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Time-to-Event Analysis of Longitudinal Follow-up of a Survey:
Choice of the Time-scale

Edward L. Kom,1 Barry I. Graubard,2 and Douglas Midthune3

Following individuals sampled in a large-scale health survey for the development of diseases and/or death
offers the opportunity to assess the prognostic significance of various risk factors. The proportional hazards
regression model, which allows for the control of covariates, is frequently used for the analysis of such data.
The authors discuss the appropriate time-scale for such regression models, and they recommend that age
rather than time since the baseline survey (time-on-study) be used. Additionally, with age as the time-scale,
control for calendar-period and/or birth cohort effects can be achieved by stratifying the model on birth cohort.
Because, as discussed by the authors, many published analyses have used regression models with time-on-
study as the time-scale, it is important to assess the magnitude of the error incurred from this type of incorrect
modeling. The authors provide simple conditions for when incorrect use of time-on-study as the time-scale will
nevertheless yield approximately unbiased proportional hazards regression coefficients. Examples are given
using data from the first National Health and Nutrition Examination Survey (NHANES I) Epidemiologic Followup
Study. Additional issues concerning the analysis of longitudinal follow-up of survey data are briefly discussed.
Am J Epidemiol 1997;145:72-80
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Large-scale health surveys offer the ability to min-
imize selection bias in the estimation of associations
between variables in a sampled target population.
When interest focuses on the association of a risk
factor and the development of a disease, however, the
inference from a single cross-sectional survey is some-
what limited. One can examine the association be-
tween a risk factor and the prevalence of a disease, but
this may not be a good estimate of the desired asso-
ciation because individuals with the disease may
change their behavior, e.g., people with lung cancer
who quit smoking. To avoid this bias, one can ask
sampled individuals to describe their earlier (pre-
disease) risk factors, but their answers may be subject
to considerable recall bias. In addition, if the disease is
potentially fatal, then patients who die from the dis-
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ease before the survey will not be sampled, potentially
leading to more bias in the estimation of disease/risk
factor associations.

With longitudinal follow-up that records the devel-
opment of various diseases, many of the aforemen-
tioned biases are minimized. Additionally, one can
study the association of risk factors and mortality. As
an example, consider the first National Health and
Nutrition Examination Survey (NHANES I) Epidemi-
ologic Followup Study (NHEFS). NHANES I was a
multistage, national probability sample of the US ci-
vilian noninstitutionalized population (1, 2). The
NHEFS is an ongoing series of follow-up surveys of
the individuals sampled in NHANES I who were aged
25-1A years at the baseline examination (3). Table 1
displays the types of risk factors and outcomes that
were analyzed for papers published in 1993 using
NHEFS; the list of publications was abstracted from a
computer file provided by the National Center for
Health Statistics ("The National Health and Nutrition
Examination Surveys, A Selective Bibliography,
1980-93," June 1994).

The purpose of this paper is to discuss appropriate
methods of analysis of time-to-event data such as
those acquired in NHEFS, and, in particular, the
choice of the time-scale in a proportional hazards
regression. Statistical issues in the analysis of NHEFS
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TABLE 1. Examples of time-to-event analyses published in
1993 using the first National Health and Nutrition Examination
Survey (NHANES I) Epktemiologic Followup Study

Outcome and primary risk factors)

Mortality
Pulmonary impairment
Weight or weight loss
Dietary diversity
Vitamin and mineral supplements
Health Insurance

Coronary heart disease
Alcohol consumption
No. of pregnancies
Weight or weight loss

Mortality and coronary heart disease
White Wood cell count

Stroke
Hormone use

Hip fracture
Dietary calcium

Multiple myeloma
Antigenic conditions

Reference no(s).

4*
5*, 6*
7*
8*
9*

10*, 11t
12*
13*

14*

15*

16*

17*
* Analysis used a proportional hazards regression model with

time-on-study as the time-scale and baseline age as a covariate.
t Analysis used a parametric regression model with age as the

time-scale.
t Analysis used a proportional hazards regression model with

time-on-study as the time-scale with the cohort matched on age.

