
Sample Size Requirements for Association Studies of Gene-Gene Interaction

W. James Gauderman

In the study of complex diseases, it may be important to test hypotheses related to gene-gene (G � G)
interaction. The success of such studies depends critically on obtaining adequate sample sizes. In this paper,
the author investigates sample size requirements for studies of G � G interaction, focusing on four study
designs: the matched-case-control design, the case-sibling design, the case-parent design, and the case-only
design. All four designs provide an estimate of interaction on a multiplicative scale, which is used as a unifying
theme in the comparison of sample size requirements. Across a variety of genetic models, the case-only and
case-parent designs require fewer sampling units (cases and case-parent trios, respectively) than the case-
control (pairs) or case-sibling (pairs) design. For example, the author describes an asthma study of two
common recessive genes for which 270 matched case-control pairs would be required to detect a G � G
interaction of moderate magnitude with 80% power. By comparison, the same study would require 319
case-sibling pairs but only 146 trios in the case-parent design or 116 cases in the case-only design. A software
program that computes sample size for studies of G � G interaction and for studies of gene-environment (G �
E) interaction is freely available (http://hydra.usc.edu/gxe). Am J Epidemiol 2002;155:478–84.
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In designing an epidemiologic study of genetic risk fac-
tors for a complex disease (e.g., cancer, diabetes), an inves-
tigator is likely to focus on hypotheses regarding the main
effects of specific candidate genes. However, the proposal
of candidate genes in the first place is often due to an
underlying hypothesis regarding some pathway that leads to
disease, a pathway that probably involves more than one gene.
For this reason, it may also be important to develop and test
hypotheses related to gene-gene (G � G) interaction.

Case-control studies are widely used in epidemiology for
studying associations between disease and potential risk
factors. It is critical to the success of such studies that an
adequate-sized sample be recruited. For case-control studies
of gene-environment (G � E) interaction, several authors
have developed methods for estimating required sample
sizes in both unmatched (1–4) and matched (5, 6) designs.
In this paper, I describe a general method of computing
required sample size for tests of G � G interaction in the
context of four designs: the matched case-control design (7),
the case-sibling design (8–10), the case-parent design (11,
12), and the case-only design (13–15). For a range of
genetic models, I provide estimates of sample size needed
for detecting G � G interaction, with the primary goal of

comparing requirements across designs to infer their effi-
ciencies relative to one another.

METHODS

Notation

Let D be an indicator of disease, g a genotype at a
disease-susceptibility locus with alleles “A” and “a,” and h
a genotype at a second disease-susceptibility locus with
alleles “B” and “b.” The prevalences of the high-risk alleles
at the g and h loci are denoted by qA and qB, respectively. I
assume that the two candidate loci are unlinked, are in
Hardy-Weinberg equilibrium, and are independently dis-
tributed in the population. Under these assumptions, the
distribution of genotypes g in the population is given by
Pr(g�qA) � qA

2, 2qA(1 � qA), and (1 � qA)2 for g � AA, Aa,
and aa, respectively, with analogous definition of Pr(h�qB).
I define a covariate G(g) � 0 for g � aa, G(g) � 1 for g �
AA, and G(g) � � for g � Aa, where at its extremes � � 0
corresponds to a recessive model and � � 1 to a dominant
model. For notational convenience, I simply use G to denote
the function G(g) and H to denote the analogous function H(h)
at the second locus. Although I assume either a dominant
model or a recessive model in sample-size calculations, one
might want to increase flexibility in practice by using a set of
two covariates for each locus—for example, G1 as an indicator
of g � Aa and G2 as an indicator of g � AA.

Sampling designs and likelihood formation

Below I describe the design and analytical approach for
each of the four case-based designs considered in this paper.
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In each design, cases are subjects affected by the disease of
interest, perhaps with restrictions on age of onset, disease
subtype, etc.

Matched case-control design. In the matched case-con-
trol design, controls are subjects who are unaffected by the
disease of interest and are assumed to be genetically unre-
lated to cases. They should be selected from the same source
population as the cases. Since genotype frequencies may
vary across ethnic groups, controls will typically be
matched to cases according to ethnicity in order to avoid
confounding, also known as population stratification bias.
Age is also likely to be a matching factor for complex
diseases, since disease risk often varies substantially by age.

