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ABSTRACT

Objectives:  The Hoffmann method is a procedure for 
reference interval estimation using routine clinical results. 
Many authors incorrectly prepare Hoffmann plots on a 
linear rather than normal probability scale. We explore the 
consequences.

Methods:  This was investigated algebraically, by random 
number simulations (45 simulations, n = 100,000 
each) and using clinical data sets. Strategies compared 
were: Hoffmann’s method as originally and incorrectly 
implemented, Bhattacharya’s method, and maximum 
likelihood (ML). All R source code and data sets are 
provided.

Results:  As the proportion of healthy individuals 
approaches 1, the incorrect approach generates reference 
interval estimates of approximately μH ± 1.19 σH 
delineating the central 77% of the healthy subpopulation, 
not the central 95%. Inappropriately narrow reference 
interval estimates were seen on random simulations and 
clinical data sets. ML methods performed best.

Conclusions:  The erroneous variant Hoffmann method 
should not be used. ML methods outperform others and 
are not restricted by Gaussian assumptions.

In 1963, Hoffmann described a simple graphical 
method for estimating reference intervals from routine 
laboratory data.1 He assumed that the distribution of 
results could be represented by a mixture of two underly-
ing Gaussian distributions, corresponding to the healthy 
and diseased subpopulations, with the healthy subpopu-
lation dominating the sample ❚Figure 1❚.

Hoffmann’s method consisted of tallying the full set of 
results into a set of ordered categories representing measure-
ment ranges (“bins”), calculating the cumulative frequencies 
of the categories and converting them to percentages, and 
using normal (Gaussian) probability paper to plot the cumu-
lative percentages (on the y-axis with a Gaussian probability 
scale) against the measurement values corresponding to the 
category endpoints (on the x-axis with a linear scale).

Hoffmann demonstrated that under these assump-
tions, the result was a plot with two regions of approxi-
mate linearity corresponding to the healthy and diseased 
subpopulations. By extrapolating the linear region for the 
healthy individuals to the horizontal lines representing 
the 2.5th and 97.5th percentiles, the estimated reference 
interval corresponding to the central 95% of the healthy 
subpopulation could be read from the x-axis. ❚Figure  2❚ 
illustrates the procedure for a set of n =100  simulated 
observations drawn from the theoretical density shown in 
Figure 1 where the procedure gives an estimated reference 
range of 3.0 to 7.3 compared to the actual reference range 
derived from simulation parameters of 3.0 to 7.0.

While “binning” the data made the traditional manual 
procedure more convenient, it is not a critical component 
of the approach. A  correct modern approach involves 
sorting the n  measurements, assigning each measurement 
its corresponding cumulative probability (ie, assigning the 
ith ordered measurement the cumulative probability i / n  
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or using a similar formula with a small continuity correc-
tion), and plotting those probabilities (y-axis) against the 
measurement values (x-axis), thereby forming an empiri-
cal cumulative distribution function (CDF) of the sample. 

However, a critical component of the procedure is that 
the CDF be plotted using a Gaussian probability scale 
for the y-axis or, equivalently, that corresponding quan-
tiles of a standard Gaussian distribution be plotted on a 
linear y-axis ❚Figure 3❚. Such a plot is known as a “normal 
probability plot” and is a specific type of quantile-quan-
tile (QQ) plot for which the comparator distribution is the 
standard Gaussian distribution.2

The Hoffmann method has been widely applied in 
the field of clinical chemistry for reference interval der-
ivation and reference interval validation.3-22 There is also 
interest in automating the procedure.14,15

Early papers describing or applying the method 
were true to the methodology as originally described by 
Hoffmann and clearly explained the purpose and neces-
sity of using a Gaussian probability scale for the cumula-
tive probabilities plotted on the y-axis.23-25 Unfortunately, 
with only a few notable exceptions,18,26,27 a host of modern 
papers8,12-17,19 and even some textbooks11 explicitly show 
the use of an incorrect method that involves plotting a 
CDF of the sample in purely linear space.