data have recently been addressed in a National Center
for Health Statistics publication by Ingram and Makuc
(18), who in part compared different regression mod-
els and recommended that the proportional hazards
regression model be used. In the regression models
they presented, the time-scale chosen was follow-up
time (time-on-study), and baseline age was included as
a covariate. With two exceptions (11, 17), all of the
publications presented in table 1 have used this rec-
ommended model. We describe this model in detail in
the next section and argue that a more appropriate
proportional hazards regression model would use age
as the time-scale, with possible stratification on birth
cohort. Simple conditions are given for when using an
incorrectly specified model with time-on-study as the
time-scale will nevertheless yield approximately unbi-
ased estimates of the regression coefficient for a risk
factor. In the third section of this paper, we present
some examples using data from the NHEFS with the
analyses done with age and time-on-study time-scales
to show the differing results. We end with a brief
discussion of some related issues in analyzing fol-
low-up of a survey, including the incorporation of the
sample design into the analysis, the problem of pre-
event conditions that may affect the risk factors, and
the use of longitudinally collected risk factor informa-
tion during the follow-up period.

PROPORTIONAL HAZARDS REGRESSION
MODELS

There are three general types of models used for
analyzing time-to-event data: parametric, nonparamet-
ric, and semiparametric. For a parametric model, the
distribution of the times to events given a set of risk
factors and covariates is completely specified except
for a (finite) set of unknown parameters, which are
estimated from the data. For a nonparametric analysis,
these distributions are estimated directly from the data
with essentially no model assumptions, e.g., by using
Kaplan-Meier plots for each combination of risk factor
and covariate values. For a semiparametric analysis,
these distributions are modeled as a function of an
unspecified baseline distribution and a set of unknown
parameters. One such semiparametric model, which is
the focus of this paper, is the proportional hazards
regression model of Cox (19). To define this model, let
Y be the time to the event. The hazard function of Y
(force of mortality), defined by

\y(y) = lim -rP(Ye\y,y+b)\ Y>y),

is the instantaneous rate of an event occurring at time
v given that it has not occurred before time v. Let z =
(Z] 2̂>- • •>£*•) be a vector of baseline risk factors and/or
covariates, /3 = (/31( /32>- • ->PK) be a vector of
unknown regression coefficients, fl'z = /3JZJ + /32z2

+ . . . + f5Kz& and assume that the individuals under
study can be categorized into a stratum j , j = 1,.. ., J.
One possible proportional hazards regression model
for Y is given by

(1)

where AfyyO are unspecified baseline hazard functions
that allow the hazard to be different depending on
stratum membership.

With data from longitudinal follow-up of a survey,
there are different ways one could apply a proportional
hazards model. For example, consider an individual
aged 60 years in 1980 who has been followed since
being sampled in the baseline survey in 1970. His
hazard could depend on his age (60 years), his time-
on-study (10 years), which is equivalent to the calen-
dar period (1980), his birth cohort (1920), as well as
the risk factors and other covariates. Because a per-
son's age plus his birth cohort equals the calendar
period, there are well-known identifiability problems
associated with untangling the effect of age, cohort,
and calendar period on the hazard function (20).

Fortunately, for research questions directed at the
association of risk factors with time-to-events, the
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identifiability problems associated with age-cohort-
period models can be avoided. Consider the model

\A(a\bQrz) = (2)

where A = a is the age of the individual during the
follow-up period, and b0 is the birth cohort of the
individual. The baseline hazard in model 2 is specified
in terms of age and cohort, but a parametrization in
terms of age and calendar period would yield equiva-
lent results for the regression coefficients. An analysis
using model 2 can proceed by grouping the ages and
cohorts into intervals (21). A preferable analysis is of
the form of model 1 and groups only on cohort, viz.,

\A(a\boeBj,z) = (3)

where BxJi2,. . -,Bj are birth cohort intervals, e.g.,
1906-1910, 1911-1915, etc. With cohort intervals of
small width, model 3 controls for period effects as
well as age and cohort effects. Model 3 is the model
we generally recommend. Two alternative models that
will yield similar results to using model 3 are possible.
One of these alternative models uses age as the time-
scale but stratifies on time-dependent strata consisting
of 5-year calendar periods (22), while the other uses
time-on-study as the time-scale but stratifies on birth
cohort (23); see also Reichman ("Cox Proportional
Hazards Survival Analysis with Multiple Time
Scales," unpublished Master of Arts thesis, University
of Maryland, College Park, Maryland, 1991).

We now present two proportional hazards regres-
sion models that do not use stratification. The first
model is the commonly used one we mentioned in the
introduction. Let Tbe the time-on-study and a0 the age
of the baseline survey of an individual. Using time-
on-study as the time-scale we have

y'z}. (4)

where y = (y,,72v • ->7*-)- A. direct simplification of
model 3 uses age as the time-scale but without strati-
fication:

= Atu(a)exp{/3'z}. (5)

This model would be appropriate if there were no
concerns about cohort or period effects.

