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Temperature and Mortality in 11 Cities of the Eastern United States

Frank C. Curriero,1 Karlyn S. Heiner,1 Jonathan M. Samet,2 Scott L. Zeger,1 Lisa Strug,1 and Jonathan A. Patz3

Episodes of extremely hot or cold temperatures are associated with increased mortality. Time-series analyses
show an association between temperature and mortality across a range of less extreme temperatures. In this
paper, the authors describe the temperature-mortality association for 11 large eastern US cities in 1973–1994
by estimating the relative risks of mortality using log-linear regression analysis for time-series data and by
exploring city characteristics associated with variations in this temperature-mortality relation. Current and recent
days’ temperatures were the weather components most strongly predictive of mortality, and mortality risk
generally decreased as temperature increased from the coldest days to a certain threshold temperature, which
varied by latitude, above which mortality risk increased as temperature increased. The authors also found a
strong association of the temperature-mortality relation with latitude, with a greater effect of colder temperatures
on mortality risk in more-southern cities and of warmer temperatures in more-northern cities. The percentage of
households with air conditioners in the south and heaters in the north, which serve as indicators of
socioeconomic status of the city population, also predicted weather-related mortality. The model developed in
this analysis is potentially useful for projecting the consequences of climate-change scenarios and offering
insights into susceptibility to the adverse effects of weather. Am J Epidemiol 2002;155:80–7.
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For centuries, the impact of weather on people has been a
public health concern. Historically, researchers have noted that
episodes of extremely hot or cold temperatures increase mor-
tality (1), and contemporary time-series analyses show an
association between temperature and mortality across the
range of usual temperatures (2). These studies show that mor-
tality tends to rise with increasingly hot or cold temperatures
from an optimum temperature value. Global warming and
other weather phenomena, such as El Niño, have sparked new
interest in the weather-mortality relation. On the basis of cli-
mate-change scenarios, temperate regions such as North
America are expected to warm disproportionately more than
tropical and subtropical zones, and temperature variability will
increase (3). According to an Intergovernmental Panel on
Climate Change (IPCC) report, the frequency of extremely hot
days in temperate climates approximately doubles for every
2–3˚C increase in temperature during the average summer (3).

Heat waves cause excess deaths, many of which are due
to increased demand on the cardiovascular system required
for physiologic cooling (4). Data from US cities provide evi-
dence that overall death rates increase during heat waves (5,
6), particularly when the temperature rises above the local
population’s threshold value. However, mortality rates show
a strong seasonal pattern, peaking in the winter when epi-
demic respiratory infections, such as influenza, are most
common.

We explored the weather-mortality relation in 11 of the
largest metropolitan areas of the eastern United States to fur-
ther characterize the weather-mortality relation across the
full range of temperatures and latitudes. A number of simi-
lar studies have been published in recent years (1, 6–9). The
present study extends these early analyses by incorporating
contemporary methods of time-series analyses and by
exploring city-specific factors that might explain variations
in the temperature-mortality association across cities; a two-
stage analytical approach was used. We developed a model
of the weather-mortality relation that is potentially useful
for projecting the consequences of climate-change scenar-
ios. The model also offers a summary of these data as evi-
dence about possible weather effects on mortality.

MATERIALS AND METHODS

Daily weather and mortality data for 1973–1994 were
collected for 11 large metropolitan areas in the eastern
United States (Chicago, Illinois; Boston, Massachusetts;
New York, New York; Philadelphia, Pennsylvania;
Baltimore, Maryland; Washington, DC; Charlotte, North
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Carolina; Atlanta, Georgia; Jacksonville, Florida; Tampa,
Florida; and Miami, Florida). These metropolitan areas rep-
resent the principal population centers on the eastern
seaboard plus Chicago, which was added to broaden the
range of geographic coverage and weather. The data used
were for the counties comprising these metropolitan areas.
For New York City, we included its five counties and
Yonkers. For Boston, we included only Suffolk County.
Because the city of Baltimore is not part of Baltimore
County, we combined the deaths for Baltimore City and
Baltimore County to define the Baltimore location.

