
generation SNP chips contained typically ~50,000 SNPs for most livestock 
species.

In GS, a reference population is genotyped and recorded for the trait to 
estimate SNP effects. Next, selection candidates are genotyped, and by com-
bining their genotypes with the estimated effects, genomic EBV (GEBV) are 
estimated for the selection candidates. It may be noted, that the GS approach 
does not require pedigree recording, which was essential to traditional BLUP-
EBV, and that the elite breeding animals, i.e., the selection candidates, are not 
necessarily trait recorded. In traditional breeding, the elite breeding animals 
were as accurately as possible trait and pedigree recorded. This potential to 
decouple accurate recording from the elite breeding population makes it pos-
sible to completely redesign the breeding scheme, and consequently GS has 
resulted in a paradigm shift in animal breeding. Our goal here is to describe 
the GS method in more detail for a general scientific (non-geneticists) audi-

ence. In addition, we will describe current and predict future impacts of GS on 
dairy and beef cattle, pigs, and poultry breeding.

Genomic Selection Methods

All SNP effects are simultaneously estimated in a reference popula-
tion, which is genotyped and phenotyped using the statistical model (as-
suming 50,000 SNPs):

yi = μ + X1i × b1 + X2i × b2 + …. + X50000i × b50000 + ei

where yi is phenotype of animal i; μ is the overall mean; X1i is the genotype 
of animal i for marker 1; and ei is the residual. Since usually we have < 
50,000 reference animals, we cannot estimate 50,000 SNP effects if they 
are treated as fixed effects, i.e., using traditional statistical methods. This 
problem is solved in GS by treating the SNP effects as random effects 
drawn from a known distribution. This can be viewed as a Bayesian ap-
proach, where prior information on the SNP effects is added to make all 
effects estimable. A commonly used prior assumption is that SNP effects 
are normally distributed with mean 0 and a constant variance (which is the 
total genetic variance divided by 50,000). In effect, this method uses BLUP 
to estimate SNP effects, and the method is sometimes called SNP-BLUP. 
The genomic breeding value of selection candidate j is predicted as:

GEBVj = X1j × 1 + X2j × 2 + …. + X50000j × 50000

where 1 is the estimate of the effect of SNP 1; and X1j is the genotype of 
animal j for SNP 1.

The GBLUP Method

In traditional BLUP, EBV are estimated using phenotypes and family 
relationships, which are based on the pedigree of the animals. In GBLUP, 
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GEBV are estimated using phenotypes and genomic relationships, which 
are based on genome-wide dense marker data. The genomic relationship 
between animals 1 and 2 is calculated as the correlation between their SNP 
genotypes Xj1 and Xj2 across all the SNPs j. The GBLUP method is thus 
very similar to traditional BLUP, except that pedigree relationships are 
replaced by genomic relationships. A practical advantage of the GBLUP 
approach is that all the traditional BLUP methods and software can still 
be applied: we only need to replace pedigree by genomic relationships.

The pedigree relationship between two fullsibs is 0.5, which means 
that two full sibs are expected to have 50% of their alleles in common. 
However, in real life, two fullsibs may share 60% of their alleles or 40%, 
and this deviation from the pedigree-based expectation of 50% will be de-
tected by dense marker genotyping. Thus, GBLUP is more accurate than 
traditional BLUP because genomic relationships are more accurate than 
pedigree-based relationships. The latter requires genomic relationship es-
timates to be based on a sufficiently large number of SNPs. For livestock 
and relationships within a breed, 50,000 SNPs distributed across the en-
tire genome seems to suffice (Goddard et al., 2011). Relationships across 
breeds are small and require a larger number of SNPs to be used.

