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Adjusting Survival Curves for Confounders: A Review and a New Method

F. Javier Nieto1 and Josef Coresh1'2

When reporting results from survival analysis, investigators often present crude Kaplan-Meier survival
curves and adjusted relative hazards from the Cox proportional hazards model. Occasionally, the investigators
will also provide a graphical representation of adjusted survival curves based on regression estimates and the
average covariate values in the study groups. In this paper, the authors review the limitations of this approach
and examine alternative approaches to obtaining adjusted survival curves that have been proposed. Further-
more, a new method to obtain multivariate adjusted survival curves is described. This method is based on
direct adjustment of the observed conditional probability of survival at the time of each event. When an
unexposed group is used as a standard for adjusting an exposed group, the survival curve in the exposed
group is adjusted to the covariate distribution among the unexposed at the time of the event. This method has
the advantage over the average covariate method of allowing for the possibility that the adjusted survival
curves differ in shape. The method can handle multiple fixed or time-dependent categorical covariates as well
as left truncated data, and it allows for estimation of confidence intervals. The authors have written a macro
in SAS language that produces the adjusted survival estimates and graphs. This macro is available on request
and can be downloaded through the World Wide Web. Am J Epidemiol 1996;143:1059-68.

confounding factors (epidemiology); data display; epidemiologic methods; graphical analysis;
proportional hazards models; prospective studies; regression analysis; survival analysis

The results of follow-up studies are often analyzed
with the use of survival analysis techniques. The
graphical display of the Kaplan-Meier survival curves
(1) and their statistical comparison with the logrank
test are usually adequate in randomized clinical trials
with a sufficiently large sample size and balanced
groups. However, in observational studies, it is often
necessary to carry out adjusted comparison of the
survival experience of the different groups, taking into
account unbalanced distribution of confounders. The
most commonly used method for multivariate compar-
ison of survival curves is the Cox proportional hazards
model (2), a semi-parametric regression technique that
assumes a constant relative hazard throughout the en-
tire follow-up period. The adjusted hazard ratios ob-
tained from the Cox regression are usually presented
in tabular form, although adjusted survival curves can
also be obtained (average covariate method). In this
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paper, we review the limitations of this method, as
well as some alternative methods to obtain adjusted
survival estimates published in the literature in recent
years (3-8). Finally, we present a new method for a
graphical comparison of survival curves while control-
ling for important covariates. This method is based on
calculation of adjusted conditional probability of the
event at each failure time using direct adjustment. The
reference population for the adjustment is the distri-
bution of covariates in the comparison group at each
precise failure time. The method allows for adjustment
for fixed or time-dependent categorical covariates. We
have written a macro in the SAS language (SAS In-
stitute Inc., Cary, North Carolina) for obtaining the
adjusted survival curves using the proposed method.
The program is available on request by mail from the
corresponding author (please send an IBM-compatible
formatted, high density, 3.5" diskette) or by electron-
ic mail (Internet: jnieto@phnet.sph.jhu.edu). It can
also be downloaded from the World Wide Web at
http://www.jhu.edu/~welchc/software.html. In addi-
tion to the new method we propose, the program will
run some of the other methods discussed in this paper.

THE AVERAGE COVARIATE METHOD

This method for estimating adjusted survival curves
relies on applying the parameter estimates obtained
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from multivariate regression analysis, usually the Cox
proportional hazards regression (2), to the average
value of the covariates of interest in the groups being
compared. Methods to estimate the baseline survival
S0(t) from Cox regressions have been described (2, 9).
The adjusted survival function for a group with aver-
age covariate values Z, can be obtained by raising the
baseline survival to the e21 p power. Alternatively,
other parametric models such as the Weibull model
can be used (10).