We believe that models 3 or 5 are preferable to
model 4 for analyzing outcomes such as those in table
1. This is because for these outcomes we would expect
the hazard to change more as a function of age than as
a function of time-on-study. For example, we would
expect the hazards of persons aged 50 years and 60
years who have both been on study for 10 years to
differ more than the hazards of two persons aged 55
years, one of whom has been on study 5 years and the

other 15 years. Because the great flexibility of the
proportional hazards model is due to not having to
specify the form of Ao(.), it is best to use this function
to model the variable that is expected to have the
largest effect on the hazard (in this case, age); see also
reference 22. In other biomedical applications, AQ(.)
would be typically modeled as a function of variables
other than age. For example, in a randomized clinical
trial or in a natural history study of a disease, time
since randomization or diagnosis would be used; see
Andersen et al. (24) for additional examples. With
follow-up of a healthy population, however, we be-
lieve age will be the most appropriate time-scale for
most outcomes. This assumes that the hazard function
given age and other covariates does not change with
calendar time. In some situations, this assumption will
not be valid because of calendar effects due to ad-
vances in medical management. In these cases, it is
important to stratify on birth cohort (model 3). In fact,
provided that the cohort stratification is coarse enough
so that there are sufficient numbers of individuals in
each cohort, then practically no precision is lost in
unnecessarily stratifying by birth cohort when estimat-
ing /3. However, fine stratification can lead to bias in
the estimators of the variance of the estimated /3. For
any given analysis, this can be checked using com-
puter simulations, as we will demonstrate empirically
in the examples given below. We do not address the
possibility of combining multiple time-scales into one
time-scale (25, 26), because there would appear to be
no advantage of this type of model over model 3.

Suppose that age is the appropriate time-scale and
model 5 is consistent with the data. What are the
implications of inappropriately using model 4 for anal-
ysis? We show in the Appendix that if it happens that
the baseline hazard A^Oa) = c exp{i/«j} for some c
and i//, then the y's estimated using model 4 will be
estimating the correct /3's from model 5. Even if the
baseline hazard function were only approximately ex-
ponential, we would expect only a small bias in using
model 4. If the baseline hazard function is not any-
thing like an exponential function, there is another
condition that will ensure that the estimated -y's will
approximately estimate the /3's. This condition is that
the z and the baseline ages a0 are statistically inde-
pendent. The existence of such conditions is good
because it suggests that previous analyses performed
using model 4 may not be seriously in error. This is
because the hazards of many outcomes would be ex-
pected to increase rapidly as a function of age, roughly
approximating an exponential distribution. In fact, the
Gompertz distribution (27), which has been histori-
cally used to model mortality, has precisely an expo-
nential hazard function. We give an example in the
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next section in which the hazard function is not an
exponential function.

A computer program that can be used for analysis
using models 3 or 5 which also allows for the possi-
bility of time-dependent covariates is available from
the authors. The program has the option of fully in-
corporating the sampling design (assuming with-
replacement sampling at the first stage of sampling).
In particular, sample-weighted estimators are calcu-
lated, and standard errors are estimated accounting for
the sample clustering and stratification in the sample
design by using Taylor-series linearization (28). With
no time-dependent covariates, the program can also
produce estimates of the cumulative hazard for any
pattern of covariates, but these estimates may be un-
reliable because of the small numbers of subjects at
risk at the youngest ages.

EXAMPLES

In this section, we present examples to demonstrate
the effect of the choice of time-scale on the estimation
of a proportional hazards regression coefficient. The
examples, which use the 1987 follow-up data (3) on
the women in the NHEFS, are meant to be illustrative
of points discussed in the last section rather than to be
substantive analyses. We consider two outcomes: all-
cause mortality and the removal of the ovaries (last
ovary, if removed at different times). The outcomes
were chosen because the cumulative hazard function
(and therefore hazard function) for mortality as a func-
tion of age looks exponential (figure 1), whereas for
age at ovary removal it does not (figure 2). Because
ovary status was not asked at the baseline survey in
1971-1975, we used the method described in the foot-

0.2

0.01

20 30 40 50 60
Age (years)

70 80 90

FIGURE 1. Cumulative hazard for mortality as a function of age (age &25 years) for women being followed in the NUANES I Epidemiologic
Followup Study.
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FIGURE 2. Cumulative hazard for ovary removal as a function of age (age &25 years) for women being followed in the NHANES
Epidemiologic Followup Study.

note to table 4 to approximate what the data would
have looked like if they had been collected at baseline.
Additionally, for women who died without ovary re-
moval during the follow-up period, their time-to-ovary
removal was considered censored at the time of death;
an alternative analysis of cumulative incidence (29)
would assign an arbitrarily large value for time-to-
ovary removal for these women.