In the simpler situation of testing for an association
between a disease and a single gene, McNemar’s �2 test and
the associated matched odds ratio could be used for analy-
sis. The natural extension of this method to allow modeling
of two genes and their interaction is conditional logistic
regression (7). The corresponding conditional likelihood in
a sample of N matched sets has the form

L��g , �h , �gh� � �i�1
N

e�gGi1��h Hi1��ghGi1Hi1

�
j � S�i�

e�gGij�� h Hij��ghGij Hij
, (1)

where the index “1” refers to the case and the set S(i)
includes all subjects in matched set i. The quantities Rg �
exp(�g) and Rh � exp(�h) are the odds ratios for G when
H � 0 and H when G � 0, respectively. When both G � 0
and H � 0, Rgh � exp(�gh) measures the departure from a
purely multiplicative odds ratio model—i.e., from a model
in which the joint odds ratio for G and H is simply Rg � Rh.
I use the term “interaction” in this paper to denote the
situation in which Rgh 	 1, recognizing that there are other
scales of measurement on which one might prefer to assess
interaction (16–18). If the matching criteria are relatively
coarse, so that several case-control pairs fall into the same
matching class, a stratified analysis rather than a pair-
matched analysis may be considered (19).

Case-sibling design. In the case-sibling design, controls
are selected from unaffected siblings of the case. For a
disease with variation in age of onset, an eligible sibling
should have attained the age of the case free of disease,
which often will restrict the sample to older siblings. While
this restriction can be problematic in the analysis of envi-
ronmental factors if there are secular changes in exposure
levels (10), it should not bias a study of two genes and their
interaction. The conditional likelihood in equation 1 can be
used to estimate odds ratios Rg and Rh and the odds-ratio
ratio Rgh (9, 10).

Case-parent design. In the case-parent design, geno-
types are measured in the parents of the case, but parental
disease status is neither required nor used in the analysis.
The most commonly used approach to the analysis of a
single gene is the transmission disequilibrium test (11),
which is equivalent to McNemar’s �2 test comparing the
distributions of alleles transmitted and nontransmitted from
parents to the case. As in the case-control settings, this
approach can be generalized to the analysis of two or more

genes and their interaction(s) using conditional logistic re-
gression (5, 9, 10, 12, 20). The likelihood is the same as that
shown in equation 1, where the denominator now includes
a contribution from the case and from 15 “pseudosiblings”
of the case, the latter formed as the 15 possible joint
genotypes that the case could have inherited from the par-
ents but did not. For example, if the father’s genotype was
Aa/Bb (at loci G/H, respectively), the mother’s was aa/bb,
and the case’s was Aa/Bb, the 15 pseudosibling genotypes
would include three copies of Aa/Bb, four of Aa/bb, four of
aa/Bb, and four of aa/bb. The exp(�) quantities based on
equation 1 represent genetic relative risks (Rg and Rh) and
the relative-risk ratio (Rgh), rather than odds-ratio param-
eters as in the case-control design (21). Of course, these
will be equivalent to the odds-ratio parameters provided
that the disease is rare in all genetic subcategories. Some
researchers have described the application of Poisson
regression to the case-parent design (22, 23), an approach
that can be extended to allow for maternally mediated
effects (24) and imprinting (25) and can be used when
there are missing parental data (26).

Case-only design. In the case-only design, no controls
are selected. Such a sample cannot be used to estimate
genetic main effects, but it can be used to test and estimate
G � E (14, 15) or G � G interaction effects (13). The
analysis is a standard �2 test of association between the
genes, or, equivalently, it can be based on unconditional
logistic regression with the likelihood form

L��, �gh� � �i�1
N

�e���gh Hi�Gi

1 � e���gh Hi
. (2)

Here, Gi and Hi represent indicators of genetic susceptibility
for case i, and the interaction quantity Rgh � exp(�gh)
estimates the relative-risk ratio (13), as in the case-parent
design. A key assumption in this design is that there is no
association between G and H in the general population.