While it may seem inconsequential, this methodolog-
ical deviation results in incorrect reference interval esti-
mates in all circumstances, even in the ideal case of a single, 
unmixed Gaussian distribution representing measure-
ments from only healthy individuals. Correspondingly, 
the parameter estimates of µH  and sH  may be poor, 
the latter being generally (but not universally) too small, 

A B

❚Figure 2❚  Original Hoffmann method applied to a simulated sample of n 80=  healthy and n 20=  diseased individuals from 
the mixture distribution shown in Figure 1. A, Tally of sample into a set of measurement ranges together with cumulative 
percentages. B, Hoffmann plot of right-midpoint of range (x-axis) vs cumulative percentage on Gaussian probability scale 
(y-axis), with extrapolated linear regions corresponding to healthy (solid line) and diseased (dashed line). Gray horizontal lines 
represent the 2.5th and 97.5th percentiles, and where those lines intersect the extrapolated “healthy” linear region, the x-co-
ordinates give the estimated reference interval.

❚Figure 1❚  Density of a distribution of mock patient data for 
a hypothetical analyte consisting of a mixture of Gaussian 
distributions representing healthy (subscript H) patients 
( µH = 5 , sH 1= ) and diseased (subscript D) patients 
( µD 7= ,  sD = 2 ). Solid line, overall density; dotted lines, 
component densities.
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resulting in reference intervals much narrower than those 
generated by the correctly formulated Hoffmann method.

Although many approaches exist for Gaussian mix-
ture model decomposition,28 in clinical chemistry attention 
has been focused primarily on the strategies of Hoffmann 
and Bhattacharya,29 likely because both are graphical in 
nature. The Bhattacharya method relies on first catego-
rizing the measurements of laboratory quantity x, into 
equally spaced classes (bins) of width h. This results 
in frequencies, denoted y, for each class. The quantity 
Dlog(y) = log(y(x + h)) log(y(x) )−  is then plotted against x 
and, for appropriately chosen widths h, the resulting plot 
will have regions where the curve straightens and has a neg-
ative slope. Extrapolation of these linear regions allows the 
determination of the x-intercept and the angle formed with 
the negative x-axis from which the mean, standard devia-
tion, and proportion p  for each contributing mode can be 
calculated.29 The method remains popular.30

In contrast, a modern (nongraphical) computa-
tional strategy for this problem is the use of maximum 
likelihood (ML) through the expectation maximization 
algorithm.31 A description of how ML methods work is 
beyond the scope of this paper and the interested reader 
is directed to a review on the topic.28 Importantly, how-
ever, the ML strategy for this and other problems has 
been implemented in relatively easy to use open-source 

computational packages for the R statistical program-
ming language.

In what follows, we will demonstrate the magnitude 
of the error associated with the use of a linear CDF, 
both algebraically and with random number simulations. 
We will also compare different methods for parameter 
estimation: the Hoffmann method (both correctly and 
incorrectly implemented), the Bhattacharya method, and 
modern ML approaches using a select two32,33 of several 
freely available software packages32-36 implemented using 
the R statistical programming language, which can be 
applied to this and other related problems.

Materials and Methods

Using algebraic methods, we analyzed and compared 
the reference interval estimates generated by both a correct 
modern variant of the Hoffmann method and the com-
monly used but incorrect implementation using a linear 
CDF. We further characterized the theoretical behavior 
of estimates generated by each method in a number of 
extreme, but illustrative, cases: a single Gaussian distribu-
tion representing a population of healthy individuals only, 
and examples with both negligible and very large differ-
ences in healthy and diseased subpopulation means. We 
also described a typical illustrative case with a large healthy 
subpopulation and a small diseased subpopulation having 
modest separation between the subpopulation means.