This method of estimating the adjusted survival has
been used in biomedical papers with increasing fre-
quency in recent years. Its popularity stems from the
broad use and acceptance of the Cox regression model
(11, 12) and, at least in part, from its availability in
some standard statistical packages, including SAS
(PROC PHREG with BASELINE COVARIATES
statement) (13). The limitations of this method, how-
ever, have been repeatedly discussed (4, 10, 14) and
are worth reviewing:

1) For categorical covariates, the meaning of the
adjusted survival for individuals with the average co-
variate value is quite difficult to explain (4, 10). For
example, if one wants to adjust to a group consisting
of 50 percent males (coded as 0) and 50 percent
females (coded as 1), one would calculate the survival
for individuals whose sex equals 0.5, which is mean-
ingless at the individual level. An even more serious
problem is that the method is not equivalent to esti-
mating the survival of a group which is half male and
half female. The reason is that the method is actually
based on calculating the average hazard, i.e., the haz-
ard for the average individual, which is not the same as
the average survival estimated from a heterogeneous
group of individuals, as illustrated in the following
example. Let us assume that the death rate (hazard) of
a given condition is 500/1,000 per year among males
and zero among females (e.g., a condition that only
affects males). Figure 1 shows the survival for a group
with an average hazard of 250/1,000 per year, which is
analogous to what would be obtained from the average
covariate method. Notice that this method produces a
senseless curve, going below a 50 percent survival,
despite the fact that the hazard is zero for half of the
population. The correct average survival curve (also
shown in figure 1) has an asymptotic cumulative sur-
vival of 0.5. As Thomsen et al. (14) showed, the
problem with the average covariate method and anal-
ogous procedures such as the method proposed by
Neuberger et al. (15) is that the average hazard does
not take into account the heterogeneity within the
sample and does not have the same time-dependence
as the individuals' survival. The frail die first, leading

Survival

Females, crude

Average survival

Survival by average
covariate method
Males, crude

FIGURE 1 . Hypothetical example of survival curves of a condition
that affects 500/1,000 men per year, but does not affect women.
Also shown are the survival curve based on calculating the average
hazard for a group composed of an equal number of men and
women, I.e., 250/1,000 per year (average covariate method), as well
as the average survival, asymptotic to a cumulative survival of 0.5.

to a relative reduction of population mortality over
time compared with the pattern of any individual (14).

2) The method calculates the adjusted survival for
all groups based on one common baseline survival
S0(t). Because of the proportionality assumption un-
derlying the Cox model, the adjusted survival curves
are forced to be powers of each other. If the propor-
tionality assumption does not hold, the adjusted curves
can be misleading. If the proportionality assumption
does hold, the graphical depiction of the curves does
not add much to the adjusted relative hazard estimate
combined with the crude Kaplan-Meier curve of the
total group.

3) When time-dependent covariates are used, the
calculation of the adjusted survival curves is greatly
complicated. (SAS's PROC PHREG, for example,
does not produce adjusted survival curves if time-
dependent covariates are used (13, p. 19).)

ALTERNATIVE METHODS

Direct adjustment based on parametric survival
function

Makuch (3) and Chang et al. (4) independently
proposed a new method that overcomes the first lim-
itation of the average covariate method discussed
above. In essence, the survival curve for each individ-
ual or each level of the covariates is calculated using
the Cox model (or some other parametric model (10)).
The average survival is then calculated as a weighted
average of the individual survival curves, with weights
proportional to the number of individuals at each level
of the covariates in the entire sample at baseline. This
method, also known as the corrected group prog-
nosis method (4), is analogous to die calculation of
covariate-adjusted rates using the logistic regression in
a prospective study (16, 17). A SAS computer pro-
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gram for its application has been made available (17)
and methods to estimate the variance have been de-
scribed (18).

This method is a clear improvement over the aver-
age covariate method. Its applicability, however, still
relies on the validity of the assumptions underlying the
models used for the estimation of the individual or
strata-specific survival function. We are not aware of
an application of this method to a situation with time-
dependent covariates.

Adjustment based on non-parametric survival
estimates

Hankey and Myers (5) proposed a method to obtain
adjusted survival curves based on actuarial life table
analyses (follow-up time broken up in intervals) and
categorical covariates. For each interval, the adjusted
odds ratio of the event is obtained using the Mantel-
Haenszel method (19). Based on the adjusted odds
ratio and on the observed survival in a group taken as
reference, the adjusted survival for the study group is
then calculated by applying the adjusted odds ratio to
the observed odds in the study group. A limitation of
this method is that the estimates for the late time
intervals could be rather unstable if the sample size is
small (4, 5). In addition, this method can not be used
for exact survival time (Kaplan-Meier).