The statistical model for the GBLUP method is:
yi = μ + ui + ei

where ui is the breeding value of animal i. The GBLUP and SNP-BLUP 
breeding values are equivalent if we define ui as:

ui = X1i × b1 + X2i × b2 + …. + X50000i × b50000

This definition of ui has consequences for the covariance between two 
animals ui and uj, which becomes:

(X1i × X1j + X2i × X2j + …. + X50000i × X50000j)sb
2 =  

(X1i × X1j + X2i × X2j + …. + X50000i × X50000j)/50000

where the total genetic variance is assumed 1 (for simplicity) and the vari-
ance per SNP is then sb

2 = 1/50000. If we standardize the genotypes Xki 
such that they have mean 0 and standard deviation 1 within every SNP k, 
the above formula calculates the correlation between SNP genotypes, i.e., 
the genomic relationship between the animals i and j. (The usual cor-
rections for means and standard deviations in the correlation coefficient 
calculation are not needed here because the SNP genotypes are scaled 
so that their mean is 0 and standard deviation is 1.) When parametrized 
in this way, the SNP-BLUP and GBLUP model imply the same covari-
ances between animals, and thus also identical regression coefficients of 
the records on the genetic value of animals. The latter implies that, when 
parameters are carefully adjusted, SNP-BLUP and GBLUP yield identical 
GEBV, i.e., the methods are said to be equivalent. More formal deriva-
tions of the equivalence of GBLUP and SNP-BLUP can be found in the 
literature (Habier et al., 2007; VanRaden, 2008; Goddard, 2009).

The computational requirements of GBLUP and SNP-BLUP may be 
very different. SNP-BLUP requires the estimation of 50,000 SNP effects, 
and thus the solving of a set of 50,000 equations, whereas GBLUP re-
quires the estimation of N GEBV and solving of N equations, where N is 
the number of animals. Since usually the number of genotyped animals is 
smaller than 50,000, the GBLUP method is (computationally) preferred. 
In the future, the number of genotyped animals is expected to increase 
dramatically, so it may well be that the SNP-BLUP method becomes the 
method of choice. However, other, non-BLUP methods, may also gain 
popularity as shown in the following sections.

Nonlinear Methods for Genomic Selection

The prior information in SNP-BLUP (and implicitly GBLUP) assumes 
that SNP effects are normally distributed with the same variance for every 
SNP. This assumption leads to BLUP estimates for the SNP effects that 
are a linear combination of all the observed phenotypes. Biologically, 
we may expect that some SNPs, that are close to a gene, have an effect 
and many others have no effect. A number of methods have been devel-
oped that incorporate prior information that assumes that a fraction π of 
the SNPs have an effect and a fraction (1-π) have no effect at all. The 
model used for these methods is:

yi = μ + I1 × X1i × b1 + I2 × X2i × b2 + ….  
+ I50000 × X50000i × b50000 + ei

where Ij is an indicator variable with values 0 or 1 indicating whether 
SNP j is having an effect or not. BayesC assumes that the SNPs with ef-
fects are normally distributed with constant variance (Habier et al., 2011) 
and is thus closest to SNP-BLUP. BayesB uses the t-distribution as prior 
for the SNPs with effects, which allows for some SNPs to have very big ef-
fects (Meuwissen et al., 2001). BayesR assumes a mixture of normal distri-
butions for the effective SNPs, which also allows for some SNPs with very 
big effects, namely those that are drawn from the distribution with largest 
variance (Erbe et al., 2012). The estimated SNP effects from these methods 
are no longer a linear combination of phenotypes. Other nonlinear estima-
tion methods are BayesA (Meuwissen et al., 2001), the LASSO, Bayesian 
Lasso, and the elastic net (Hastie et al., 2009). (The nonlinear methods are 
sometimes called “Bayesian” methods because they use a prior distribu-
tion of SNP effects, but SNP-BLUP also uses a prior distribution, which 
is assumed to be a normal distribution.)