We then compared approaches with random num-
ber simulations. Samples of size n =100 000,  from 
two-component Gaussian mixture distributions were ran-
domly generated to simulate a variety of situations: with 
µH =10  and µH =1  fixed, µD  and σD  ranged from 12 
to 18 and 1 to 3, respectively, and rH  ranged from 0.7 to 
0.9 (45 combinations in total). Each simulated sample was 
evaluated using multiple procedures to recover µH , sH , 
the reference interval µH H±1 96. s  and other parameters 
where applicable. The procedures employed were: a correct 
modern variant of the Hoffmann method, the incorrect 
Hoffmann variant, the Bhattacharya method, and a mod-
ern ML method from the R mixtools package.33 Hoffmann 
and Bhattacharya linear sections were identified using 
visual oversight as prescribed. ML methods were provided 
crude starting parameter estimates of µH =11 , µD =15,  
sH = 0 5. , and sD =1 5.  for all simulations. Procedures 
were evaluated for their performance in reproducing the 
correct results based on the known simulation parameters.

We also applied the procedures to deidentified, routine 
clinical laboratory datasets to illustrate performance dif-
ferences between approaches. The datasets used included 
a hemoglobin (Hb) dataset with easily resolved and 
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❚Figure 3❚  Correct modern variant of the Hoffmann method, 
plotting the measurement values (x-axis) against the cumu-
lative probabilities of the sorted sample using a Gaussian 
probability scale (left y-axis) or equivalently against the corre-
sponding quantiles of a standard Gaussian distribution (right 
y-axis). Extrapolation of the linear segment for the “healthy” 
linear region and estimation of the reference range may pro-
ceed as with the original method (blue), or by first estimat-
ing the mean and using the slope against the right (linear) 
y-axis to calculate sH  by sH 1= / slope  (green). 
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approximately Gaussian healthy and diseased subpopula-
tions, a thyroid stimulating hormone (TSH) dataset with a 
highly skewed distribution and multiple (hyperthyroid and 
hypothyroid) diseased subpopulations, and a plasma cal-
cium dataset with poor separation between the healthy and 
diseased subpopulations. Hb analyses were performed on a 
Sysmex XN-3000, TSH analyses were performed on a Roche 
Cobas e601, and calcium analyses were performed using 
the Arsenazo III method on the Siemens Advia 1800. All 
analyses were performed according to manufacturer speci-
fications. Results for Hb, TSH, and calcium were extracted 
from laboratory information system from the entire 2016 
calendar year. For clinical data, in addition to the param-
eter estimation methods applied to simulation data, the R 
mixdist32 package was employed because it permits the use 
of other distributions, including the gamma distribution 
which, depending on its so-called shape and rate parameter 
values, can both exhibit skewing and approximate the nor-
mal distribution.37

This study was waived from ethics review by the research 
ethics boards of St Paul’s Hospital and the University of 
British Columbia as a quality initiative. All computational 
analyses were performed using R version 3.4.4 (supple-
mented with the dplyr, magrittr, mixtools, mixdist, and 
xtable R packages). Our work is an example of reproducible 
research,38 and the Supplemental Data includes the article in 
the form of a literate program (including all text and source 
code in a single document) written using the rmarkdown 
package39 (all supplemental data are available at American 
Journal of Clinical Pathology online).

Results

Algebraic Results

As shown in Supplemental Appendix 1, the correct 
modern variant of the Hoffmann method (as illustrated 
in Figure 3) will give estimated upper and lower limits of 
normal (LLN and ULN) approximated by the formula:
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and where F( )t  and f( )t  are the CDF and probability 
density function, respectively, of a standard Gaussian 
distribution, zD H D D= -( ) /µ µ σ , and α  determines the 
size of the ( ) %1 100- ´α  normal range (eg, α = 0 05.  for 
a 95% normal range).