Calculation of sample size

For each of the four designs, I will provide examples of
the minimum number (N) of sampling units that will pro-
vide a given power for detecting a gene-gene interaction.
Depending on the design, a sampling unit is defined as a
case-control pair (design 1), a case-sibling pair (design 2), a
case-parent trio (design 3), or simply a case (design 4). The
null hypothesis (H0) is �gh � 0, i.e., that there is no G � H
interaction on a multiplicative scale. In all models, I assume
that the disease is rare enough that the test of the odds-ratio
parameter in the case-control and case-sibling designs is
equivalent to the test of the relative-risk parameter in the
case-parent and case-only designs. I adopt an approach to
sample-size determination that has been previously de-
scribed (6, 27); it is summarized in the Appendix. In all
calculations, I assume a significance level of 5% and a
power of 80%, and I allow for a two-sided alternative
hypothesis. For comparative purposes, I compute the ratio
of N for the case-control design to N for each of the other
three designs, which provides a measure of asymptotic
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relative efficiency per sampling unit of the latter to the
former.

Computer software

A colleague (John Morrison) and I have developed a
user-friendly Windows-based software program called
QUANTO for computing either sample size or power in
studies of G � G or G � E interaction (28). Inputs to the
program include the design (case-control, case-sibling,
case-parent, case-only), true model parameters, and the sig-
nificance level. Required sample size will be computed for
a given power or vice versa. The program is available at no
charge and may be downloaded from a University of South-
ern California website (http://hydra.usc.edu/gxe).

EXAMPLES

Study of G � G interaction for asthma

Gilliland et al. (29) have proposed several candidate
genes that may be associated with risk of asthma, including
genes in the glutathione S-transferase (GST) family, myelo-
peroxidase, and tumor necrosis factor-�. Although Gilliland
et al. proposed these genes for their role in response to air
pollution, the possibility of G � G interaction also exists to
the extent that these genes are involved in common path-
ways to disease.

Suppose one wants to conduct a study that has as one of
its aims a test of whether there is an interaction between the
genes GSTM1 and GSTT1. For some specific values of
model parameters, I will demonstrate sample sizes that
would be required by each of the four designs to address this
hypothesis. For simplicity, I assume that subjects will be
selected from a single population. For both loci, it is the
“null/null” genotype that is suspected of increasing asthma
risk, indicating use of the recessive model at both loci. I
assume that the prevalence of the null/null genotype is 40
percent for GSTM1 and 25 percent for GSTT1 (30). Letting
g � GSTM1 and h � GSTT1, the frequencies of the corre-

sponding null alleles in the population are qA � 0.63 (i.e.,

0.40) and qB � 0.5, respectively. I also assume a pure
interaction model, in which neither GSTM1 nor GSTT1
increases risk by itself (i.e., Rg � 1.0 and Rh � 1.0) but risk
is increased in subjects with the null/null genotype at both
loci (Rgh � 1.0).

For the four designs and a range of values for Rgh, table
1 shows the number of required sampling units. The re-
quired sample size in a case-control study exceeds 2,000
pairs when Rgh � 1.5 but declines sharply with increasing
magnitude of the interaction strength. The case-sibling de-
sign requires a larger sample size than the case-control
design, by a factor of approximately 20 percent. The case-
parent and case-only designs, however, require substantially
fewer sampling units than the other two designs. For in-
stance, when Rgh � 3.0, the case-control and case-sibling
designs would require 270 and 319 matched pairs, respec-
tively, while the case-parent design would require 146 trios
and the case-only design 116 cases.

General design comparisons

I compare the four designs across a variety of genetic
models to determine whether the relations observed in the
asthma example hold more generally. I consider recessive
and dominant models, as well as rare and common suscep-
tibility alleles. For the rare gene, I assume that the propor-
tion of susceptible individuals is 1 percent (i.e., Pr(G �
1) � 0.01), so that the underlying susceptibility-allele prev-
alence is 0.005 under a dominant model and 0.10 under a
recessive model. For the common gene, I assume that 25
percent of the population is susceptible, yielding suscep-
tibility-allele prevalences of 0.134 and 0.5 for dominant
and recessive models, respectively. I also consider several
relative-risk models of the type described by Ottman (31,
32) and Khoury (33). These include the “pure-interaction”
model described above, in which risk is only increased
when one carries the susceptibility genotype at both loci