Three baseline binary risk factors are considered: 1)
whether the woman lived in an urban or rural area (as
derived from the 1960 census), 2) whether the woman
was a smoker (current or former) or a nonsmoker, and
3) whether the woman's family income was ^$4,000
or >$4,000. These risk factors were chosen because
they represent a range of disparities on baseline age
distributions. For the urban/rural variable, the age dis-

tributions are well matched; for the smoker/nonsmoker
variable, they are moderately different; and for the
family income variable, they are very different; see
table 2 for selected percentiles for the subset of women
analyzed for ovary removal.

The analyses presented in this section fully utilize
the sample design. The sample weights and standard
errors were calculated as recommended by Ingram and
Makuc (18).

Table 3 presents the proportional hazards regression
coefficients for the three risk factors for mortality
calculated using three different proportional hazards
models. The first (model 3) uses age as the time-scale
and stratification on 5-year birth cohorts. The second
(model 5) has age as the time-scale but with no strat-
ification. The third (model 4), which we do not rec-
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TABLE 2. Baseline age distributions for three risk factors in
the NHANES I Epldemiologic Followup Study for a subset of
women analyzed for ovary removal (see text)

Risk factor

Age (years) by weighted
percentfle

25th 50th 75th

Urban/rural
Urban (n = 2,272) 33.6
Rural (n = 3,710) 33.7

Smoker/nonsmoker
Smoker (n = 2,495) 32.6
Nonsmoker (n = 3,228) 35.5

Family Income
=£$4,000 (n = 1,134) 43.6
>$4,000 (n = 4,634) 32.7

44.2
45.1

55.9
57.1

42.2
47.6

58.2
42.7

53.2
60.2

67.1
53.9

ommend, uses time-on-study as the time-scale with
baseline age as a covariate. The first two models yield
almost identical results, suggesting that there are no
large cohort or period effects interacting with the relative
hazard. As expected, because of the exponential-like
cumulative hazard (figure 1), the results of the second
two models are almost identical. Table 4 presents the
results for ovary removal. Again the results for the
first two models are almost identical. The comparison
of the second two models depends on the risk factor.
For the urban/rural variable, the results are the same;
and for the smoker/nonsmoker variable, the results are
close. For the family income variable, the results are
quite different, 0.29 ± 0.19 versus 0.06 ± 0.20. Based
on a jackknife, the standard error of the difference of
these estimators, 0.23 (= 0.29 - 0.06), is ±0.04,
demonstrating that the observed difference is not due
to sampling variability. These findings are consistent
with the theoretical considerations given in the previ-

TABLE 3. Proportional hazards regression coefficients
(± standard error) for three risk factors (considered one at a
time) for mortality among women in the NHANES I
Epldemiologic Followup Study calculated by three methods

Method

Risk factor
Age as the time-

(5-year intervals)

Tlme-on-atudy
as the time-
scale wtth

baseline age as
a covariate

Urban vs. rural
(n = 8,183) 0.05 ± 0.08 0.05 ± 0.08 0.05 ± 0.08

Smoker vs.
nonsmoker
(n = 7,626) 0.40 ±0.11 0.40 ± 0.11 0.38 ± 0.11

Family income
(£$4,000 vs.
>$4,000)
<p = 7,878) 0.21 ± 0.08 0.20 ± 0.08 0.23 ± 0.08

TABLE 4. Proportional hazards regression coefficients
(± standard error) for three risk factors (considered one at a
time) for risk of ovary removal* among women in the
NHANES I Epidemiologic Followup Study calculated by three
methods

Method

Risk factor
Age as the time-

scale with
stratification on

birth cohort
(5-year Intervals)

Age as the
time-scale

Tlme-on-study
as the time-
scale with

baseline age as
a covariate

Urban vs. rural
(n = 5,982)

Smoker vs.
nonsmoker
(n = 5,723)

Family income
(s$4,000 vs.
>$4,000)
Ip = 5,768)

