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The propensity score is the conditional probability of exposure to a treatment given observed covariates. In a
cohort study, matching or stratifying treated and control subjects on a single variable, the propensity score, tends
to balance all of the observed covariates; however, unlike random assignment of treatments, the propensity
score may not also balance unobserved covariates. The authors review the uses and limitations of propensity
scores and provide a brief outline of associated statistical theory. They also present a new result of using
propensity scores in case-cohort studies. Am J Epidemiol 1999; 150:327-33.
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DEFINITION AND MOTIVATION

An observational study is an attempt to estimate the
effects of a treatment or an exposure by comparing out-
comes for subjects who were not assigned at random to
treatment or control, which would have happened in a
randomized, controlled trial (1, 2). A variable, such as
age or gender, that is measured prior to the start of treat-
ment, and hence is unaffected by the treatment, will be
called a covariate. Random assignment of subjects to
treatment or control tends to balance covariates, so that
treated and control groups are comparable in the sense
that they have similar distributions of covariates, for
instance, similar age distributions or similar propor-
tions of women. Absent random assignment, the
propensity score is a device for constructing matched
pairs or matched sets or strata that balance numerous
observed covariates (3). Adjustment for an estimated
propensity score tends to balance observed covariates
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that were used to construct the score, but, unlike ran-
dom assignment of treatments, the propensity score
typically does not balance covariates that were not
observed. Imbalances in unobserved covariates must be
addressed by using additional methods (2, 4—6).

Each subject has observed covariates, X, and an indi-
cator of treatment, Z = 1 if treated and Z = 0 if control.
The X for one person might record dozens of pretreat-
ment measurements describing that person. The
propensity score, e(X), is the chance that a person with
covariates X will be exposed to treatment, that is, e(X) =
prob(Z = 1|X). The propensity score has a number of
theoretical properties that have been verified in both
simulated and practical situations. Before these proper-
ties are presented, it is useful to consider some informal
but suggestive motivation. In the simplest randomized
trial, subjects are assigned to treatment or control by the
flip of a fair coin, so e(X) = prob(Z = 1|X) = 'A for every
X; therefore, subjects with different patterns of covari-
ates all have the same chance of receiving the treatment,
and each possible value of X is as likely to turn up in the
treated group as in the control group. Quite often, the
published report of a randomized trial includes a table
documenting that the randomization was effective, that
the treated and control groups were comparable in
terms of the distributions of important covariates.

In contrast, in an observational study, some subjects
are more likely than others to receive the treatment, so
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328 Joffe and Rosenbaum

e(X) * 'A for some persons, and the pattern of covari-
ates X often helps to predict which treatment a subject
will receive. However, suppose that we compare two
subjects who have the same chance of receiving the
treatment given their observed covariates X, say two
subjects with e(X) = V*. These two subjects may be
very different in terms of X, but their differences do
not help predict which subject is more likely to receive
the treatment. Given only the information in the
observed covariates X, both subjects have the same
chance, namely lA, of receiving the treatment. So, the
first subject with his X and the second subject with her
perhaps very different X appear to have the same
chance of ending up in the treated group; his X is as
likely to be found in the treated group as hers is.

This suggests, and both theory and experience con-
firm, that if we pair or group subjects with the same
propensity score e(X), then treated and control sub-
jects in these groups will have similar patterns or dis-
tributions of X. For instance, if X records (among
other things) age, race, and gender, then the stratum
consisting of all subjects with e(X) = V* will contain
people of varied ages and races and both genders.
However, the mean age of subjects in the treated group
will be similar to the mean age of those in the control
group, the proportions of women will be similar, and
the proportions of Black women older than age 50
years will be similar. The balance on the observed
covariates X that is obtained by matching or stratifying
on an estimated propensity score is of course imper-
fect, but it is typically somewhat better than the bal-
ance on X obtained by random assignment of treat-
ments. Again, random assignment does not consider
the observed X in balancing X, so this method also bal-
ances unobserved covariates. On the other hand,
matching on the estimated propensity score does use X
in balancing X and may do nothing to balance unob-
served covariates.