In contrast, if  the operator employs an incorrect vari-
ant of the Hoffmann method by plotting an empirical 
CDF in purely linear space and fitting a line to its appar-
ently linear section, the resulting LLN and ULN will be 
given by the approximate formula:
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While these results have a number of ramifications 
(Supplemental Appendix 1), the most striking pertains to 
the situation where the sample population is predominantly 
healthy, which is the usual context for use of indirect ref-
erence interval estimation methods.40,41 Specifically, if  pH  
is close to 1, then, as shown in Supplemental Appendix 1,  
the correct and incorrect LLN and ULN estimates (for 

a = 0 05. ) will approach:
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This means that the reference intervals generated by the 
incorrect variation will be approximately 40% too nar-
row, with the LLN and ULN delineating the central 77% 
of the distribution rather than its central 95%. In con-
trast, the Hoffmann approach as originally described and 
its correct modern variant will produce LLN and ULN 
estimates that converge to µ σH ±1 96.  under these same 
circumstances. This finding is confirmed using random 
number simulations in Supplemental Appendix 1 along 
with a number of other illustrative examples.

Simulation Results

Supplemental Figures  1-9 show the results of  45 
simulated scenarios (five scenarios per figure). Each is a 
sample of  size n =100 000,  simulated from a two-com-
ponent Gaussian mixture with simulation parameters 
as summarized in Supplemental Table 1. For each sim-
ulation, the corresponding figure shows a histogram of 
the resulting mixture distribution and the application 
of  the Bhattacharya method, a correct modern variant 
of  the Hoffmann method, and the incorrect Hoffmann 
variant. The estimates of  the means, standard devia-
tions, and reference intervals (LLN and ULN) for these 
three graphical methods and modern ML methods, 
together with the error associated with each method, 
are shown in Supplemental Table 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcp/article/151/3/328/5208945 by guest on 20 April 2024



332 © American Society for Clinical Pathology

Holmes and Buhr / Implementation of the Hoffmann Method

Am J Clin Pathol 2019;151:328-336
DOI: 10.1093/ajcp/aqy149

A B

C D

6 8 10 12 14 16 18

–4

–2

0

2

4

Result

Q
u

an
ti

le
s 

o
f 

th
e 

N
o

rm
al

 D
is

tr
ib

u
ti

o
n

E

❚Figure 4❚  Results of representative random number simula-
tion for which n = 100,000, rH= 0.9, µH = 10, sH = 1,  
µD =  12, and sD =  1.6. A, Histogram of mixture distribution. 
B, Hoffmann plot. Normal range estimate: 8.07 to 12.11. C, 
Bhattacharya plot. Normal range estimate: 8.05 to 11.99. D, 
Density plots of healthy and diseased modes (solid black lines) 
and their composite (dashed line) as determined by maximum 
likelihood (mixtools). Normal range estimate: 8.04 to 11.95. E, 
Incorrect approach to the Hoffmann method using a cumu-
lative distribution function. Normal range estimate: 8.84 to 
11.35. In all cases, vertical dashed lines represent method 
estimate of normal range and vertical gray lines represent 
µH H1.96± =s  8.04 to 11.96.
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The tendency of the incorrect variant of the Hoffmann 
method to produce reference intervals that are too nar-
row as pH®1 is illustrated in ❚Figure 4❚ and Supplemental 
Figure  1, Figure  4, and Figure  7 (where pH = 0 9. ). 
The simulated example in Supplemental Appendix 1,  
Section A.4.1 illustrates the same phenomenon in the 
extreme case where pH =1 0. , representing samples taken 
from an entirely healthy population.

Across the 45 random simulations, the median abso-
lute errors of the estimates using the correct modern vari-
ant of the Hoffmann method were 2.2% for µH  and 7.2% 
for sH . In comparison, the errors for the widely used 
but incorrect variant using a CDF in linear space were 
3.1% and 25%, respectively; errors for the Bhattacharya 
method were 0.5% and 9.9%; and errors for modern ML 
methods using the mixtools package were 0.0% and 0.3%. 
These results are demonstrated graphically in ❚Figure 5❚.