A direct adjustment method based on the Kaplan-
Meier survival estimates has been proposed by Kramar
and Com-Nougu6 (6). Given some categorical covari-
ate(s), these authors proposed calculating a weighted
average of the strata-specific Kaplan-Meier estimates,
weighting according to the baseline proportion of the
study population in each stratum. A similar approach
has been recently proposed by Cupples et al. (7), who
have used it to calculate age-adjusted Kaplan-Meier
curves based on categorical age strata of the study
populations at baseline (20, 21).

These methods are straightforward, non-parametric,
and allow for an estimation of the predicted survival
curve of a given group while controlling for baseline
imbalances in the distribution of significant confound-
ers. However, these methods can not account for
changes in the distribution of covariates in the study
group during the follow-up (see below) and do not
allow for time-dependent covariates.

Generalized Kaplan-Meier estimator

This method was proposed by Amato (8) and can be
described as the survival analog of the Mantel-
Haenszel estimate of the pooled odds ratio for strati-
fied data (19). In calculating the cumulative survival,
this method takes the product of weighted conditional

probabilities of survival. In calculating the latter, one
takes one minus the ratio of a weighted average of the
number of events to a weighted average of the number
of individuals at risk. As in the previous methods, the
weights are based on the size of the different strata at
the beginning of the follow-up. This method has con-
siderable merit and offers a substantial theoretical
improvement over merely averaging the strata-specific
Kaplan-Meier curves (6, 7) because it allows for the
calculation of the adjusted survival function even after
one of the strata has no subjects left. However, by
adjusting to the baseline covariate distribution, this
method has similar limitations as the above methods,
namely that it does not take into account changes in
the covariate distribution during follow-up and is not
suitable for time-dependent covariates.

SURVIVAL BASED ON ADJUSTED CONDITIONAL
PROBABILITIES

Let us assume that we have a group of individuals
exposed to a suspected risk factor and another group of
unexposed individuals. A variable X is created, with
value 1 for the exposed and value 0 for the unexposed.
Suppose we wish to compare the survival experience
of these groups while adjusting for a dichotomous
covariate Z (Z = 1 if the characteristic is present, 0 if
absent). The overall goal of our method is to obtain an
adjusted cumulative survival curve for the exposed
group, representing the survival in the exposed indi-
viduals if they had the same covariate distribution as
the unexposed throughout the entire follow-up period.
At each time when an event occurs in the exposed
group, we calculate the conditional probability of the
event among exposed individuals and use direct ad-
justment to adjust it to the covariate (Z) distribution of
the unexposed group at that time. The outline of the
procedure is as follows:

1) Similar to the Kaplan-Meier estimator, the fol-
low-up time for all events and censored observations
are ordered from shortest to longest.

2) At each time tt when an event occurs among the
observations included in the exposed group (X = 1),
all individuals in the exposed group alive and not
censored before tt are counted. Thus, at time r/( we
have nlu and nm exposed individuals (X — 1) in each
stratum of the covariate (Z = 1 and Z = 0, respec-
tively), with alu and al01 denoting the number of
events in each group, respectively (typically, either
fliuora10i has a value of one and the other is zero,
although ties can occur).

3) The stratified conditional probabilities in the ex-
posed group are calculated by the usual formulas:
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" 1 1 / "lOi
(i)

4) The number of individuals that are still under
observation at time r, in the unexposed (reference)
group is obtained: rtoj, and HQO, in each stratum of the
covariate (Z = 1 and Z = 0, respectively).

5) The adjusted conditional probability in the ex-
posed group at time /,, qu*, is obtained by direct
adjustment using the covariate distribution in the un-
exposed group as the standard, i.e., as a weighted
average of the stratified conditional probabilities (step
3), using as weights the stratum-specific distribution in
the reference group (step 4):

< ? ? , =
"OH +

(2)

6) The product of the conditional adjusted survival
probabilities provides an estimate of the adjusted cu-
mulative survival in the exposed group, using as stan-
dard the covariate distribution of the reference popu-
lation (the unexposed) at any given point in time:

s*(t) = r id - (3)

7) The resulting adjusted survival curve for the
exposed group could be presented in the same graph as
the Kaplan-Meier curves for both exposed and unex-
posed groups to obtain a visual impression of the
effect of adjustment in the comparison between the
groups (see examples following).