The propensity score complements model-based
procedures and is not a substitute for them. Matching
or stratifying on propensity scores is often used in con-
junction with further model-based adjustments using
regression (7) or log-linear models (8). In addition,
propensity scores are often used directly as the foun-
dation for inference (9-12).

In this paper, we first review some of the literature
on propensity scores in cohort studies and then present
new results on their use in case-cohort studies. Related
to propensity scores are discriminant matching for
multivariate Normal covariates (13) and Miettinen's
confounder scores (14), but the theoretical develop-
ment of the properties of confounder scores is less
complete (refer to Rosenbaum and Rubin (3) for a dis-
cussion of these associations).

EMPIRICAL RESULTS

In an observational study comparing coronary
bypass surgery (Z = 1) with medical treatment (Z= 0),
five strata formed from an estimated propensity score
balanced 74 covariates that characterized patient
health prior to treatment (8). The covariates described
left ventricle function, ejection fraction, degree and
location of coronary stenosis, age, performance status,
and other characteristics. Before stratification, the sur-
gical and medical groups differed significantly in
terms of all 74 covariates. The propensity score e(X) =
prob(Z = 1|X) was estimated by using logit regression
of the decision to perform or withhold surgery Z on the
covariates X, including needed interactions and qua-
dratics. Patients were then divided into five strata by
using the estimated probabilities of surgery; each stra-
tum contained 20 percent of the patients.

Each stratum was heterogeneous in the covariates X,
but, within the same stratum, the medical and surgical
patients had similar distributions of the covariates. For
instance, the stratum containing the patients who had
the lowest probabilities of surgery included both many
of the sickest and many of the healthiest patients. Poor
left ventricle function made a patient a poor candidate
for surgery, but so did limited coronary stenosis. Still,
within this heterogeneous stratum of patients unlikely
to receive surgery, the medical and surgical patients
had similar distributions of the observed covariates. In
fact, the balance on these 74 covariates was substan-
tially greater than would have been expected by ran-
dom assignment of treatments. When the stratified sur-
gical and medical groups were compared on the basis
of each of the 74 covariates, two tests of equality of the
distributions were performed, thus yielding a total of
148 tests. After stratification, only one of the 148 tests
of covariate balance was significant at the 0.05 level;
in a randomized trial, 5 percent or 0.05 x 148 = 7.4 sig-
nificant differences would be expected to occur by
chance alone. Patient outcomes were then compared in
two ways, adjusting just for the five strata and using a
log-linear model relating patient outcomes to treat-
ment, two key covariates from the 74 in X, and the five
strata. Thus, it was possible to compare medicine and
surgery for a few key, specific subgroups of patients
while balancing many other less interesting covariates.

hi a study of the effects of prenatal exposures to bar-
biturates, Rosenbaum and Rubin used the propensity
score to match 221 exposed children to 221 unexposed
controls drawn from a reservoir of 7,027 potential con-
trols (15). The study involved extensive follow-up of
these 442 children, so it was not practical to follow all
7,027 potential controls. The propensity score was
estimated by using a logit model with 20 covariates
together with selected interactions and quadratics. The
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matching removed not only most of the initial bias in
the 20 covariates but also most of the bias in the
squares of the 20 covariates and the 190 interactions
formed by multiplying two covariates. By removing
bias not only in the mean value of the covariates but
also in their squares and interactions, the matching
also removed bias in quadratic response surfaces that
might have been formed from these covariates.

Matching on the propensity score is much better
than dividing each covariate into two categories and
then matching exactly on the categories. If the latter
form of category matching had been used, matches
would have been found for only 126 of the 221
exposed children, yet the balance it would have pro-
duced on the original variables would have been
poorer than the balance obtained by propensity match-
ing with all 221 exposed children (16). Moreover, the
126 matched exposed children were very different
from the remaining 95 unmatched exposed children,
which would have introduced a substantial bias due to
incomplete matching (16). The propensity score is also
used when multiple controls are matched (17).