Glossary

BLUP best linear unbiased prediction

GBLUP genomic best linear unbiased prediction

ssGBLUP single-step genomic best linear unbiased prediction

SNP-BLUP best linear unbiased prediction of SNP effects

EBV estimated breeding value

GEBV genomic estimated breeding value

GS genomic selection

abGS across-breed genomic selection

wbGS within-breed genomic selection

APY Ancestor, Proven, Young Bull algorithm

GWAS genome-wide association study

LD linkage disequilibrium

MAS marker-assisted selection

MOET multiple ovulation and embryo transfer

QTL quantitative trait locus

SNP single nucleotide polymorphism

WGS whole-genome sequence
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The prior distribution of SNP effects used by the nonlinear methods 
makes a lot more sense biologically than assuming that all SNPs have an 
effect and that all effects are very small. In computer simulation studies, the 
nonlinear methods clearly outperform GBLUP (Meuwissen and Goddard, 
2010), but in real data, nonlinear methods are somewhat superior for some 
traits but not all (Erbe et al., 2012). This may be explained by the following: 
1) there are many genes affecting the economically important traits, so that 
assuming all SNPs are having an effect is approximately true; 2) linkage 
disequilibrium (the non-random association between two loci) extends over 
large genomic distances in livestock populations, such that many SNPs are 
associated with a gene; and 3) the SNP density is not high enough, so that 
each QTL can be explained by a single SNP and so many SNPs are needed 
to jointly explain the QTL effect. Consequently, the superiority of nonlinear 
methods over GBLUP becomes clearer when the 50k SNP chip is replaced 
by a high-density 777k SNP chip and when the data includes multiple breeds 
(Brøndum et al., 2015). The combination of explanations (1) and (2), i.e., 
there are many genes relative to the extent of the linkage disequilibrium, 
mainly explains the good performance of GBLUP within breeds.

Sequence Data

Genomic selection based on SNP chip genotypes relies on linkage dis-
equilibrium (LD) between the QTL and the SNPs, i.e., associations be-
tween SNPs and QTL. Increasing the density of SNPs increases the prob-
ability that any QTL has a SNP that is in perfect LD with it. The ultimate 
density is to replace SNP genotypes with whole-genome sequence (WGS) 
data. In the latter case, the causative mutations are expected to be pres-
ent in the sequence data, and thus, GS can act on the causative mutations 
directly, instead of having to rely on LD between markers and causative 
mutations. However, these mutations are hidden among many millions of 
SNPs with no effect. It may thus be expected, and simulation studies have 
shown (Meuwissen and Goddard, 2010), that the nonlinear GS methods, 
which assume that many SNPs have no effect, yield substantially higher 
accuracies than GBLUP when using WGS data.

Recently, Brøndum et al. (2015) demonstrated small (2–5%) increases 
in the accuracy of GEBV with sequence data. That current WGS data do 
not result in substantial improvements in accuracies of GEBV may be 
explained as follows. First, the GBLUP method is expected to yield little 
improvement when going from 777k to WGS data since the genomic re-
lationships are accurately estimated with 777k data and WGS will hardly 
improve the accuracy of the relationships and thus GEBV. However, the 
nonlinear GS methods attempt to identify the causal SNPs and are ex-
pected to benefit substantially from WGS data. Second, current WGS data 
are not very accurate, either due to imperfect genotype calling, the exten-
sive reliance on SNP imputation (see next section), or structural genomic 
variations, which are difficult to assess by short reads of sequences. The 

inaccuracies in the WGS data may compensate for the benefits of higher 
SNP density. Third, long-range LD may be extensive in the reference 
population animals, causing large chromosomal segments or haplotypes 
to be common. Consequently, there will be many combinations of SNPs 
that explain the effect of the haplotype as well as the causal mutations. 
Each statistical method will chose a combination of SNP effects that best 
fits its prior assumptions, but they may all give the same prediction of 
the haplotype effect. However, if the range of the LD is reduced, e.g., 
by using a reference population that is less closely related, the nonlinear 
methods that focus on the causal mutations may give greater accuracy 
than GBLUP, which uses all sequence variants equally. Another problem 
is that present-day computers struggle to store and handle these massive 
amounts of data, especially if WGS is to be collected on many animals. 
Despite current issues with the efficient use of WGS data, it is expected 
that WGS data will be the future’s genotype data because, if the sequenc-
ing costs continue to fall, WGS may become the most effective genotyp-
ing method (Gorjanc et al., 2015).