Appendix 1 shows the derivation for the variance
estimator of the natural log of the adjusted survival
function (equation 7). (The use of this variance esti-
mator to obtain the 95 percent confidence intervals of
the adjusted survival estimates is illustrated in exam-
ple 2 below.)

As the simulations described in Appendix 2 show, in
the case of proportional hazards, the relative distance
between the adjusted survival curve in the exposed and
the observed survival in the unexposed (both corre-
sponding to a population with the same covariate
composition at each time tt) converges to the theoret-
ically expected relative cumulative hazard.

As shown in Appendix 2 and the examples below,
the method can be extended to multiple categorical
covariates. Notice that this method can handle time-
dependent covariates, because the standard population
and adjusted conditional probability of the event are
estimated at each point in time (see example 2).

EXAMPLES

Example 1: Survival after Ewing's sarcoma
comparing different treatment regimens

This example was used by Makuch (3) to illustrate
his method of calculating adjusted survival. The data
come from a study comparing the disease-free surviv-
al of Ewing's sarcoma patients treated with an aggres-
sive new treatment (S4) and those treated with early
treatment regimens (S1-S3) (22). The corresponding
Kaplan-Meier curves (figure 2) suggest an improved
survival in patients in the S4 group. The unadjusted
relative hazard estimated from the Cox model was
0.53 (95 percent confidence interval (CI) 0.30-0.96).
However, the S4 group had more individuals with low
lactic acid dehydrogenase (LDH) level at baseline.
Low LDH levels are associated with better prognosis.
Thus, when adjusting for baseline LDH (categorically
defined as high or low), there was no longer a signif-
icant survival difference. If anything, the estimated
survival using the Cox model was worse for the S4
group in this study (adjusted relative hazard estimate
= 1.12, 95 percent CI 0.59-2.11).

Figure 3 shows the adjusted survival curves ob-
tained using the average covariate method with esti-
mates from the Cox proportional hazards model.
These curves were obtained using SAS's PROC
PHREG, including the BASELINE COVARIATES
statement (13). The covariate "high LDH" is set to
0.41, the overall proportion with high LDH in the
study population. Notice that there is practically no
difference between the two curves, which are approx-
imately parallel, with steps at the same time points, as
a result of the constraints of the model. Notice also
that the survival is slightly worse in the S4 group, in
correspondence to the adjusted relative hazard of 1.12.

Figure 4 shows the result of applying our method to
the same data. The curves presented are the crude
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FIGURE 2. Cumulative survival (Kaplan-Meier estimates) among
Ewing's sarcoma patients treated with an aggressive new treatment
(S4) and those treated with early treatment regimens (S1-S3).
Sources: references 3 and 22.
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FIGURE 3. Lactic acid dehydrogenase (LDH)-adJusted survival
curves based on the Cox proportional hazards model comparing
Ewing's sarcoma patients treated with an aggressive new treatment
(S4) and those treated with earty treatment regimens (S1-S3); Cox
model estimate of the relative hazard = 1.12, comparing S4 with
S1-S3.

Kaplan-Meier curves (those shown in figure 2) as well
as die adjusted curve for the new treatment group (S4),
adjusted for the covariate (LDH) composition in the
early treatment group (S1-S3). The adjusted curve for
S4 and the comparable curve for S1-S3 cross twice
and almost overlap, suggesting that there is no dif-
ference in survival once pretreatment LDH levels are
taken into account. In contrast to the Cox adjusted
survival curves (figure 3), the curves in figure 4 are
not forced to be powers of each other.

Example 2: Coronary heart disease incidence
according to baseline coffee intake in the Johns
Hopkins Precursors Study cohort

A previous article (23) on the association between
reported baseline coffee intake and coronary disease
incidence during the follow-up of the Johns Hopkins
Precursors Study cohort described the study method-
ology in detail. Briefly, students who matriculated into
the graduating classes of 1948-1964 of the Johns
Hopkins University School of Medicine, provided
baseline information on coffee intake, cigarette smok-
ing, and other health-related data, as well as a serum
sample. This cohort has been followed to December
1992 with yearly questionnaires to assess the occur-
rence of coronary disease and to update smoking in-
formation. In addition, vital status has been ascer-
tained by contacting family members and searching
the National Death Index.