Application to Real Laboratory Data

Results of applying these methods to real patient 
data—adult male outpatient Hb, adult TSH (inpatient 
and outpatient), and adult plasma calcium (inpatient and 
outpatient)—are shown in ❚Table 1❚, with additional detail 
given in Supplemental Appendix 2. For ML analyses, 
TSH results greater than 15 mIU/L and calcium results 
below the 1st  percentile and above the 99th  percentile 
were removed prior to analysis to facilitate convergence.

For the Hb and calcium datasets, where the reference 
interval estimation problem is more straightforward, the 
incorrect variant of Hoffmann’s method using a CDF in 
linear space produces narrower reference intervals and 

significantly different parameter estimates, compared to 
the other methods. For the TSH example, comparison 
of methods is complicated by the highly skewed distribu-
tion and the multiple diseased subpopulations (hypo- and 
hyperthyroidism). The distribution of TSH data does not 
satisfy the assumptions of the Hoffmann, Bhattacharya, 
or modern Gaussian-based ML methods, and all meth-
ods produce estimates that appear clinically incorrect, 
with ULN that seem too low. However, using modern 
ML methods with non-Gaussian model assumptions (a 
mixture of gamma distributions in this case), provides 
a superior fit and produces clinically plausible reference 
interval estimates (Supplemental Appendix 2).

Discussion

Random simulations illustrate a number of points. 
First, the normal QQ plot used in the correct implemen-
tation of the Hoffmann method is very sensitive to devi-
ations from a Gaussian distribution. This has the effect 
of clearly resolving the linear segments corresponding to 
the healthy and diseased subpopulations and facilitates 
proper identification of the former. In contrast, the incor-
rect approach typically produces a sigmoidal shape in all 
situations, with no clear delineation of the healthy and 
diseased subgroups. The apparently linear region in the 
middle portion of the CDF does not necessarily corre-
spond preferentially to the healthy subpopulation as the 
contributions of the two subpopulations tend to blend 
imperceptibly. Extension of this linear section has no par-
ticular meaning beyond identifying the steepest tangent 
line to the CDF, and the resultant parameter estimates are 
related in uninformative ways to the correct results. This 
effect can be appreciated by inspecting the progressions 
seen as µD  approaches µH  in the Supplemental Figures 
and in a representative simulation shown in Figure 4.

Second, while the Hoffmann method, when correctly 
implemented, is imperfect and will generally overestimate 
the ULN when µ µD H>  (or, conversely, underestimate 
the LLN when µ µD H< ), its estimates are fairly accurate 
provided pH  0 7.  as shown in Figure 5. Moreover, these 
biases tend to be both modest and predictable in nature. 
In contrast, with the incorrect variant of the method, the 
limits of the normal range may be underestimated or over-
estimated depending on the specifics of the proportions, 
means, and variances of the healthy and diseased modes 
(as illustrated in the Supplemental Figures, Supplemental 
Appendix 1, and Figure 5).

In general, our algebraic results and simulations 
(Figure 5) demonstrate that use of the incorrect variant of 

❚Figure 5❚  Reference interval estimates across 45 random 
simulations (n = 100,000 each) as represented by 45 hori-
zontal lines per method spanning the range of the calculated 
upper and lower limits. The vertical dashed lines represent 
the target results of 8.04 and 11.96.
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Hoffmann’s method will generate reference interval esti-
mates that are too narrow, particularly when pH  is close to 
1, the very context in which indirect reference interval strat-
egies are recommended to be constrained.40,41 This obser-
vation has obvious implications for a number of published 
studies8,12-17,19,22 and a reference textbook.11 In addition, 
there are undoubtedly many unpublished internal studies 
conducted in clinical laboratories where use of an incorrect 
method has yielded invalid reference interval estimates.