The Imputation of Missing Genotypes

After SNP-chip genotyping, some of the genotypes will be missing. 
This is solved by a process called genotype imputation. Based on the 
known genotypes of the animals, the haplotype that the animal carries 
is recognized since the same haplotype was also observed in other ani-
mals. Thus, the missing genotype can be read from the genotype of these 
other animals, which carry the same haplotype. Software for imputation 
includes Beagle (Browning and Browning, 2007), Fimpute (Sargolzaei et 
al., 2014), and Alphaimpute (Hickey et al., 2012).

Imputation methods can also be used in combination with sparse, but 
cheap, SNP chips. Key ancestors are genotyped with the dense, but expen-
sive, chip to identify the haplotypes in the population. Next, large num-
bers of descendants are genotyped with a sparse, cheap SNP chip. The 
sparse chip has enough SNPs to recognize which of the haplotypes the 
animal carries. Since the haplotypes are known at high density, the miss-
ing genotypes can be imputed.

The same strategy is employed to obtain WGS data on many animals: 
the 1,000-bull-genome project (Daetwyler et al., 2014) collects a set of se-
quenced bulls across breeds, which is used to identify (hopefully all) bovine 
haplotypes and their sequences. Next, many animals are genotyped with 
SNP chips, the bovine haplotypes that they carry are recognized, and their 
WGS data are imputed. Another option is to sequence the descendants at 
low coverage. In this case, the low coverage sequence should be just enough 
to recognize the haplotypes (Gorjanc et al., 2015). The 1,000 bull genomes 
project demonstrated that accurate imputation of sequence genotypes was 
possible for SNPs (and other variants) with high minor allele frequency. For 
SNPs with low minor allele frequency however, accuracy of imputation was 
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poor. Druet et al. (2014) demonstrated (in simulation) that if large numbers 
of ancestors were sequenced, at relatively low coverage (four- to sixfold), 
accuracy of imputing genotypes for these rare SNPs was improved. van 
Binsbergen et al. (2014) clearly demonstrated that imputing 50K genotypes 
first to 800K, then to sequence, resulted in higher accuracy of imputation 
than if 50K genotypes were imputed directly to sequence.

Ungenotyped Animals

In genomic selection, many (probably most) animals are not genotyped, 
but we need to include their phenotypic information in the breeding value 
estimation. At least, traditional selection would use such information. One 
way to do this is by multiple-step GS: in step 1, pseudo-phenotypes are 
calculated for the genotyped animals where the pseudo-phenotype of ani-
mal i includes information (records) on its ungenotyped relatives; in step 
2, genomic prediction is performed using the pseudo-records and their 
genotypes; and in step 3, the traditional EBV and GEBV are combined 
into a total EBV (e.g., VanRaden, 2008). As an example of a pseudo-re-
cord, the average production of the daughters of a bull can be used. Here, 
the bull is genotyped but not phenotyped whereas his daughters are phe-
notyped but not genotyped. Since the data are handled in multiple steps, 
this method is clearly suboptimal. However, in practice, good GS accura-
cies have been achieved using this method.

In single-step GBLUP (ssGBLUP), all data are accounted for in a 
single estimation step (see Legarra et al., 2014 for a review). When mov-
ing from traditional BLUP to GBLUP, we replace the entire matrix of 
pedigree relationships with genomic relationships (see above). An obvi-
ous idea is to replace pedigree with genomic relationships where available 
and retain the pedigree relationships where we do not have genomic rela-
tionships. However, if genotyping shows that e.g., some animals in differ-
ent families are more related than expected based on pedigree, then other 
ungenotyped animals in these families are probably also more related than 
expected. The correct relationship matrix can be obtained by starting with 
the genotyped animals and then using the pedigree to calculate relation-
ships involving ungenotyped descendants of these genotyped animals, 
i.e., going down the pedigree and accounting for the marker-based rela-
tionships of the ancestors of the pedigree. The same idea can also be used 
up the pedigree, i.e., when ancestors are non-genotyped although it is not 
optimal in this case (Meuwissen et al., 2011). In dairy cattle, ssGBLUP 
yields 0–2% more accuracy than multistep methods (Legarra et al., 2014), 
but for other species, which are less dominated by large sire families (i.e., 
where daughter averages are less able to summarize family information), 
the difference in accuracy between ssGBLUP and the multistep methods 
may be larger. A shortcoming of the single-step method is that it so far 
does not work for nonlinear estimation although some solutions to single-
step nonlinear estimation have been proposed in the literature (Liu et al., 
2014; Legarra and Ducrocq, 2012).