Of the 1,040 white men who provided baseline
information on coffee intake, 921 also had serum
cholesterol and smoking data. This analysis compares
the 330 participants (36 percent) who reported drink-
ing an average of ^ 3 cups/day of coffee with the 591
participants who reported drinking <3 cups/day.

1-0
03

! • • •

2 0.4

I"° S4 Adjusted

S4 Crude

S1-S3

0 500 1000 1S00 2000

Day

FIGURE 4. Crude survival curve in Ewing's sarcoma patients
treated with earty treatment regimens (S1-S3), and lactic acid de-
hydrogenase (LDH)-adjusted survival among S4-treated patients
based on conditional probabilities adjusted for the LDH distribution
among S1-S3-treated patients. (For comparison, the crude survival
curve for the S4 group Is shown as a thin solid line. The crude lines
are identical to those presented In figure 2.)

Among the 330 drinkers of S3 cups/day, 48 (14.5
percent) developed coronary disease during follow-up,
compared with 38 out of 591 drinkers of <3 cups/day
(6.4 percent). Univariate Cox proportional regression
analyses resulted in an estimated crude relative hazard
of 2.4 (table 1). An obvious concern in interpreting the
apparent increased risk in coffee drinkers is the pos-
sibility of confounding by smoking (the proportion
smoking at baseline was 64 percent among drinkers of
S3 cups/day versus 39 percent among the drinkers of
<3 cups/day). As shown in table 1 and in a previous
paper (23), even after adjusting for baseline or time-
dependent smoking and baseline cholesterol levels,
an elevated risk associated with coffee intake is still
evident.

Figure 5 shows the survival curves, adjusted for the
baseline smoking status and baseline cholesterol level,
using the average covariate method based on Cox
model estimates. (Survival curves adjusted for time-
dependent smoking are not obtainable using SAS (13,
p. 19).)

Figure 6 shows the crude survival curves as well as
the adjusted survival for coffee drinkers, using the
baseline cholesterol (categorized in three levels) and
the distribution of current smoking at each time (time-
dependent smoking) among non-coffee drinkers as
reference. The figure also shows the 95 percent con-
fidence interval for the adjusted curve at four points in
time.

DISCUSSION

Despite the fact that methods to obtain adjusted
survival curves are available, there is a surprising lack
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1064 Nieto and Coresh

TABLE 1. Crude and adjusted relative hazards* of coronary heart disease risk associated with baseline coffee consumption of
3 cups/day compared with <3 cups/day: the Johns Hopkins Precursors Study, 1948-1992

Relative
hazard

95% confidence
Interval

Crude

Adjusted for baseline smoklngt
Adjusted for time-dependent

smoking!,}:

Adjusted for baseline smokingt and
baseline cholesterol§

Adjusted for time-dependent
smoklngt,:}: and baseline cholesterol!!

2.40

2.05

2.28

2.00

2.23

1.57-3.67

1.32-3.18

1.48-3.51

1.29-3.01

1.45-3.43
* Obtained from Cox proportional hazards regression.
t Current cigarette smoking, yes vs. no.
$ Smoking at the time of the latest questionnaire.
§ Serum cholesterol categorized as <200 mg/dl and a200 mg/dl.
|| Serum cholesterol categorized as <200 mg/dl, 200-240 mg/dl, and &240 mg/dl.

3 °-8

I'
0.5

'--.<3 cups/day

3+ cups/day

10 20
Year

FIGURE 5. Survival free of coronary disease adjusted for baseline
smoking and cholesterol level, based on the Cox proportional haz-
ards model, in drinkers of &3 cups/day of coffee and drinkers of <3
cups/day. These curves correspond to a relative hazard of 2.00
(table 1), and have been calculated for the average value of the
covarlate In the study population (proportion smoking = 0.48; pro-
portion with hypercholesterolemia (serum cholesterol &200 mg/dl)
= 0.36). The Johns Hopkins Precursors Study, 1948-1992.

of discussion about the application of such methods in
the epidemiologic literature. When adjusted survival
curves are presented, authors seem to lean toward the
Cox model-based average covariate method (24), in
spite of its theoretical problems and practical limita-
tions. This method is readily available in commercial
software (e.g., SAS), and we are concerned that some
users of this application may not be aware of its
limitations. The average covariate method is useful in
illustrating the impact of an increased hazard due to an
exposure of interest on a given survival curve. As we
discussed previously, the method is not useful in pre-
dicting the survival of a heterogeneous group of indi-
viduals. The "alternative" methods described above
(3-8) are much more useful in the latter situation.