A simulation study found that matching by using
propensity scores was vastly superior to using several
other matching methods when there were 20 covariates
(18). In particular, with 20 covariates, propensity
matching often removed more than twice the bias
removed by Mahalanobis metric matching. Propensity
matching may be combined to advantage with other
matching techniques, such as Mahalanobis metric
matching (15, 19), optimal matching (20), and full
matching (21). The Institute for Scientific Information
(ISI) Scientific Citation Index lists some 170 citations
of the six initial propensity score papers (3, 8-10, 15,
16), including numerous applications in medicine and
the social sciences.

THEORETICAL PROPERTIES

The empirical results just discussed are consistent
with the theory of propensity scores. Briefly, there are
three theoretical issues: 1) propensity scores balance
observed covariates; 2) if it suffices to adjust for covari-
ates X, then it suffices to adjust for their propensity
score e(X); and 3) estimated propensity scores are bet-
ter than true propensity scores at removing bias, because
they also remove some chance imbalances in X.

Stated more precisely, a balancing score is a sum-
mary or function b(X) of the observed covariates such
that treatment Z and the observed covariates X are con-
ditionally independent given b(X). In a stratum that is
homogeneous in a balancing score, treated Z = 1 and
control Z = 0 subjects will have the same distribution of
the observed covariates X. The propensity score e(X) is
the simplest or coarsest balancing score, the covariates

X themselves are the most complex or the finest bal-
ancing score, and every balancing score contains the
information in the propensity score e(X) and some
additional information from X. Therefore, to balance
covariates, strata must be homogenous in the propen-
sity score but may control for other aspects of X as well
(refer to Rosenbaum and Rubin (3), theorem 2).

Adjustments, such as matching or stratification, for
observed covariates X are commonly performed in
observational studies, but it is a familiar fact that these
adjustments may not suffice to yield appropriate esti-
mates of treatment effects. Subjects who appear similar
in terms of observed covariates X may differ regarding
important covariates not observed. It is useful to be able
to formally describe the circumstances under which
adjustments for X will suffice; that formal condition is
known as strongly ignorable treatment assignment (3).
Imagine, for example, that subjects are assigned ran-
domly to treatment or control with unequal, nonzero
probabilities that are a function of X alone but that the
function itself is unknown. In this instance, treatment
assignment is strongly ignorable, and adjustments for X
do suffice to estimate treatment effects. Strong ignora-
bility, defined formally in the Appendix, implies that no
systematic, unobserved, pretreatment differences exist
between treated and control subjects that are related to
the response under study. Strong ignorability is related
closely to the absence of residual confounding by
unmeasured factors under comparability-based defini-
tions of confounding (for example, refer to Greenland
and Robins (22)).

A key fact (Rosenbaum and Rubin (3), theorem 3)
about balancing scores is that if it suffices to adjust for
X, then it suffices to adjust for any balancing score
b(X). Formally stated, ignorability given X implies
ignorability given b(X). For instance, in the coronary
bypass surgery example mentioned in the previous
section, if it would have been sufficient to adjust for
the 74 patient covariates in X, then it also would have
been sufficient to adjust for the single propensity score
e(X). While it is difficult to stratify on 74 covariates at
once, it is straightforward to use strata to remove bias
in a single covariate (23). However, if this covariate is
the propensity score, then bias due to all 74 covariates
is removed.

In practice, the propensity score is unknown and
must be estimated, for instance, by using a logit model,
as described in the previous section. When an estimate
is used in place of a true value, it is usually expected
that the estimate will not perform as well; surprisingly,
however, estimated propensity scores perform better
than true propensity scores, as confirmed by theory
(9-11), simulation (18), and practical experience (8).
An estimated propensity score cannot distinguish sys-
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tematic bias from an imbalance in covariates that
arises from bad luck, and adjustment for an estimated
propensity score tends to remove both types of imbal-
ance. On the other hand, adjustment for the true
propensity score removes systematic bias only.