The mortality data were provided by the Division of Vital
Statistics of the National Center for Health Statistics
(Hyattsville, Maryland). These mortality data excluded per-
sons who died in the study area but did not reside within that
area and whose deaths were attributed to external causes.
Information was used on underlying cause of death, coded
according to the International Classification of Diseases,
Ninth Revision, to classify deaths as due to cardiovascular
disease (codes 390–459), respiratory disease (codes
460–519), and all other diseases. For selected analyses, the
mortality data were stratified by age as less than 65, 65–75,
and more than 75 years.

Both census and weather data were used as potential pre-
dictors for modeling mortality. Data from the 1980 and 1990
Census of Population and Housing were provided by the US
Census Bureau (10–12). The weather data were extracted
from the National Climatic Data Center EarthInfo CD2
database (13). These data included hourly readings for 
temperature and dew point reported in degrees Fahrenheit
( .

As detailed further below, we estimated the weather-
mortality relation by using generalized additive models
(GAMs) with nonparametric smoothing functions (splines) to
describe nonlinear relations (14, 15). We used Akaike’s
Information Criterion (AIC), a measure of fit, to select the
smoothing parameters (16). Of the available weather vari-
ables for 1973–1994, we considered for each day the average
temperature, dew point, nighttime (between 6 p.m. and 6
a.m.) temperature and dew point, and daytime (between 6
a.m. and 6 p.m.) temperature and dew point. In exploring the
weather-mortality relation, we began with lagged predictor
variables to allow for possible delayed effects of weather,
starting with variables unlagged and lagged by 1–7 days.

Data for Philadelphia and Chicago were used for initial
model development. For each city, a Poisson regression
GAM was fit for mortality by using as the predictors
smoothing spline functions of time, average daily tempera-
ture, and average daily dew point at several lags. For these
and all other GAMs fit in the analysis, 44, 88, and 176 df
were used in the smooth function of time, which is an aver-
age of 2, 6, and 8 df, respectively, per year over the 22 years
of record. This approach controls for smooth seasonal vari-
ations in mortality without imposing a common seasonal
pattern across all years or requiring separate models to be fit
for each year. Functions of average temperature and average
dew point were each given a total of 6 df.

The results of this initial analysis motivated us to con-
struct additional variables intended to better capture the

°C � 5>9 � 1°F � 322 2

lagged effects of temperature and dew point. The new vari-
ables were constructed for both temperature and dew point:
T1–3 is the average temperature for the 3 days preceding the
day on which mortality was recorded, while T4–10 is the
average temperature for days 4–10 preceding the recorded
mortality. Similarly, variables D1–3 and D4–10 were con-
structed for dew point. Other variables were considered in
the model but provided no additional understanding of the
weather-mortality relation.

Our statistical analyses had two stages. In the first stage,
a separate log-linear regression analysis for each city pro-
duced an estimated mortality relative risk curve as a smooth
function of temperature. In the second stage, we summa-
rized the shape of the smooth relative risk curve for each
city and described how these summaries varied across cities
as a function of latitude and other city-level variables. Each
stage is described in more detail below.

Stage 1: city-specific log-linear regressions

Our primary goal was to characterize the shape of the
mortality-temperature relation for shorter time scales while,
to the extent possible, controlling for possible confounding
due to longer-term trends in demographic characteristics,
smoking, medical care, and seasonal health events, such as
influenza epidemics. After substantial preliminary analysis
in which several daily temperature variables were consid-
ered as predictors of mortality by using AIC, we focused our
analysis on the daily mean values of temperature and dew
point that were found to be the best or close to the best pre-
dictors for all 11 cities. On the basis of a preliminary analy-
sis, we addressed the lagged dependence of mortality on
weather by using same-day temperature T0 and dew point
D0, average temperature and dew point over the preceding 3
days T1–3, D1–3, and average temperature and dew point tem-
perature 4–10 days prior T4–10, D4–10. Because T0, T1–3, and
T4–10 (and D0, D1–3, and D4–10) were highly correlated, and
because our focus was on the shape of the temperature-
mortality association and not on the lag structure, we
orthogonalized the temperature predictor variables and
included T0, D0; adjusted T1–3 (adj T1–3), which is T1–3
adjusted for T0 and D0; adjusted D1–3 (adj D1–3), which is
D1–3 adjusted for T0 and D0; and T4–10 and D4–10 adjusted for
T0, D0, T1–3, D1–3 (adj T4–10, adj D4–10). The adjusted lagged
variables were taken as the residuals from regressing the
lagged variable on the unlagged variables; for example, adj
T1–3 are the residuals from regressing T1–3 on T0 and D0.
Additionally, variables reflecting the difference between the
average daytime and average nighttime temperatures were
constructed at lag 0 (S0) and for the averages of lags 1–3
(S1–3) and lags 4–10 (S4–10).