-0.08 ±0.11 -0.09 ±0.11 -0.09 ±0.11

0.06 ± 0.09 0.06 ± 0.09 0.09 ± 0.09

0.30 ± 0.19 0.29 ± 0.19 0.06 ± 0.20
•Women were asked in the 1986-1987 follow-up about their

ovary status, and If removed, their age at the time of removal. If the
age at ovary removal for a woman was before her age at the
baseline survey, her data were not used in the analysis. For women
who were alive at the 1982-1984 follow-up, but unable to be inter-
viewed in 1986-1987 (e.g., because they had died), a proxy re-
sponse was used for time of ovary removal. Data from women who
died before the 1982-1984 follow-up were not used in the analysis
because no proxy responses were available.

ous section. Note that in all cases the stratification on
5-year birth cohorts did not increase the standard er-
rors. Based on computer simulations (not shown),
these standard errors are estimated accurately.

Based on a priori biologic considerations, we be-
lieve that age is the most appropriate time-scale for
these analyses. However, there is also some evidence
provided by the data on this point. We performed an
analysis of ovary removal with calendar time as the
time-scale with the following independent variables:
family income (<$4,000 vs. >$4,000), baseline age,
and the square of baseline age. The coefficient for
family income was estimated to be 0.31 ± 0.20, very
close to the value obtained when using age as the
time-scale (last row of table 4). This suggests that the
simpler model with calendar-time as the time-scale
and age at baseline as a covariate mismodels the
hazard function.

DISCUSSION

Besides the choice of time-scale, there are other
issues that need to be addressed when analyzing lon-
gitudinal follow-up of a survey. One is how to incor-
porate aspects of the sampling design into the analysis.
Our general recommendations are given elsewhere
(30); specific recommendations for NHEFS are given
by Ingram and Makuc (18). Standard errors estimated
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incorporating the clustering of the sample design may
be quite variable when there are few primary sampling
units (PSU's) in the design. However, since there are
sufficient PSU's in the NHEFS design to estimate
reliably the standard errors (75 non-certainty PSU's
sampled from 25 strata, and 10 certainty PSU's treated
for variance estimation as 30 pseudo-PSU's sampled
from 10 pseudo-strata), we recommend using variance
estimation that accounts for the sample clustering and
stratification for this survey. The use of the sample
weights in a weighted analysis yields approximately
unbiased estimates of population quantities (which an
unweighted analysis may not), but at the cost of in-
creased variability of the estimators. Whether or not to
incorporate the sample weights and clustering into the
analysis needs to be considered survey by survey, and
perhaps even analysis by analysis (18). Somewhat
surprisingly, all but one (9) of the proportional hazards
regression analyses in table 1 used no aspect of the
sampling design of the NHEFS; two articles (10, 14)
used the sample design in subsidiary logistic regres-
sion analyses. For comparison purposes, we repeated
the key analyses of the last section (the last row of
table 4) ignoring the sampling design. The regression
coefficients for family income for the hazard of ovary
removal are estimated to be —0.18 ± 0.13 with age as
the time-scale, and —0.37 ± 0.14 with time-on-study
as the time-scale and baseline age as a covariate.

A second issue is how to handle pre-event condi-
tions that may affect the risk factor. For example,
suppose the outcome event is death from cancer and
the risk factor is smoking. It is not hard to imagine that
an individual with lung cancer at the baseline survey
may have reduced her smoking prior to the survey,
leading to an obvious bias. One approach is to elimi-
nate from the analysis individuals with preexisting
conditions that might affect the risk factor. This ap-
proach is itself not without bias, because the individ-
uals who are potentially the most susceptible to the
harm of the risk factor are being removed from the
analysis. Another approach is to stratify by the condi-
tion in the analysis. For example, in the analysis of
health insurance and mortality (9), the presence or
absence of morbidity at the baseline survey was in-
cluded as a covariate. This approach is also potentially
biased since one is stratifying on a variable that is on
the causal pathway between the risk factor and the
disease (31).

Sometimes there may be concerns that there are
pre-event conditions that may affect the risk factor but
be preclinical at the baseline survey. One approach is
to eliminate follow-up data within a specified time
interval from the baseline survey from the analysis.
For a proportional hazards regression model with

time-on-study as the time-scale, this is equivalent to
eliminating from the analysis individuals who have the
event within the specified time interval. An example is
given by the study of weight loss and mortality (6),
where additional analyses were done in which deaths
that occurred in the first 5 or 8 years of follow-up were
excluded. With age as the time-scale, eliminating ini-
tial events is not the same as eliminating initial follow-
up, with the latter being the correct approach.