TABLE 1. Number (N) of sampling units* required for 80% power to detect an interaction of magnitude Rgh between the
glutathione S-transferase genes GSTM1 and GSTT1 under four different study designs

GSTM1 � GSTT1
interaction (Rgh)†

Study design

Case-control
(N)

Case-sibling Case-parent Case-only

N Ratio‡ N Ratio‡ N Ratio‡

1.5 2,008 2,428 0.83 1,174 1.71 947 2.12
2.0 674 807 0.84 381 1.77 305 2.21
2.5 385 458 0.84 213 1.81 169 2.28
3.0 270 319 0.85 146 1.85 116 2.33
3.5 210 248 0.85 112 1.88 89 2.36
4.0 174 205 0.85 92 1.89 73 2.38
5.0 134 158 0.85 70 1.91 55 2.44

10.0 81 95 0.85 41 1.98 32 2.53

* A sampling unit is a pair for the case-control and case-sibling designs, a trio for the case-parent design, and a case for the case-only
design.

† Assumptions: a recessive model at both loci, with Pr(G � 1) � 0.40 at GSTM1 and Pr(H � 1) � 0.25 at GSTT1 and main-effect relative
risks Rg � 1 and Rh � 1.

‡ Compared with the case-control design; ratios above (below) 1.0 indicate greater (lesser) efficiency.
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(Rg � 1, Rh � 1, Rgh � 1), and various “risk-modification”
models in which each locus alone might increase risk but
their combined effect is more than multiplicative (Rg � 1,
Rh � 1, Rgh � 1).

Table 2 shows the sample sizes required to detect an
interaction effect of magnitude Rgh � 3.0 in each design,
assuming a pure-interaction model and various combina-
tions of susceptible-genotype prevalence and dominance
model. When genetic susceptibility is rare (0.01) at both
loci, the required number of sampling units is impractically
large (more than 30,000) regardless of the design. Sample
size requirements are substantially less (in the range of
130–400) if susceptibility is common (0.25) at both loci.
For the case-control and case-only designs, sample size
requirements do not depend on the dominance model, since
there is no familial relationship among subjects. The case-
sibling design requires more pairs than the case-control
design in all models, with asymptotic relative efficiencies
ranging from about 0.75 to 0.90. The case-parent and case-
only designs are more efficient than the case-control design,
with asymptotic relative efficiencies ranging from 1.7 to 2.2
in the former and from 2.5 to 2.7 in the latter. Sample size
requirements in the case-sibling and case-parent designs are
lower if at least one locus is recessive than if they are both
dominant.

Table 3 shows sample sizes required to detect an inter-
action effect of magnitude Rgh � 3.0 in various risk-
modification models, i.e., for different values of the main-
effect relative risks Rg and Rh. In most models considered,
the case-parent design requires less than half the number of
sampling units as the case-control design. The case-only
design is clearly most efficient, with asymptotic relative
efficiencies that range from 2.4 to 5.1 and that increase with
increasing magnitudes of Rg and Rh. The case-sibling design
ranges from being slightly less efficient to slightly more
efficient than the case-control design.

DISCUSSION

With recent advances in technology, large-scale epidemi-
ologic studies of genes are now possible. These studies can
be quite expensive to conduct, and it is therefore essential to
use study designs that make the most efficient use of avail-
able resources. For testing hypotheses about G � G inter-
action, the results presented in this paper indicate that the
case-only and case-parent designs can be substantially more
efficient than the case-sibling design or the standard
matched case-control design. For a variety of genetic mod-
els, the case-only and case-parent designs typically require
less than half the number of sampling units as the other two
designs to achieve the same statistical power. However,
nonstatistical issues, including the costs of recruiting con-
trol subjects, measuring genotypes, and verifying pheno-
types, will also be factors in choosing a preferred design.
For example, genotyping costs per matched set will be 50
percent higher for the case-parent design than for the case-
control or case-sibling design. This increased cost may be
partially offset by the fact that no phenotyping on parents is
required. For a childhood disease, recruiting parents or
siblings may require less effort than obtaining an unrelated
control subject, while for an adult-onset disease the reverse
may hold if relatives are geographically distant from cases.