In most studies, increases in reliability due to single step, over a pure 
genomic model, are small (e.g., Koivula et al., 2012). A more important 
feature of single-step models may be that they can account for pre-selec-
tion of young genotyped bulls, which could otherwise cause bias in the 
GEBV (Vitezica et al., 2011). Until recently, the requirement that the G 
matrix must be inverted directly limited the size of the dataset to which 
ssBLUP could be applied. The Ancestor, Proven, Young Bull algorithm 
(APY) uses recursion to build a large component of the G-1 matrix di-
rectly, overcoming this limitation and expanding the application of ss-

BLUP to millions of genotyped animals (Fragomeni et al., 2015) but at 
the expense of some approximation in G-1. For the future, there is a clear 
need for a single-step method that uses a nonlinear statistical method on 
sequence level data.

Implementation of Genomic  
Selection in Livestock Industries

Genomic selection in dairy cattle
The accuracy of genomic prediction in dairy cattle exceeds 0.8 for pro-

duction traits and 0.7 for fertility, longevity, somatic cell count, and other 
traits (e.g., Wiggans et al., 2011; Lund et al., 2011). These high accura-
cies reflect the large reference populations for each breed that have been 
assembled to enable genomic predictions and the fact that many of the 
animals in the reference populations are progeny-tested bulls with highly 
accurate phenotypes from average daughter performance. In addition, the 
GEBV are often used to predict close relatives of animals in the reference 
population. A feature of dairy genomic predictions is collaboration be-
tween countries to assemble these large reference sets, with three consor-
tiums established (Eurogenomics, including the Netherlands, Germany, 
France, the Nordic countries, Spain, and Poland; The North American 
Consortium including USA, Canada, Italy, and Great Britain; and a “rest 
of the world” consortium consisting of a number of remaining countries).

The high accuracies of genomic prediction and relatively low cost of 
obtaining the genomic predictions from low-density genotyping followed 
by imputation, has resulted in very large numbers of selection candidates 
being genotyped. Worldwide, approximately 2 million dairy cattle have 
now been genotyped for the purposes of genomic prediction. In the USA 
alone, 934,780 Holstein animals, 120,439 Jersey animals, 19,588 Brown 
Swiss, and 4,767 Aryshire animals have been genotyped (Wiggans, person-
al communication, https://www.cdcb.us/Genotype/cur_density.html). Simi-
lar numbers of animals have been genotyped by other countries combined, 
including 360,000 in France alone (Boichard, personal communication).

Implementing genomic selection in dairy cattle has resulted in increased 
genetic gain, which has now been demonstrated by genetic trend analysis in 
a number of countries. For example, in Canada, the rate of genetic gain has 
approximately doubled since genomic selection was introduced (VanDoor-
mal, personal communication). There is also some suggestion that genomic 
selection has increased the rate of inbreeding per year (Schenkel, 2012). 
Maximizing genetic gain from genomic selection while constraining the 
rate of inbreeding will therefore be an important topic for future research.

Interestingly, the majority of the genotyped animals in many countries 
are now heifer calves. While genotyping young bull calves results in the 
greatest genetic gain, genotyping is now sufficiently cheap that genotyp-
ing heifer calves for the purposes of choosing which heifers to retain in 
the herd is profitable (Pryce and Hayes 2012; Weigel et al., 2012). The 
genotypes of the heifers can also be used when choosing bulls to which 
to mate them so that inbreeding of the resulting calf can be minimized.