1.0

0.9

|

0.6

' y ^ <3 cups/day

3+ cups/day

Adjusted

Crude

10 20

Year
40

FIGURE 6. Survival free of coronary disease among drinkers of <3
cups/day of coffee compared with the adjusted survival among
drinkers of £3 cups/day at baseline (thick solid line). The latter has
been adjusted to the baseline serum cholesterol and time-depen-
dent smoking characteristics of non-coffee drinkers or light coffee
drinkers (<3 cups/day) using the method described in this paper.
Smoking and cholesterol were categorized as in the last model in
table 1. The bars represent the 95% confidence intervals for the
adjusted survival estimates among drinkers of a3 cups/day at 20,
25, 30, and 35 years of follow-up. (The crude survival curve in that
group is represented by a thin solid line.) The Johns Hopkins Pre-
cursors Study, 1948-1992.

However, these methods are rarely used in the epide-
miologic literature, perhaps because most investiga-
tors are unaware of their existence, are unable to
implement them, or feel intimidated by the relatively
high mathematical sophistication of some of the pa-
pers that describe them.

The method we propose adjusts the conditional
probability of survival at each event time to the co-
variate distribution of a standard population at that
time. In the examples we present above, we illustrate
its application using the unexposed group as the ref-
erence standard population. This can be interpreted as
the survival of the exposed group if its members had
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the covariate composition of the unexposed group
throughout the follow-up period. Alternatively, the
adjusted curve may be interpreted as the survival of
the unexposed group if it experienced the added risk of
exposed individuals.

It is important to note that this survival curve is a
theoretical curve because it applies the survival prob-
abilities of one group (the exposed) to the covariate
composition of another group (the unexposed). This is
useful for isolating the effect of an exposure of interest
while controlling for confounding by covariates at all
points in time. However, this is not the same as the
survival of an exposed group with the same baseline
composition as the unexposed group. For example, if
an exposure, such as coffee consumption, leads to
increased risk of mortality, it will result in preferential
depletion in the exposed group compared with the
unexposed group of individuals with covariates (e.g.,
smoking) which put them at increased risk of mortal-
ity. Thus, even if the two groups were comparable at
baseline, the elevated risk due to exposure combined
with the interindividual heterogeneity will result in a
lack of comparability over time. Therefore, the pro-
posed method is most useful in illustrating the impact
on survival of the added hazard of an exposure, X,
when completely isolated from a set of covariates, Z
In this sense, this method is analogous to the average
covariate method and is most useful in looking for
etiologic associations that are independent of a set of
covariates. In fact, models such as the Cox propor-
tional hazards which model the relation between a set
of covariates and the underlying hazard inherently do
the same thing but make stronger assumptions.

The advantage of the proposed method over the
average covariate method based on the Cox model is
that it does not impose one underlying shape on the
survival curves that are being compared. This can be
important in the exploratory survival analysis of a
situation where strong confounding is suspected and
one would like to examine the proportionality assump-
tion visually. In addition, the proposed method is
inherently time dependent and thus naturally allows
for incorporation of time-dependent covariates. As a
corollary, the method can also handle left truncated
data (not shown in this paper). This is helpful when
using age as the time scale in cohorts with a hetero-
geneous age distribution at entry. A further advantage
over the average covariate method is that standard
errors of the adjusted survival estimates can be easily
estimated, as described above.

We need to emphasize, however, that if one is
interested in estimating the survival experience of a
given group adjusted to have certain characteristics at
baseline, methods that average the survival estimates

according to a fixed baseline standard (3, 4, 6, 7) will
be more appropriate than our method.