Rather than eliminating the data from the early
follow-up period, one can attempt to model the effect
of pre-event conditions on the risk factor. For exam-
ple, if one believes that a preclinical pre-event condi-
tion could affect the risk factor for up to 2 years, then
one might consider the following model for a binary
risk factor R:

- a , (6)

where (x)+ equals x if x > 0 or 0 otherwise. In model
6, the log-relative hazard due to R is modeled to be
reduced by £ at the beginning of the follow-up period,
tjl at one year of follow-up, and zero at >2 years of
follow-up. If the estimated £ is small, then this sug-
gests that there is no evidence that a pre-event condi-
tion is affecting the risk factor.

The last issue we address is how to utilize longitu-
dinal risk factor information when it is available. For
example, in the NHEFS, weight and blood pressure
were obtained at the 1982-1984 follow-up as well as
the baseline survey. We first note that with a single
measurement available (typically from the baseline
survey), an implicit assumption in using the regression
models previously described is that the single ob-
served risk factor is useful in characterizing the life-
time risk of that individual. Because an individual's
risk factor status may change with age, this assump-
tion is open to question. In this regards, model 3 offers
an advantage over model 5 in that individuals being
directly compared for their risk factor status are being
compared for their status obtained at the same general
age, e.g., family income at ages 30-35 years.

When multiple measurements of a risk factor are
obtained, there are additional analysis possibilities.
If one is assessing the utility of a biologic marker
of a disease for screening purposes, then carrying
forward the last known value of the marker as a
time-dependent covariate in the regression models
would be appropriate. For the more typical uses of
longitudinal follow-up, one should consider the hypo-
thetical connections between the risk factor and the
disease. For example, if there is thought to be a long
latency period between the action of the risk factor and
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the incidence of the disease, then one might utilize
only the baseline risk information. Additionally, if one
thought pre-event conditions might be affecting the
risk factor as described above, then utilizing longitu-
dinally collected risk information right up to the time
of the event might not be recommended. A final con-
sideration is that many risk factors have short-term
temporal variation due to measurement error (e.g., a
laboratory value), biologic variability (e.g., blood
pressure), or their inherent nature (e.g., 24-hour di-
etary recall). A one-shot measurement at the baseline
survey is thus subject to "error," which can attenuate
associations between the risk factor and disease. Av-
eraging risk factor values collected at different times
will lessen this problem. At a minimum, one can use
the multiple measurements to assess the extent of the
attenuation.

In summary, the analysis of data collected from the
longitudinal follow-up of a survey is not straightfor-
ward. The purpose of this brief discussion has been to
raise some of the issues; we realize that we have not
provided answers to all the questions raised. However
these issues are settled, the use of a model that is
consistent with the data is important. We recommend
modeling the events using a proportional hazards
model with age as the time-scale. This procedure is
more meaningful and less restrictive than using time-
on-study as the time-scale.
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APPENDIX

In this appendix, we consider two conditions that will ensure that the y's estimated using model 4 will
approximately estimate the /3's from model 5 when model 5 is, in fact, correct. The first condition is that
= c exp {</«} for some c and t//. Using the definition of a hazard function we have

= lim - r ( [ A ) | )
A-»co ^

= lim 1r
A—0A

+ f)exp{/3'z} (7)

= c exp{<//*} exp{i/wo + pz], (8)

where we have used the special exponential form of Aa4(a) to derive expression 8 from expression 7. Model 8
is consistent with model 4 with A^f) = c exp{t/tf}- Therefore, the estimates of the y's using model 4 will
correctly estimate the /3's. Notice that this would not be true if the baseline age OQ were not included as a covariate
in model 4.

If A ^ a ) is not an exponential function, the second condition we consider is that the baseline ages OQ are
statistically independent of z- For example, if z is a binary risk factor, then this condition states that the
distribution of baseline ages for those with and without the risk factor should be the same. To show heuristically
why this condition works, rewrite model 4 as

Ar(r|flo,z) - [Ao7<0exp{$flo}]exp{yz}. (9)

By fitting model 9 to data consistent with model 5 (and therefore expression 7), one approximates A^Og + i)
by [AQTO) exp{£oo}]. If â , and z are independent, then any misfit of this approximation would not be expected
to affect much how exp{y'z} is approximating exp {/3'z}. To make this argument precise, and to show just how
much bias there will be in estimating /3 with estimates of y (it is not unbiased), requires asymptotic theory beyond
the scope of this paper; see also Gail et al. (32). We examined this issue empirically in the examples given in the
main body of the paper.
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