When the selected heifers enter the herd and have herd recording data, 
they can be used in the reference population for genomic prediction (Wig-
gans et al., 2011). When the aim is to increase the size of the reference 
population to improve accuracy of genomic prediction, genotyping ma-
ture cows with good phenotypic records can help—Kemper et al. (2015) 
reported that adding 10,000 and 5,000 cows to reference sets used to 
evaluate Holstein and Jersey cattle respectively added a 5–8% increase in 
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accuracy, depending on the trait. This relatively large increase probably 
reflects the smaller bull reference sets (4,000 and 1,000 for Holsteins and 
Jerseys, respectively) compared with some of the populations above.

Genomic selection in beef cattle
In some beef breeds, genomic selection is now applied on a large scale. 

For example, in the USA, more than 52,000 Angus animals have now 
been genotyped for GEBV evaluation (Lourenco et al., 2015). In general, 
however, accuracies of genomic predictions in beef cattle have been lower 
than in dairy cattle. For instance, in their review, Van Eenennaam et al. 
(2014) reported accuracies in the range 0.3 to 0.7. The lower accuracy 
is because the reference populations are of higher quality in dairy cattle. 
In beef cattle, the reference population contains fewer animals within a 
breed, and these animals have not been progeny tested. In addition, the 
target population and validation animals may be less closely related to the 
reference population in beef cattle than in dairy cattle.

To compensate for the small number of reference animals within a 
breed, it is not uncommon to use a multi-breed reference population. 
Bolormaa et al. (2013b) found that this increased accuracy slightly (0.33 
to 0.38) but not as much as if the same number of animals had been from 
the same breed. When Akanno et al. (2014) used a reference population 
of several pure breeds in USA to predict within a crossbred population in 
Canada, the accuracy was low. If the target breed is not included in the 
reference population, the accuracy is very low.

These disappointing results for prediction across breeds are not unex-
pected. De Roos et al. (2009) found that the phase of LD does not persist 
across breeds except at short genomic distances (e.g., < 10kb). Therefore, 
when using a 50k SNP panel, information from another breed is not ex-
pected to increase accuracy. Even if high density SNPs are used, informa-
tion from another breed is much less useful than information from the target 
breed because animals of different breeds share much smaller chromosome 
segments than animals of the same breed. When BLUP is used to pre-
dict breeding values, the variance for a chromosome segment 
is assumed to be proportional to its length (or 
number of SNPs), and so small segments have 
lower variance and are estimated less accurately 
than larger segments. The situation is improved 
a little by using Bayesian methods that allow 
some SNPs (and therefore some segments) to 
have a larger effect than others. Then prediction 
can make better use of SNPs in high LD with the 
QTL, and this information may transfer across 
breeds (Bolormaa et al., 2013b; Khansefid et al., 
2014).

The value of combining breeds in a refer-
ence population depends to some extent on QTL 
segregating in multiple breeds. Bolormaa et al. 
(2014) reported QTL in similar locations across 
a range of breeds, suggesting that QTL do seg-
regate in multiple Bos taurus breeds. However, 
Bolormaa et al. (2013a) concluded that QTL 
seldom segregate in both B. taurus and B. indi-
cus, although there are known exceptions such 
as PLAG1 and CAST [PLAG1 segregates in 
Australian Brahmans because it was introgressed 
from B. taurus (Fortes et al., 2013)].

Genomic selection has not been adopted as widely in beef as in dairy 
cattle breeding. This is partly because the accuracy is lower, but also be-
cause the economic advantages are not as great. Genomic selection is 
most advantageous for traits that are difficult to select for traditionally. 
It is less advantageous in beef than dairy because progeny testing is not 
needed for traits that can be measured on selection candidates at a young 
age such as growth rate. However, several important traits in beef cattle 
are difficult to select for such as feed conversion efficiency and beef qual-
ity. Because these traits are also expensive to record, it is costly to set up 
a large training population and there are no large companies that could 
justify this cost for their own breeding program. For these traits, a multi-
breed training population and nonlinear analysis based on high-density 
SNPs or genome sequence data may be the best approach.