Some authors, without identifying the use of an incor-
rect variant, have found fault with the resulting reference 
intervals and have noted their poor performance in com-
parison to directly determined values.42 Other authors have 
identified the “linear CDF” variant as a deviation from 
Hoffmann’s original method27,43,44 without explicitly spec-
ifying the significance. These results have obvious impli-
cations for strategies purported to improve the Hoffmann 
method14,15 that have used the incorrect variant as a starting 
point; the proposed refinements have the practical effect of 
making the flawed variant produce wider reference interval 
estimates, as Hoffmann’s method would have done.

It must be acknowledged, though, that even when cor-
rectly performed, the Hoffmann and other indirect a poste-
riori methods are imperfect. The International Federation 
of Clinical Chemistry and Laboratory Medicine Committee 
on Reference Intervals and Decision Limits has rightly crit-
icized these methods on the basis of their assumption of 

normality41 and the errors that inevitably ensue. Likewise, 
the Clinical Laboratory Standards Institute advises that 
indirect methods are, at best, tools for rough estimation.40

Even when the Gaussian assumption is met, the 
random simulations we present show that the graphical 
methods of Hoffmann and Bhattacharya did not perform 
as well as ML estimates. ML estimates, while sophisti-
cated in their methodology, have been implemented in R 
and other languages in a manner that is reasonably easy 
to use. These packages are also capable of simultaneous 
fitting of multiple modes and in the case of mixdist,32 
there is no need to assume the underlying distributions 
are normal. This affords the fitting of skewed data with-
out application of a normalizing transformation such as 
Box Cox45 (Supplemental Appendix 2).

However, neither the traditional graphical methods 
nor ML methods represent a panacea for decomposi-
tion of  mixture distributions. As with any decomposi-
tion method, fitted results may not be meaningful from a 
physiological standpoint. For example, the fitted diseased 
mode may paradoxically extend well into the range of 
the healthy or the reference interval estimate may deviate 
from those established by traditional means. The estab-
lishment of  a fit that successfully converges and makes 
clinical sense may require exclusion of  extreme outliers or 
fixing certain parameters as constant (eg, µD  and/or σD )  
resulting in a solution that is at least, in part, heuristic. 

❚Table 1❚
Results of Mixture Model to Clinical Data for Three Representative Scenarios: Well-Resolved Populations (Male Outpatient Hb), 
Skewed and Multimodal (Adult TSH), and Poorly Resolved (Total Calcium)

Analyte Method µµH σσH µµD σσD
ρρH LLN ULN

Hb Hoffmann-QQ 13.90 1.40 10.6 1.5 11.10 16.70
Hb Bhattacharya 14.50 1.20 9.3 1.3 0.7 12.10 16.90
Hb ML-mixtools 14.50 1.30 10.0 1.6 0.63 12.00 17.10
Hb ML-mixdist 14.50 1.30 10.0 1.6 0.63 11.90 17.00
Hb Hoffmann-CDF 13.50 1.30 11.00 16.10
TSH Hoffmann-QQ 1.60 0.80 0.00 3.15
TSH Bhattacharya 1.22 0.90 –0.54 2.98
TSH ML-mixtools- 

normal
1.62 0.91 0.10, 4.85 0.08, 2.70 0.78 –0.15 3.40

TSH ML-mixdist- 
gamma

1.98 1.31 0.07, 7.82 0.05, 2.86 0.92 0.29 5.25

TSH Hoffmann-CDF 1.70 0.70 0.36 3.04
Ca Hoffmann-QQ 9.10 0.70 7.80 10.35
Ca Bhattacharya 9.13 0.60 7.96 10.30
Ca ML-mixtools- 