For characterizing genetic and interactive effects, designs
alternative to those considered in this paper have been
suggested. These include hybrid designs such as those com-
bining the case-parent and case-sibling designs (26, 34), the
case-parent and case-control designs (35), and the case-
sibling and case-control designs (36). Other investigators
have developed methods for the analysis of whole pedi-
grees, allowing for collection of genetic data on only a
subset of family members (37, 38). In the context of the
case-control design, Andrieu et al. (39) have proposed
counter-matching of cases to controls as a technique for
using available data at the time of sampling (e.g., family

TABLE 2. Number (N) of sampling units* required for 80% power to detect a gene-gene interaction with magnitude Rgh � 3.0,
assuming Rg � 1.0, Rh � 1.0, and various genetic-susceptibility prevalences and dominance models

Proportion susceptible Dominance model

Study design

Case-
control

(N)

Case-sibling Case-parent Case-only

Pr(G � 1) Pr(H � 1) G H N Ratio† N Ratio† N Ratio†

0.01 0.01 Dominant Dominant 77,914 103,193 0.76 46,877 1.66 31,244 2.49
Dominant Recessive 77,914 90,932 0.86 39,368 1.98 31,244 2.49
Recessive Recessive 77,914 85,026 0.92 35,751 2.18 31,244 2.49

0.01 0.25 Dominant Dominant 4,964 6,093 0.81 2,743 1.81 1,860 2.67
Dominant Recessive 4,964 5,811 0.85 2,557 1.94 1,860 2.67
Recessive Dominant 4,964 5,572 0.89 2,342 2.12 1,860 2.67
Recessive Recessive 4,964 5,430 0.91 2,255 2.20 1,860 2.67

0.25 0.25 Dominant Dominant 312 389 0.80 183 1.70 128 2.44
Dominant Recessive 312 374 0.83 171 1.82 128 2.44
Recessive Recessive 312 362 0.86 162 1.93 128 2.44

* A sampling unit is a pair for the case-control and case-sibling designs, a trio for the case-parent design, and a case for the case-only
design.

† Compared with the case-control design; ratios above (below) 1.0 indicate greater (lesser) efficiency.
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history of disease) to enrich the sample for informative
matched sets. Additional work is required to compare the
sample size requirements of these alternative designs with
the designs considered in this paper.

The investigator planning a new study is likely to have
parameter choices that differ from the specific values used
in this paper. For this reason, my colleague and I distribute
software that investigators may use to compute power or
required sample size for their particular design parameters.
For unmatched case-control studies of G � E interaction,
Garcia-Closas and Lubin (1) also distribute a software pro-
gram for computing sample size or power. Their program
could be used to obtain sample size for an unmatched
case-control study of G � G interaction, with their “E”
being replaced by the second gene and exposure prevalence
being replaced by the corresponding prevalence of the sus-
ceptibility genotype. However, their program is not directly
applicable to a matched case-control study, and it will not
provide calculations for the case-sibling, case-parent, or
case-only design.

In the sample size comparisons, I assumed that the loci G
and H were independently transmitted from parents to off-
spring (unlinked) and that they were independently distrib-
uted in the population (no disequilibrium). The linkage
assumption will be violated if the two genes are in close
physical proximity to one another. The disequilibrium as-
sumption can be violated for this same reason, or because
of other mechanisms that cause correlation among alleles in
the population (e.g., admixture or selective forces that favor
or discourage specific alleles at both loci). For each design,
I describe below how the validity of the test of G � G
interaction is affected by deviations from these assumptions.

Case-control and case-sibling designs. The case-con-
trol and case-sibling designs are valid in the presence of
linkage and/or disequilibrium.

Case-parent design. The case-parent design is valid
when there is disequilibrium between G and H but invalid if
there is linkage. The problem if there is linkage is that the
16 possible pseudosibling genotypes are not equally likely
under the null hypothesis of no genetic effects; rather, the
distribution of genotypes depends on the recombination
fraction (	) between G and H. If 	 were known, which may
be possible given that G and H have known chromosomal
locations, a valid test could be recovered by including it as
an offset to the pseudosibling genotype distribution. Deter-
mining the sensitivity of a G � G interaction test to mis-
specification of 	 requires further investigation.

Case-only design. The case-only design is valid if there
is linkage between G and H but invalid if there is disequi-
librium. The problem with the latter is that a population-
level association between G and H will also be reflected in
a case series, in the absence of any interaction.