In studies in which a rare disease is the outcome and
a comparatively common exposure Z is under investi-
gation, modeling the relation between exposure Z and
covariates X, that is, modeling the propensity score
e(X) = prob(Z = 1|X), may be more feasible than mod-
eling the relation between the disease outcome and X.
For instance, to study survival given the 74 covariates
X in the example of surgery versus medical treatment
presented previously, the maximum likelihood esti-
mate for the very simplest logit model with a constant
and just these covariates and no interactions would
require a minimum of 75 deaths. This condition is nec-
essary but not sufficient for the mere existence of the
maximum likelihood estimate and is generally insuffi-
cient to yield good performance of this estimate. In
contrast, a model for the propensity score would not
require many deaths for a stable estimate of e(X), just
many patients assigned to both bypass surgery Z = 1
and drug treatment Z = 0. Matching or stratifying on
the estimated propensity score could be used to adjust
for all 74 covariates, and a model for responses could
be confined to a small subset of the covariates in X, as
illustrated by Rosenbaum and Rubin (8).

EXTENSIONS OF PROPENSITY SCORE
METHODS

This section briefly outlines several extensions of
propensity scores and is slightly more technical than
previous sections. Topics include the following: 1)
methods of inference using propensity scores directly,
without matching or stratification; 2) propensity scores
in case-cohort studies; and 3) propensity scores with
doses of treatment.

Inference using models for propensity scores

Although originally intended as an aid to multivari-
ate matching and stratification, the propensity score
can be used directly in inference, without matching or
stratification. The propensity score provides estimates
and tests of treatment effects (9-12), which sometimes
simplify modeling of the effects of time-varying treat-
ments (24, 25). Roughly speaking, when the treatment
has an effect, treatment assignment is associated with
subsequent outcome; therefore, a model for the
propensity score that predicts assignment from covari-
ates and outcomes exhibits an association with the out-
comes, and this association will not be spurious if
treatment assignment is strongly ignorable. In the sim-

plest case, the null hypothesis of no treatment effect
might be tested by using a logit regression of the
assigned treatment on the outcome and covariates (9).
This strategy quickly generalizes in several directions,
yielding, for instance, exact and approximate tests of
the null hypothesis of no treatment effect and, by
inversion, confidence intervals for the magnitude of
the effect (9, 11). Also, when the treatment a person
receives changes over time, it is often simpler and
more robust to model the treatment assignments with-
out modeling responses (25). Estimates of population
quantities are sometimes obtained by weighting obser-
vations inversely as their estimated propensity scores
(10), and this approach has also been generalized by
Robins (26) to time-varying treatments.

Propensity scores In case-cohort studies

The simplest, somewhat idealized case-cohort or
case-base study uses all of the incident cases of a dis-
ease in a cohort and a simple random sample from the
cohort as a whole (27-31). Although propensity scores
are not typically applied to case-cohort studies, they
are directly applicable in principle.

This simple case-cohort design is used most com-
monly when some data concerning the entire cohort
are available from computerized records but costly
additional data, such as genetic information (32), must
be collected from subjects before an analysis is possi-
ble. Sampling of cohort members drastically reduces
the cost of obtaining information about the cohort as a
whole. Random sampling avoids the need to weigh the
subtle trade-offs between confounding and selection
bias that arise without random samples; refer to
Rosenbaum (2), section 6.3.