Several models were fit with the new lag-combination
variables. Comparing the AIC values for all models, we
found that those including same-day temperature and dew
point, as well as previous 3-day temperature and dew point
(lag 1–3 variables), fit best. Because the models with same-
day and 3-day lag variables also have the advantage of sim-
plicity, the lag 4–10 variables were not included. The daily
spread in temperature variables (S0, S1–3, S4–10) did not seem
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to improve the model fit and were also excluded. To avoid
giving undue priority to same-day variables, we also con-
sidered models with T1–3, D1–3 and T0, D0 adjusted for T1–3,
D1–3 as predictors.

In a standard log-linear regression (17), log mortality is
assumed to be a linear function of temperature and other
predictors. In our study, we assumed that log mortality is a
smooth but not necessarily linear function. We estimated
this smooth function by using a GAM (14), which fits a
cubic spline function of temperature. Instead of summariz-
ing the temperature-mortality association with a single rela-
tive risk value for all temperatures, we obtained a relative
risk estimate that was a smoothly changing function of tem-
perature. GAMs or cubic splines are widely available in
most statistical software packages (e.g., S-PLUS (18) and
SAS (19)). The degree of smoothness of the estimated mor-
tality-temperature relative risk curve is controlled by its
number of degrees of freedom. A linear function has 1 df for
its one slope; a quadratic curve has 2 df for its slope and cur-
vature, among other variables. To allow for highly nonlinear
shapes, we used 6 df to describe the association of mortality
with each weather variable.

Finally, the regression of mortality on weather may also
be affected by key potential effect modifiers including
longer-term changes in population characteristics, health
behaviors (particularly smoking), trends in medical prac-
tices or access to health care, and potential seasonal-related
confounders. All but the last change slowly, but not neces-
sarily linearly, over time. Therefore, these variables can be
adjusted by including a smooth function of calendar time as
a predictor. Acute events affecting health, such as influenza
epidemics, occur seasonally, as does temperature variation.
Since detailed data on such events were not available, they
were more difficult to control for without removing some or
all of the temperature effects. Thus, we relied on a smooth
function of calendar time to adjust for potential seasonal
confounders as best as was possible. To explore the effects
of this adjustment on our results, we used 44, 88, and 176 df
(average of 2, 6, and 8 df, respectively, per year) for the
smooth function of calendar time.

Hence, the final log-linear model for a given city has the
form:

where S(•,λ) represents a smooth relative risk function with
λ degrees of freedom for the variable indicated, and t
denotes calendar time. We considered λ1 � 44, 88, and 176
df over the 22 years.

Stage 2: variation in relative risk curves for temperature
across cities

The goal of the second-stage analysis was to describe 
variation in the shape of the mortality-temperature relative
risk curve across cities in relation to latitude and other 
city-specific characteristics, such as percentage of elderly

112� S1D0,62 � S1adj T1�3,62 � S1adj D1�3,62

log expected mortality1t2 � S1t;λ12 � S1T0,62

persons and percentage of homes with heating and/or air-
conditioning. We summarized the relative risk curves for
mortality in relation to T0 with three variables: the tempera-
ture at which the estimated relative risk curves from the
GAM achieved their minimum or minimum mortality tem-
perature (MMT), the average slope of the estimated relative
risk curves at temperatures lower than the MMT (cold slope),
and the average slope of the curves at temperatures higher
than the MMT (hot slope) (figure 1). The cold slopes and hot
slopes were found by fitting a linear regression line through
those points in the fitted relative risk curve from the GAM
before and after the turning point (MMT), respectively.