Another drawback of the method proposed here is
that it can not adjust for continuous covariates, unless
they are categorized. Furthermore, the adjusted sur-
vival curve stops when one of the strata defined by the
covariates runs out of observations in the exposed
group (so that one of the probabilities in equation 1 is
missing) while there are still observations left in that
stratum among the exposed, i.e., when equation 2 can
not be calculated. (See, for example, figure 4 and
Appendix 2.) This could be an issue, particularly when
trying to adjust for many covariates. However, in
many epidemiologic studies with fairly large popula-
tions and relatively rare events, this would not be a
major limitation. Furthermore, even if the curve stops
before the end of the follow-up period, one could still
obtain an adequate assessment of the effect of adjust-
ment in most instances (see example 1, figure 4).

The possible lack of reliability of each of these
adjusted conditional probability estimates at each step,
particularly at the end of the follow-up time, is anal-
ogous to the instability of each of the steps of the
unadjusted Kaplan-Meier curve when the data are
sparse. The strength of this method, as well as of the
Kaplan-Meier method, relies on the interpretation of
the entire curve rather than on the individual steps.
Our method has a non-parametric flavor, in correspon-
dence with the spirit of the Kaplan-Meier estimates.

The method that we propose provides an alternative
view of the data, allowing for a visual, non-parametric
assessment of the influence of covariates on the com-
parison of survival in two or more groups (see exam-
ples above). It could be used as an intermediate ex-
ploratory tool between the examination of the Kaplan-
Meier curves and multivariate regression models. This
method will help the investigators to assess the rele-
vance of the adjusted relative hazard (i.e., the ade-
quacy of the proportional hazards assumption) and of
the survival curves estimated by means of the Cox or
alternative parametric survival models.
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APPENDIX 1

Variance estimator

The adjusted conditional probability of the event in the exposed group (X = 1) at time tt (equation 2) after
controlling for covariates with k strata can be expressed in a more general way as:

(4)

where

"0/7

and riQjj is the number of people in stratum; at time tt in the comparison group (the unexposed), while qXji is the
conditional probability of the event among the exposed (X = 1), in stratum j , at time i (equation 1).

Taking the natural log of the adjusted survival estimate (equation 3) and substituting equation 4 into
equation 3:

(5)
j=\
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Because the failure probabilities in the different time points are independent, the variance of equation 5 (the
negative cumulative hazard) can be written as:

Var(A(0) = 2 Var[ln(l - (6)
7=1

By the delta method, because the different strata are independent:

Var(A(0) = Ml -

(1 -
(-D

JL\ i=l I

Substituting qXji for E(qXji), as is done in Greenwood's formula (25), we get:

Var(A(/,.)) = L (7)

7=1

It can be shown that equation 7 reduces to Greenwood's formula (25) when the survival curve in the exposed
is adjusted to itself, i.e., when the weights wjt in equation 4 are calculated using nlj7 rather than n ^ .

Using a normal approximation and equation 5, the 95 percent confidence intervals for the adjusted survival
estimate (equation 3) can be obtained as:

exp I - Aft)±1.96x (8)

APPENDIX 2

Simulations

We conducted a set of Monte Carlo simulations (n
= 500) based on the following model. The study
population for each iteration comprised 750 individu-
als, or 375 exposed (X = 1) and 375 unexposed (X =
0). The joint distribution of X and two dichotomous
covariates (Z, and 7^) were as follows: 195 (X = 0, Z,
= 0, Zj = 0), 55 (X = 0,Zl = 0,Z2= 1), 55 (X = 0,
Z, = 1, Z2 = 0), 70 (X = 0, Z, = 1, Zj = 1), 55 (X
= 1, Z, = 0, Zj = 0), 70 (X = 1, Z, = 0, Zz = 1), 70
(X = 1, Z, = 1, Z^ = 0), and 180 (X =\,Zl = l,Z2

= 1). Note that both Z, and Z2 are related to X (odds
ratio = 4, for each Z, and X while ignoring the other
Z). The survival times were set to follow a Weibull
distribution with scale, A = exp {(/3X + /3,Z, +
ftjZ^/y}, where 0 = ln(2), ft = ln(3), 02 = ln(1.5),
and shape parameter, 7 = 2. Note that this model

corresponds to a hazard h{t) = 2 X t X exp (/3X +
^ Z , + /32Z2), which nicely fits the Cox proportional
hazards model of h(t) = h^t) x exp OX + /3,Z, +