The procedure is straightforward. First, the entire
cohort is used to estimate the propensity score or any
other balancing score b(X) from the binary exposures
Z and the observed covariates X. After the propensity
score has been estimated, all cases and a random sam-
ple of cohort members are then selected, the required
additional information is obtained, and cases and
cohort members are compared within strata defined by
the balancing score b(X). Within a single stratum, the
risk ratio is estimated in the usual way, as described by
Kupper et al. (28), whereas if the risk ratio is consid-
ered constant across strata, the stratum-specific results
may be combined by using the methods described by
Greenland (30) and Sato (31). If it suffices to adjust for
the covariates X observed in the entire cohort, that is,
if treatment assignment is strongly ignorable in the
cohort, then this estimate of the stratum-specific risk
ratio is free of confounding due to the observed covari-
ates X. Refer to the Appendix for a precise statement
and a proof.
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Propensity scores with ordered doses

A single variable, the propensity score, can always
act as a balancing score when a treatment is compared
with a control, but the situation is more complex when
there are doses of treatment, say Z = 2 = high, Z = 1 =
low, and Z = 0 = none = control. In this case, generally
it is not sufficient to model and stratify on the expected
dose £(Z|X) given covariates X. Unlike the case of
two doses, the expected dose given covariates X need
not fully describe the distribution of doses Z.

However, under special circumstances, a single-
variable balancing score is available with more than two
doses. This situation happens when there is a single vari-
able, say b(X), that determines not just the expected dose
given X but the entire distribution of doses given X.
More precisely, if the entire distribution of doses Z
depends on covariates X only through b(X), so that
prob(Z|X) = prob(Z|£(X))> then b(X) is a balancing score
and persons with the same balancing score in different
dose groups have the same distribution of the covariates
X, that is, prob(X|fc(X), Z=z) = prob(X|fc(X), Z = z) for
each z, z. For instance, diis situation would be true if the
distribution of doses given X was described accurately
by McCullagh's ordinal logit model (33, 34); then, strat-
ifying on a single variable, b(X) = X7^, would balance X
across several dose groups.

More generally, under certain models (35), the dis-
tribution of doses Z given many covariates X depends
on the covariates only through a small number of lin-
ear functions of X, say XA for some matrix A, in
which case XA is a balancing score and strata that con-
trol for all of the several variables XA will tend to bal-
ance the many variables in X.

SUMMARY

Propensity scores are used to create matched pairs or
matched sets or strata that balance many observed
covariates. The resulting matched sets are heterogeneous
in the covariates, but the covariates tend to have similar
distributions in treated and control groups; therefore, the
groups as a whole appear comparable. Unlike random
assignment of treatments, adjustment for the propensity
score does little to balance unobserved covariates. If
adjustments for the many observed covariates are suffi-
cient to remove the bias in estimated treatment effects,
then adjustments for the single variable, the propensity
score, also are sufficient to remove bias. In cohort stud-
ies, estimated propensity scores usually perform better
than true propensity scores because they remove some
chance imbalances in covariates that the true propensity
score leaves behind. Adjustments by matching or strati-
fication on the propensity score are often combined with
model-based analyses within matched pairs or strata
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APPENDIX

Proof of Properties of Propensity Scores In Case-
Cohort Studies

As the property of propensity scores in case-cohort
studies is new, this appendix provides a proof. Recall
the following terms and facts from Rosenbaum and
Rubin (3). As explained by Kupper et al. (28), during
the time period under study, each subject either
becomes a new case of the disease, signified by R = 1,
or does not, signified by R = 0. Each subject in the
cohort has two potential responses, only one of which
is observed, namely, a response rT = 1 if the disease
occurs when the subject is exposed to treatment or rT =
0 if the disease does not occur when the subject is
exposed to treatment, and a response rc = 1 if the dis-
ease occurs when the subject is exposed to control or
rc = 0 if the disease does not occur when the subject is
exposed to control (36-39). Then, R = rT if the subject
was actually exposed to the treatment, Z = 1, whereas