We used a random-effects linear regression model (e.g.,
Diggle et al. (20)) in the second stage to describe the linear
associations of the MMT and the cold and hot slopes with
city characteristics while accounting for both the statistical
error in estimating the characteristics of these three city-
specific relative risk curves and the natural variation in their
true values about the regression on predictor variables. The
model has the form

where Yi is the estimated MMT, cold slope, or hot slope; Xi is
a vector of predictors, for example, latitude and percentage of
the population more than 65 years of age; is a city-specific
random effect that reflects natural variation from the model
prediction β1Xi among cities; β1 represents the dependence of
Y on X; and εi is the statistical error. We assumed that  and
εi were independent, approximately Gaussian variates with
variances τ2 and , respectively.

Since our summary-statistics MMT, cold slope, and hot
slope were calculated from nonparametric regressions, we
used a standard statistical method—bootstrapping (21)—to
estimate the statistical variance for each city. Boot-
strapping is a computer-intensive resampling method for esti-
mating variances. From the original sample of N days, we
randomly drew a new sample, also of size N, with replace-
ment. By using this new sample, we refit the model and
obtained a new set of estimates of the MMT, cold slope, and
hot slope. This process was repeated 100 times, and was
estimated by the variance among these 100 replications of the
summary measure (e.g., cold slope) of interest. We estimated
τ2 by using the method of moments and then used iteratively
reweighted least squares to estimate β

1
with weights

The city-specific predic-
tor variables, averaged from the 1980 and 1990 US Censuses,
were the fractions of persons 1) more than age 65 years, 2)
more than age 65 years who were disabled, 3) more than age
25 years who did not have a high school degree, and 4) living
in poverty; and the fraction of occupied homes with 5) heat-
ing and 6) air-conditioning. The heating variable included
homes equipped with some form of heat source (gas, oil, elec-
tric, etc.). The air-conditioning variable included homes with
central air or homes with one or more wall units. Air-
conditioning data were available from the 1980 US Census
only, so these percentages were used in the analysis. Similarly,
the fraction of persons more than age 65 years who were dis-
abled was recorded in the 1990 US Census only; therefore,
these numbers were used (10–12).

var1Yi2 � 1τ̂2 � σ̂2
i 2

�1, i � 1, p 11.

σ2
i

σ2
i

σ2
i

β0i

β0i

122Yi � β0i
� β1Xi � εi
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FIGURE 1. Temperature-mortality relative risk functions for 11 US cities, 1973–1994. Northern cities: Boston, Massachusetts; Chicago, Illinois;
New York, New York; Philadelphia, Pennsylvania; Baltimore, Maryland; and Washington, DC. Southern cities: Charlotte, North Carolina; Atlanta,
Georgia; Jacksonville, Florida; Tampa, Florida; and Miami, Florida. ˚C = 5/9 � (˚F – 32).

We first regressed each of the summary scores (MMT,
cold slope, and hot slope) on each predictor alone and then
on latitude with each of the city-specific variables. We used
this approach to estimate the effect modification by these
city-specific variables over and above the apparent effect
modification due to latitude. S-PLUS statistical software
(18) was used for all analyses.

RESULTS

Table 1 provides summary characteristics of those cities
included in the analysis, listed from the northernmost to the
southernmost. Figure 1 shows the temperature (T0)-
mortality relative risk function S(T0,6) estimated for each of
the 11 cities by using log-linear regression model 1. We
focused on T0 because it was by far the strongest term in the
regression model: it was stronger than D0 because tempera-
ture is a much stronger predictor than either dew point or adj
T1–3 and adj D1–3, the variables constructed to be approxi-
mately uncorrelated with T0 and D0.