normal
9.14 0.62 7.79 0.45 0.90 7.93 10.35

Ca ML-mixdist- 
normal

9.15 0.62 7.79 0.45 0.90 7.94 10.35

Ca ML-mixdist- 
gamma

9.21 0.58 8.00 0.53 0.83 8.12 10.38

Ca Hoffmann-CDF 9.10 0.40 8.31 9.86

Ca, calcium; CDF, cumulative distribution function; Hb, hemoglobin; LLN, lower limit of normal; ML, maximum likelihood; QQ, quantile-quantile; TSH, thyroid stim-
ulating hormone; ULN, upper limit of normal; μD, mean of the diseased population ; μH, mean of the healthy population; σD, standard deviation of the diseased popula-
tion; σH, standard deviation of the healthy population.
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This creates the risk that one may introduce arbitrary 
constraints until one finds what one expects to find. 
These kinds of  trimming assumptions were required 
to achieve convergent and clinically meaningful fits for 
both TSH (TSH > 15 mIU/L were excluded) and calcium 
(results less than the 1st and greater than the 99th per-
centile of  the raw data were excluded), as discussed in 
Supplemental Appendix 2.

It should be noted that ML fit of Gaussian mixture 
models has been proposed for the problem of “data mining”  
reference intervals previously.46 However, it is probable that 
most laboratorians would find the necessary computations 
intimidating. This motivated our use and provision of open-
source R code, which can be applied to mixtures comprised 
of normal or skewed distributions (see Supplemental Data). 
It should also be mentioned that other computational strat-
egies employing ML to fit the healthy mode to a truncated 
normal distribution have been previously described and 
implemented using custom R code.47

Irrespective of  the decomposition method, and even 
when (1) skewing is appropriately accounted for, (2) mix-
ture model decomposition is successful, and (3) fitted 
model is good, the reference intervals obtained with these 
procedures may not match what is found in traditional 
reference interval studies performed on healthy pop-
ulations. For example, all the decomposition methods 
assessed yielded lower limits of  normal for outpatient 
male Hb of approximately 11 to 12 mg/dL (110-120 g/L), 
that is lower than values obtained from healthy popula-
tions, which are typically approximately 13.5 to 17.0 g/
dL (135 to 170 g/L).48 Likewise, the lower limit of  normal 
for uncorrected plasma calcium was also lower than typi-
cally reported at approximately 8.0 mg/dL (2.0 mmol/L), 
which is right on the cusp of  levels at which severe symp-
tomatology may appear.49

The validity of indirect reference interval estimation 
is a matter of debate.43,50 On the basis of our own observa-
tions, we believe the recommendation of the Clinical and 
Laboratory Standards Institute EP28-A3c40 is prudent: 
indirectly calculated reference intervals derived from rou-
tine analyses should be used cautiously. What is certain 
is that if  one is to use Hoffmann’s method, it should be 
undertaken as originally described using a normal QQ 
plot because use of a linear CDF generates inaccurate and 
possibly erratic parameter estimates of the healthy mode. 
However, because more flexible and accurate contempo-
rary computational methods for mixture decomposition 
are freely available,32-36 some of which can be performed 
free of a Gaussian assumption, it may mean that purely 
graphical procedures like Hoffmann’s have had their day.

Conclusion

The Hoffmann method is frequently applied in a man-
ner divergent from the original description. For distribu-
tions satisfying the assumptions of the Hoffmann method, 
the error of using a CDF plot in linear space rather than 
a normal QQ plot (equivalent to a normal probability 
plot) typically leads to reference intervals that are too nar-
row. The behavior of this erroneous approach is generally 
dependent on the specifics of the distributions of diseased 
and healthy individuals and may produce reference inter-
vals that are too wide in select circumstances. Among the 
methods evaluated (Hoffmann using a QQ plot, Hoffmann 
using a CDF, Bhattacharya, and ML), ML most consist-
ently recovered the correct values from random number 
simulations and, depending on the tool employed, has the 
added benefit of being able to fit skewed distributions with-
out the use of normalizing transformations.

Corresponding author: Daniel T. Holmes, MD; dtholmes@mail.
ubc.ca.
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