R = rc if Z = 0. A function b(X) is a balancing score (3)
if treatment Z is independent of observed covariates X
given b(X), that is, if prob(Z= 1|X) = prob(Z= l|b(X)).
Treatment assignment is strongly ignorable given the
observed covariates X if treatment Z is not determined
by X and is independent of the potential responses (r r

rc) given the covariates X, that is, if both 0 < prob
(Z = 1|X) < 1 and prob(Z = 1|X, rr rc) = prob(Z = 1|X)
for all X and, in this case, appropriate adjustment, such
as matching or stratification, for the observed covari-
ates X yields consistent and often unbiased estimates of
treatment effects; refer to Rosenbaum and Rubin (3),
theorem 3. If treatment assignment is strongly ignor-
able given X, then it is also strongly ignorable given
any balancing score b(X). Therefore, if prob(Z = \\rr

rc, X) = prob(Z = 1|X), then prob(Z = 1| rv rc b(X)) =
prob(Z = l|b(X)) for every balancing score b(X); refer
to Rosenbaum and Rubin (3), theorem 3.

Let b(X) be any balancing score, and consider the
subpopulation of the cohort with a particular value of
the balancing score. If all subjects in this subpopula-
tion had been exposed to the treatment, then the popu-
lation proportion of disease in this subpopulation
would have been prob(rr = l|b(X)). On the other hand,
if all subjects in this subpopulation had escaped expo-
sure to the treatment, then the proportion of disease
would have been prob(rc = 0|b(X)) and the causal risk
ratio pb(X) in this subpopulation is p ^ = prob(rr =
l|b(X))/prob(rc = 0|b(X)). When can p ^ be estimated
from a case-cohort study?

In a case-cohort study, the proportion of cases
exposed in the subpopulation defined by b(X) esti-
mates the frequency of exposure to treatment, Z = 1,
among cases, R = 1, in the subpopulation defined by
b(X). That is, it consistently estimates prob(Z = l\R =
1, b(X)). The study also provides an estimate of the
frequency of exposure to treatment in the entire sub-
population, namely, prob(Z = l|b(X)), which equals the
propensity score e(K) according to theorem 2 of
Rosenbaum and Rubin (3). Combining these estimates
yields a consistent estimate of

p r o b ( Z = l l * = l , b ( X ) ) \

- prob(Z = l\R= I, b(X))7

1
(1)—r - 1

prob(Z = l|b(X))

/prob(fl = 1|Z = l ,b(X)) \

Vprob(fl = l |Z = O,b(X))/

/ p r o b ( r r = l | Z = l , b ( X ) ) \

Vprob(rc = 1|Z = 0, b(X))7 ^ '

Am J Epidemiol Vol. 150, No. 4, 1999

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/150/4/327/98791 by guest on 10 April 2024



Propensity Scores 333

where the step from expression 1 to the left of expres-
sion 2 parallels expression 2.2 of Kupper et al. (28), and
the last equality follows from the fact that R = rT when
Z = 1 and R = rQ when Z = 0. If adjustments for X suf-
fice to remove bias, that is, if treatment assignment is
strongly ignorable given X, then prob(rr = 1|Z = z,
b(X)) = prob(rr = l|b(X)) and prob(rc = \\Z = z, b(X)) =
prob(rc = l|b(X)), so that p = \ ^ , and the causal risk
ratio p in the subpopulation denned by b(X) may be
estimated by stratifying on b(X). In short, adjustments
for a balancing score permit estimation of the causal
risk ratio p from a case-cohort study when treatment
assignment is strongly ignorable, as asserted.

Strong ignorability implies that the bias due to non-
random selection into treated and control groups may
be removed by analytical adjustments, so that pb(X) =
A ^ for every balancing score b(X). However, strong
ignorability does not imply that risk ratios are homo-
geneous (40); that is, in general, different balancing
scores b(X) yield different true stratum-specific risk
ratios pb(X). For instance, this is true even if the entire
population were included in a randomized experiment,
where stratification on age or gender is possible but
not necessary for an unbiased comparison, but the risk
ratio for a person aged 50 years may differ from the
risk ratio for women.

Am J Epidemiol Vol. 150, No. 4, 1999

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/150/4/327/98791 by guest on 10 April 2024