We found that the effect of temperature on mortality var-
ied among cities. For all cities, mortality risk decreased as
temperature increased from the coldest temperatures. For

the northern cities, mortality risk began to rise as the tem-
perature increased from a certain temperature, producing a
J-shaped relation. For the southern cities, the temperature-
risk relations did not have a hooklike shape but tended to
flatten at warmer temperatures, indicating little increase in
mortality risk for the hottest days. With colder temperatures,
the curves for the southern cities had steeper slopes than
those for the northern cities. These findings were similar
when the analysis was limited to winter. During the spring
and fall, a slight increase in mortality risk occurred with
colder temperatures, especially in the southernmost cities. In
the summer, the effect of extreme heat on mortality was evi-
dent, increasing almost 40 percent over the baseline average
in the northernmost cities. The results shown in figure 1 are
from a model in which we controlled for trends by using a
smooth function of time with 176 df over the 22 years. The
findings were qualitatively similar when we used 44 or 88
df.

We next explored the association between weather and
mortality for four different time periods—1973–1979,
1980–1984, 1985–1989, and 1990–1994—fitting model 1 to
each period. Fits for each period were similar to those
described earlier for the entire period (figure 1). Thus, it
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seems that over the total period of 1973–1994, the effects of
weather on mortality were qualitatively consistent.

The association between weather and mortality from var-
ious causes was examined (results not shown), with cardio-
vascular disease and respiratory disease grouped together
because of small numbers of deaths from respiratory dis-
eases. As in the models for all causes of death, mortality risk
for cardiovascular and respiratory disease decreased as tem-
perature increased, although the cold-weather slopes were
steeper than those for all disease types combined (figure 1).
As for total mortality, the slopes of the curves before the
turning point were steeper for the southern cities than those
for the northern cities; after the turning point, the slopes for
the northernmost cities were steeper. The Other disease cat-
egory included mainly cancer deaths. For the Other cate-
gory, the curves representing the effects of the temperature
lag 0 variable were relatively flat compared with the curve
for cardiovascular and respiratory disease.

To explore the possibility of differing weather-mortality
relations for each age group, we stratified the mortality data

into three different age categories: less than 65, 65–75, and
more than 75 years. In each age group, we observed a qual-
itatively similar relation between weather and mortality
(results not shown), although the temperature effect was
smallest for the youngest age group and largest for the group
aged 75 years or more.

We summarized the relative risk curves for mortality in
terms of MMT, cold slope, and hot slope (table 2). As is appar-
ent in figure 1, the cold slope was steeper (more negative) for
the southernmost cities, and the hot slopes were steeper (more
positive) for the northernmost cities. The MMT increased the
farther south the city’s location. There was a surprisingly large
difference in hot slope between Baltimore and Washington,
DC, two nearby cities with almost identical weather patterns.
The curve representing Charlotte never turned, making it
impossible to estimate a corresponding hot slope.

In the second stage of the analysis, we first regressed each
of the three summary characteristics of cold slope, hot slope,
and MMT on the city-specific variables in univariate mod-
els. We then added latitude to the model. The results are pre-

TABLE 1. Population, mortality, and temperature summaries for 11 selected US cities*

City Latitude
1980

population
(� 103)

Average
daily no.
of deaths

Average
no. of

cardiorespiratory
deaths

Average temperature
(˚F†)

Summer Winter

Boston, Massachusetts
Chicago, Illinois
New York, New York
Philadelphia, Pennsylvania
Baltimore, Maryland
Washington, DC
Charlotte, North Carolina
Atlanta, Georgia
Jacksonville, Florida
Tampa, Florida
Miami, Florida

42˚35´
41˚83´
40˚78´
39˚95´
39˚30´
38˚90´
35˚23´
33˚75´
30˚36´
27˚95´
25˚76´

625.4
5,253.6
7,938.2
1,688.2
1,442.3
6,383.0
4,042.0

589.9
571.0
646.9

1,625.7

15
117
195

43
21
16

7
12
12
14
40

8
69

117
23
11

8
4
7
7
8

23

71.0
71.9
73.8
75.1
75.1
75.7
77.2
77.8
79.8
81.3
82.3

31.5
25.6
34.5
34.2
35.4
36.0
42.4
44.0
53.9
61.0
68.7

* Mortality and average daily temperatures, 1973–1994.
† ˚C = 5/9 � (˚F – 32).