At each iteration, the survival times for each of the
750 individuals were randomly generated from the
corresponding density function. The adjusted survival
curves in the exposed were obtained at each cycle
using the method described above and the unexposed
as the comparison group. Figure Al shows the results
of one simulated study population in a graph of the
crude survival curves as well as the survival curve for
the exposed (X = 1) adjusted to the covariate distri-
bution among the unexposed. The adjusted curve has
been truncated at the first time when one of the strata
runs out of exposed individuals (one of the q^ is
missing while the corresponding n^, > 0), so that
equation 2 is undefined.
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FIGURE A1. Crude and adjusted survival curves for one iteration
of the simulations described in the text. The adjusted survival for the
exposed group (X = 1) is adjusted to the covariate (Z) distribution in
the unexposed.

Theoretically, the survival function can be ex-
pressed as a function of the cumulative hazard (A):

S(t) = e~
m.

Thus, the ratio of the natural logarithm of two sur-
vival functions [S^t) and S0(t)] equals the relative
cumulative hazard at time t [RHfr)]:

lnfofr)) -A.fr)

In

=

)) -Aofr)
Taking log at both sides:

-ln(S,fr))

= RHfr).

= ln[-ln(S,fr))] - ln[-ln(50fr))]

= ln[RHfr)].

Thus, the difference between the ln(—hi) functions
of the two survival curves is the natural log of the
relative cumulative hazard. Figure A2 displays these
relative cumulative hazard functions comparing the
crude and adjusted survival curves from the single
population represented in figure Al. The curve in bold
corresponds to the adjusted comparison. In correspon-
dence with the theoretical expectation, and after some
initial random fluctuation, the curve converges around
the value 0.693, which is the natural log of 2 (the
modeled relative hazard for X).

Table Al shows the results of the 500 simulations
based on the above model. In accordance with the
proportionality built into the simulation, the mean Cox
regression coefficient is very close to the expected (log
2 = 0.693). The difference in ln(—In) functions em-
pirically obtained from die curves adjusted using our
method also tend to converge around the true value.
The initial random fluctuations seen in figure A2 are

1.8

1.S

1.4

1J

1.0

0.8

0.8

0.4

0.2

0.0

-0.2

Crude

--Adjusted

0.0 0.1 0-2 0J 0.4 OJJ 0.9 0.7 0.8 0.9

Time

FIGURE AZ Difference In the In (cumulative relative hazard) (esti-
mated by the difference in the complementary log function) for the
survival curves shown in figure A1. The thin line corresponds to the
difference between the two crude curves (exposed minus unex-
posed). The thick line corresponds to the difference between the
adjusted curve in the exposed and the unexposed. The broken
horizontal line is set at 0.693 (natural logarithm of 2.0).

TABLE A1. Summary of 500 simulations each with 750
Individuals! (se« text).

In (relative cumulative hazard) for X

Time
No. Mean SD*

Percentites
5,95

Survival based
on adjusted
conditional
probabilities 0.1

0.2
0.3
0.4

0.5
0.6
0.7
0.8

500
500
500
500

500
500
437§
173§

0.779
0.690
0.681
0.690

0.698
0.699
0.689
0.654

0.499
0.251
0.173
0.137

0.125
0.121
0.119
0.100

0.011, 1.652
0.289, 1.124
0.378, 0.942
0.482, 0.907

0.502, 0.904
0.510,0.911
0.468, 0.864
0.510,0.807

Cox regression
coefficient

Theoretical
expectation

500 0.699 0.087 0.556,0.840

0.693
t Survival simulated based on the Weibull distribution with A =

exp{Pn(2)X + \n(3)Z, + ln(1.5JZJ/2} and y = 2.
% SD, standard deviation.
§ Some adjusted survival curves stopped before this time

(see text).

reflected in relatively large standard deviations in the
earlier times. By time = 0.5, the empirical estimates
become rather stable, although, as expected, die stan-
dard deviation of the estimate at any point in time is
always slightly larger than the standard deviation ob-
tained from the overall estimate from the Cox regres-
sion, which inherently assumes the underlying hazards
to be proportional.
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