Despite these difficulties, genomic selection has been implemented in beef 
cattle. For instance, Angus EBVs in Australia and USA are calculated using 
DNA information if it is available. There are two ways in which this can be 
done. First, the genotypes can be provided to the organization that calculates 
EBVs who then calculate the prediction equation. Second, a commercial or-
ganization, such as Zoetis or GeneSeek, can provide the DNA testing service 
and use their own prediction equation to generate “marker breeding values” 
which are then transmitted to the genetic evaluation service for incorporation 
into EBVs. Both methods are in operation. The advantage of the first method 
is that the full dataset of phenotypes and genotypes can be used to derive the 
prediction equation and the DNA information can be fully integrated through 
one-step genomic prediction methods (e.g., ssGBLUP).

Genomic selection in pig breeding
In pig breeding, the most important selection step is the selection of elite 

boars in the nucleus herd. (This may be at the boar test station in the case 
of cooperating pig breeders.) The boar test 

recordings come generally before the 
selection of the elite boars, so extra 

gains due to a reduction of the 

source: © 2015 Stock.Adobe.com/fottoo
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generation interval are limited although still a ~25% reduction in generation 
interval may be realized by the introduction of GS (Bjarne Nielsen, personal 
communication, 2015). The implementation of GS in pig breeding is there-
fore mainly directed at traits whose recording is invasive such as slaughter 
quality, maternal traits that cannot be recorded on the boars, and crossbred 
performance, which cannot be recorded on the purebred animals.

With respect to the maternal traits, female sibs of the test boars are 
raised in nucleus herds, but their maternal trait recordings become avail-
able after the selection of the boars. However, GS for maternal traits can 
be based on aunts of the test boars. Male selection accuracies of ~50% can 
be achieved for the selection for maternal traits (Lillehammer et al., 2011). 
The selection for maternal traits competes with the selection for produc-
tion traits such as growth rate and feed conversion efficiency, resulting in 
substantial increases in genetic gain for maternal traits accompanied with 
a somewhat reduced rate of gain for the production traits. Rates of gain for 
total merit increase moderately, but the direction of rate of gain complies 
much more closely to the direction as indicated by the breeding goal. The 
substantially increased progress for the maternal traits thus results in a 
more balanced and thus sustainable selection response.

With respect to slaughter traits, sibs of the test boars may be slaughtered 
and recorded for these traits before the test boars are selected. Thus, GS can 
be based on a reference population that is very close to the selection candi-
dates, and thus high selection accuracies can be achieved. Also, here the ex-
tra gains will partly be at the expense of gains for the traditional production 
traits, but the direction of genetic change will comply much closer to the 
breeding goal, and thus can be sustained over a longer period into the future.

Pork is produced by crossbred pigs, but the elite breeding nucleus ani-
mals are selected for purebred performance in a favorable environment 
(e.g., a nucleus herd). The relationship between purebred production in 
very good environments and crossbred performance on less favorable en-
vironments varies between 0.4 to 0.7 (Esfandyari et al., 2015). This im-
plies that only 40–70% of the genetic improvement realized in the nucleus 
will also result in improved performance in practice, e.g., if nucleus pigs 
grow 100 g/day faster due to genetic improvement, commercial pigs will 

only grow 40–70 g/day faster. By genotyping crossbred pigs and record-
ing their performance in the commercial environment, GS can be used to 
improve purebred nucleus animals for crossbred performance under com-
mercial circumstances. This requires across breed and crossbred genomic 
selection, which has not yet been demonstrated.

Hence, optimal across breed/purebred genomic selection methods 
need to be developed. Pig breeding companies are currently working to-
ward such a solution for the direct genetic improvement of crossbred per-
formance under practical conditions. The same approach can be used to 
select for traits that are relevant for an export market but are not recorded 
at the home market (e.g., resistance to some diseases). The approach will 
require an infrastructure where performance data and genotypes of practi-
cal animals are collected (across countries), transferred to the breeding 
value evaluation center, and used for selection in the nucleus.