TABLE 2. Summary scores* for temperature-mortality relation, by US city,† 1973–1994

City
Minimum
mortality

temperature (MMT)‡

Cold
slope‡,§

Hot 
slope‡,¶

Boston, Massachusetts
Chicago, Illinois
New York, New York
Philadelphia, Pennsylvania
Baltimore, Maryland
Washington, DC
Charlotte, North Carolina
Atlanta, Georgia
Jacksonville, Florida
Tampa, Florida
Miami, Florida

69.71
65.17
66.42
70.58
70.46
70.56
90.38
76.29
76.75
80.71
80.92

�4.34
�2.25
�3.59
�4.37
�2.65
�3.13
�3.27
�2.91
�3.76
�7.12
�5.46

5.83
2.45
6.28
6.11
6.56
3.67
NA#
5.41
3.71
1.43
4.01

* Refer to the Materials and Methods section of the text for a description of these scores.
† Cities are listed by decreasing latitude.
‡ Percentage change in mortality per (˚C = 5/9 � (˚F – 32)).
§ Cold slope = average slope of the estimated relative risk curves at temperatures lower than MMT.
¶ Hot slope = average slope of the estimated relative risk curves at temperatures higher than MMT.
# NA, not available because the curve has no turning point.
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sented in table 3. Comparison of the univariate and bivariate
regressions indicates the extent to which the associations of
the city-specific variables reflect latitude.

Without adjustment for latitude, the percentage of the pop-
ulation aged 65 years or more (%65+) significantly predicted
the cold slope. A 10 percent increase in the population aged
65 years or more was associated with an estimated increase in
the steepness of the cold slope (negative coefficients make the
cold slope more negative) corresponding to an approximately
4.0 percent higher risk of mortality per 10˚F decrease in tem-
perature. When we adjusted for latitude, the %65+ coefficient
changed little and remained statistically significant. Although
not significant, the percentage of homes with heating
(%Heating) was associated with a reduction in the steepness
of the cold slope. After we controlled for latitude, the effect of
the %Heating variable was reduced more substantially, since
this variable is closely related to latitude.

For the hot slopes, significant pairwise associations were
found with percentages of persons not completing high
school (%NoHS), persons living in poverty (%Poverty), and
homes with air conditioners (%Air Cond). A 10 percent
increase in %Poverty, the strongest predictor, was estimated
to increase mortality risk by approximately 4.3 percent per
10˚F increase in temperature, at temperatures higher than
the MMT. Adjusting for latitude had little impact on these
significant associations. For MMT, only %Air Cond showed
a significant association, and this association was reduced
substantially by adjusting for latitude, since this variable is
closely related to latitude.

DISCUSSION

The objective of this research was to use analytical tech-
niques—in particular, GAMs—to characterize the relation

between weather and mortality in large eastern US cities.
These models offer flexibility and are descriptive, without
making strong prior assumptions about the shape of the rel-
ative risk curve. In general, our findings were consistent
with prior findings. Many of the previous reports used con-
ventional linear regression techniques that would be less
appropriate for discrete data and correlated variables (7, 22).

Given only same-day average temperature and average
dew point, temperature was the index of weather that most
strongly predicted mortality (AIC comparison not shown in
results). However, we found that same-day dew point pro-
vided an additional explanation for mortality. With regard to
time response, daily temperature at lag 0 and the average of
daily temperatures at lags 1, 2, and 3 were more strongly
associated with mortality than further lagged variables were.
The weather more than 4 days prior was at best weakly asso-
ciated with mortality once the more recent weather was
taken into account. Within the selected cities, mortality risk
decreased as temperature increased from the coldest days;
however, after a certain critical temperature threshold, mor-
tality risk increased in most of the cities as temperature
increased.

Although this J-shaped relation was present for most
cities, there were noticeable differences in the temperature-
mortality response among the cities (table 2). These results
are consistent with the work of others (5, 23). Generally,
populations in warmer regions tend to be most vulnerable to
cold (24), and those residing in cold climates are most sen-
sitive to heat (23). In temperate regions, mortality rates are
highest during the winter. When analyzing data for the
Netherlands, Kunst et al. (6) also observed the decline in
mortality with temperature for low and moderate tempera-
tures and increased mortality with temperature at high aver-
age daily temperatures, that is, the J-shaped relation. We

TABLE 3. Summary results from regressing the cold slopes, hot slopes, and minimum mortality 
temperatures on city-specific predictor variables with and without adjusting for latitude, United States,
1973–1994†

Predictor‡ Model Cold slope§ Hot slope¶ Minimum mortality
temperature (MMT)

%65�

%NoHS

%Poverty

%65� Disability

%Air Cond

%Heating

Unadjusted
Adjusted
Unadjusted
Adjusted
Unadjusted
Adjusted
Unadjusted
Adjusted
Unadjusted
Adjusted
Unadjusted
Adjusted

�3.97*
�3.96*

0.10
�0.46

0.03
�0.39

1.20
0.85

�0.22
0.44
2.38
0.74

(1.27)
(1.17)
(0.83)
(0.71)
(0.10)
(0.83)
(1.70)
(1.48)
(0.22)
(0.35)
(1.60)
(1.96)

0.71
1.63
3.13*
2.78*
4.26*
4.26*
1.47
1.14

�0.77*
�1.40*

0.22
�2.82

(2.47)
(2.45)
(0.95)
(1.01)
(0.46)
(0.42)
(2.72)
(2.67)
(0.32)
(0.56)
(2.92)
(3.40)

1.66
5.34

�5.95
�3.46
�6.05
�2.56

0.41
6.78
2.54*
0.46

�9.08
5.33

(8.08)
(5.22)
(4.16)
(2.67)
(5.06)
(3.50)
(9.30)
(5.73)
(0.79)
(1.64)
(8.21)
(6.83)

* Statistically significant at the p = 0.05 level.
† Expressed as log-relative rates (� 1,000), which are approximately the percentage change in mortaliity

per 10˚F (˚C = 5/9 � (˚F – 32)) per 10-unit change in the predictor variable; their corresponding standard errors
are enclosed in parentheses. The regressions for each predictor were performed both without including lati-
tude (unadjusted) and including latitude (adjusted) as a second predictor.

‡ Percentage of the population aged 65 years or more, not completing high school, living in poverty, aged 65 years
or more and disabled, living in homes with air-conditioning, and living in homes with heating, respectively.

§ Cold slope = average slope of the estimated relative risk curves at temperatures lower than MMT.
¶ Hot slope = average slope of the estimated relative risk curves at temperatures higher than MMT.
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found a strong dependence of the configuration of the tem-
perature-mortality relation on latitude (figure 1). For the
more-northern cities, the MMT was generally lower and the
hot slope steeper; for the more-southern cities, the MMT
was generally higher and the cold slope steeper. This pattern
is consistent with more effective adaptation to colder tem-
peratures in more-northern cities and to hotter temperatures
in more-southern cities. For example, the 1980 US Census
showed that the prevalence of air-conditioning ranged from
65 percent in Chicago and 35 percent in Boston to 96 per-
cent in Miami.

We found other predictors of the shape of the mortality-
temperature relation (table 3). Mortality associations with
colder temperatures were larger for cities with higher propor-
tions of elderly and smaller for cities with a higher fraction of
heating systems. The elderly have long been considered phys-
iologically susceptible to temperature extremes (4). A study of
the 1980 heat wave in Texas found relative death rates to be
highest among males, the elderly, Blacks, and those persons
engaged in heavy activity. Compared with earlier heat waves
in the same region, the number of 1980 heat-related deaths
was not as high, most likely because of increased use of air-
conditioning (7). A case-control study of the 1995 Chicago
heat wave concluded that select groups of people were at
greater risk of death; these groups included persons with
known medical problems, those confined to bed, persons who
did not leave home each day, and those who lived alone or on
the top floor of a building (8).

Two indicators of socioeconomic status—percentage of
persons without a high school education and percentage of
those living in poverty—were associated with increased mor-
tality effects of high temperature, even after adjustment for
latitude. A higher percentage of homes with air-conditioning
was associated with small, but significant effects of hot tem-
perature on mortality. We examined four time periods:
1973–1979, 1980–1984, 1985–1989, and 1990–1994. For all
periods, we were surprised to observe similar relations
between the weather variables and mortality, in spite of
increasing penetration of air-conditioning and rising aware-
ness of the effect of temperature on mortality.