Genomic selection in poultry
In layers, there has actually been an experiment to test if genomic selec-

tion can achieve more rapid gains than traditional selection. In Wolc et al. 
(2015), a layer population was split into two sublines; one was submitted to 
conventional phenotypic selection, and one was selected based on genomic 
prediction. The experiment ran for 3 yr, in which time, four cycles of genomic 
selection and two of phenotypic selection were conducted. At the end of the 
3-yr experiment, the two sublines were compared for multiple performance 
traits that are relevant for commercial egg production. The genomic selection 
line outperformed the phenotypic selection line for most of the 16 traits that 
were included in the index used for selection. Although the two programs 
were designed to achieve the same rate of inbreeding per year, Wolc et al. 
(2015) found that the realized inbreeding per year assessed from pedigree was 
higher in the genomic-selected line than in the conventionally selected line.

In broilers or meat poultry, the case for GS is not as obvious as in 
layers because most traits can be recorded on both sexes at an early age. 
However, the breeding companies are actively investigating the use of 
GS. Possible uses are for selection to improve crossbred performance in 
a commercial environment and for traits that cannot be recorded in the 

nucleus such as disease challenge tests.

Future Directions

The cost of DNA testing is an impediment 
to its use in many cases. If this cost continues 
to fall, the use of DNA testing will expand. 
This will help to generate larger and more up-
to-date reference populations. A problem will 
continue to exist for traits that are not rou-
tinely recorded. One-step evaluation methods 
are likely to become the norm. This will oc-
cur because they deliver more accurate EBVs 
and because cheaper DNA testing will lead to a 
higher proportion of the animals being tested.

Two methods could be used in the future to 
calculate genomic EBVs. The evaluation could 
be within breed (within breed GS; wbGS). In 
this case, medium- or low-density SNPs are 
enough and G- or SNP-BLUP can be used to 
calculate the prediction equation. Alternatively, 
the training population might consist of mul-source: © 2015 Stock.Adobe.com/buhanovskiy
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tiple breeds and perhaps crosses (abGS). In this case, EBVs will be more 
accurate if dense SNPs are used and nonlinear methods are used to calculate 
the prediction equation. For wbGS, there seems to be little opportunity to 
improve the prediction other than getting larger reference populations. For 
abGS, there are many avenues for improvement. Genome sequence data can 
generate more accurate EBVs than dense SNPs because the causal variants 
are included in the data and we don’t have to rely on LD. Increased biologi-
cal knowledge about the effects of mutations at each site in the genome can 
be used to discover these causal variants.

If wbGS yields sufficiently accurate EBVs (e.g., > 0.9), there is no 
need to explore abGS. However, in the future, GS will be used for an 
increasing number of traits of which some will be difficult to record on a 
large scale (e.g., methane emissions), and this reduces the opportunities 
for large within-breed reference populations for wbGS. In the longer term, 
we thus believe that abGS will lead to more accurate EBVs for the overall 
breeding goal, which is stable over populations that vary in space and 
time. In case the future of GS is limited to wbGS, the number of breeds 
and lines within breeds will decrease because only the largest lines will 
have large enough training populations to generate accurate EBVs.

Genomic selection offers two opportunities, which have so far not 
been fully utilized. First, GS combined with reproductive technology 
could greatly decrease generation length, and in combination with mul-
tiple ovulation and embryo transfer (MOET), GS may be used to pick 
the best embryos to produce the next generation of animals (instead of 
random embryos). Second, we could train the prediction equation on com-
mercial animals, rather than stud animals, which have been measured for 
the commercially relevant traits. For instance, commercial animals are 
often crossbreds, run under a harsher environment than the purebred stud 
animals. In addition, we can gather information on traits not measured at 
the stud level such as meat quality and disease resistance (e.g., if the out-
break of an infectious disease is a rare event). This implies a reduction of 
costs at the stud level due to less phenotypic and pedigree recording and 
an increase in costs to generate the reference dataset. This change may 
also be expected as the costs of genotyping and practical trait recording 
keep on falling (e.g., use of sensors in automatic milking systems). A com-
mercial mechanism to fund this change is not yet apparent.

It seems likely that the GS paradigm shift in animal breeding will 
eventually lead to structural changes in the genetic improvement industry, 
but it may be too early to nominate what these changes might be. One pos-
sibility is that the number of businesses breeding cattle, sheep, and pigs 
will decrease as has already happened in poultry.
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