When the data were stratified by cause of death, the
same J-shaped relation was found for the cardiovascular
and respiratory disease strata but not for Other causes
(mainly cancer). The greater effects of temperature on car-
diorespiratory deaths are consistent with prior reports (25).
Mechanisms for the effects of temperature on cardiovascu-
lar mortality have been postulated. For example, blood vis-
cosity and cholesterol levels have been found to increase
with high temperatures (26), whereas blood pressure and
fibrinogen levels increase during winter, although outdoor
temperature does not seem to determine the seasonal vari-
ation in fibrinogen (27).

Larsen (9) reported that the effects of weather on mortal-
ity are noticed immediately. Kunst et al. (6) observed effects
within a week of the weather event. Our results indicate that
the effects can be observed within 3 days for a cold-weather
event and within 1 day for a hot-weather event. As in our
data, Machenbach et al. (28) also found greater mortality in
the winter months.

Our results were based on daily mortality counts that did
not exclude deaths attributed to specific health events such as
influenza (29). Because sufficient data from such events
rarely exist for these cities, we addressed these potential con-
founding effects by using different degrees of freedom in the
time component of the model; we found that the tempera-
ture-mortality relative risk curves were qualitatively similar
for various functions of time, including those sufficiently
flexible to capture, for example, influenza epidemics.
However, because temperature varies so smoothly with sea-
son, it was not possible to set aside all of the information
about season and still reliably estimate a relative risk func-
tion for temperature. Hence, residual confounding by sea-
sonal variables may have occurred. One possibility for future
consideration is seasonal migrations of elderly persons from
northern to southern cities. Proper adjustment for potential
seasonal time confounders remains a limitation of these
types of analyses because of the lack of city-specific data.

Other studies, for example, Kunst et al. (6), have consid-
ered wind speed as well as temperature and dew point. In
these studies and ours, such predictors compete for explana-
tory effect. Future studies might use “apparent tempera-
ture,” which combines temperature, wind speed, and dew
point and considers “synoptic” or air mass climate analyses
(30). Weather variability could be emphasized more. We
constructed a temperature-range variable accounting for the
difference between average daytime and average nighttime
temperature; however, this variable did not significantly
predict mortality. Perhaps daily range, minimum and maxi-
mum temperatures during winter and summer months, or
other carefully constructed measures reflecting sharp tem-
perature declines in the winter months and the absence of
cooling during the summer months could help predict mor-
tality. Nighttime minimum temperatures are anticipated to
increase disproportionately according to global climate-
change projections (31).

From these analyses, it would seem that public health pro-
grams to prevent heat- and cold-related mortality would best
be directed at the elderly and those persons with cardiovas-
cular and respiratory diseases. Although persons should use
caution during any extreme weather event, whether hot or
cold, those in the northernmost cities are more vulnerable
during a warm temperature period and those in the southern-
most cities are most vulnerable during cold periods. Earlier
we pointed out a large difference in the hot slope between
Baltimore and Washington, DC, two cities with virtually
identical weather. Identifying differences between these two
cities that affect their responses to weather, whether in hous-
ing stock or in weather watch/warning protocols, might lead
to better public health prevention strategies.

Substantial additional investigation of this association
remains. We did not address in detail how the temperature-
mortality association changes by gender, age, race, and
many other factors. Future research should study an aggre-
gate weather variable that incorporates temperature, dew
point, and wind speed; control for seasonal confounders
such as influenza epidemics; and further consider weather
variability. For example, in temperate climates, climatolo-
gists project that a 2–3˚C increase in average summer tem-
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peratures doubles the frequency of extreme heat waves (32).
Additional investigation of the effects of air-conditioning
and heating on the association between weather and mortal-
ity may also be useful, as would a nationwide study on the
effects of weather on mortality in large metropolitan areas.
The types of models that we developed are also applicable
to estimating weather-related mortality given various future
climate scenarios.

An important public health question is whether the
increased mortality associated with temperature largely
occurs among the very frail persons who were likely to die
in the short term absent stressful temperatures. This “har-
vesting” can be tested by using methods developed for air
pollution studies (33, 34), for which this same issue has
arisen.
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