In practice, the linkage assumption is easily assessed,
since the investigator will know (approximately) the chro-
mosomal locations of G and H. If G and H are on different
chromosomes, for example, the two loci are unlinked with
certainty. However, it will be difficult to evaluate the dis-
equilibrium assumption unless one has genotypic data for G
and H on a random sample of persons drawn from the same
population as the people under study. Finally, it is possible
that one will not observe G and H directly but rather
markers M1 and M2 that are in linkage disequilibrium with
G and H, respectively. The same conditions for test validity
in each design apply to analysis of M1 � M2 interaction,
although one will suffer a loss in power relative to a study
of G and H directly. For a test of association between
disease and G using M1 (or H using M2), it is known that
one must modify the analytical approach in the following
two situations: 1) when there is m:n matching (with m 	 1

TABLE 3. Number (N) of sampling units* required for 80% power to detect a gene-gene interaction with magnitude Rgh � 3.0,
assuming various genetic-susceptibility prevalences and main-effect relative risks

Proportion susceptible†
Main-effect
relative risk

Study design

Case-
control

(N)

Case-sibling Case-parent Case-only

Pr(G � 1) Pr(H � 1) Rg Rh N Ratio‡ N Ratio‡ N Ratio‡

0.25 0.25 1 1 312 374 0.83 171 1.82 128 2.44
1 2 321 373 0.86 161 1.99 116 2.77
2 1 321 367 0.87 163 1.97 116 2.77
2 2 341 381 0.90 161 2.12 109 3.13

0.01 0.25 1 1 4,964 5,811 0.85 2,557 1.94 1,860 2.67
1 2 4,892 5,513 0.89 2,249 2.18 1,548 3.16
2 1 4,061 3,826 1.06 1,448 2.80 960 4.23
2 2 4,066 3,684 1.10 1,296 3.14 802 5.07

0.25 0.01 1 1 4,964 5,572 0.89 2,342 2.12 1,860 2.67
1 2 4,061 4,063 1.00 1,352 3.00 960 4.23
2 1 4,892 5,166 0.95 2,063 2.37 1,548 3.16
2 2 4,066 3,821 1.06 1,227 3.31 802 5.07

* A sampling unit is a pair for the case-control and case-sibling designs, a trio for the case-parent design, and a case for the case-only
design.

† Assumed dominance models are dominant for locus G and recessive for locus H.
‡ Compared with the case-control design; ratios above (below) 1.0 indicate greater (lesser) efficiency.
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and/or n 	 1) in the case-sibling design (40) and 2) when
there are two or more affected offspring in the case-parent
design (41). In these two situations, similar corrections will
be required for valid analysis of M1 � M2 interaction.

In the example calculations, I assumed that all subjects
were obtained from a single population. However, there
may be variations across subgroups of the population (e.g.,
ethnic groups) in overall disease prevalence and in suscep-
tible-allele prevalences (qA, qB). In fact, this may be the
reason one chooses to use a matched design. The sample
size and power calculation approach described above may
be modified to account for population stratification, by
including in equation A1 (see Appendix) the stratum-spe-
cific parameters and the frequency of each stratum in the
population (6). Although the absolute sample sizes depend
on these additional parameters, the relative efficiencies
among designs are similar (calculations not shown). How-
ever, one should be prepared to assume that the relative
risks Rg, Rh, and Rgh are the same in all population sub-
groups. If this cannot be assumed, one should conduct
separate sampling and estimation within each stratum, since
there is no single set of parameters to estimate.

Previous papers have focused on design comparisons for
case-control studies of genetic main effects (9, 10) and G �
E interactions (5, 6). For testing of genetic main effects, the
case-parent design is typically more efficient than the
matched case-control design, and both are more efficient
than the case-sibling design. For testing of G � E interac-
tion, the case-parent design is also more efficient than the
case-control design, but the case-sibling design can be the
most efficient provided that there is not a high degree of
sharing of the environmental exposure between siblings (6).
These findings, in addition to those presented in this paper,
indicate that the case-parent design is a good choice for
studies of genetic main and interaction effects. The case-
only design might best be viewed as a screening tool with
which to identify promising interactions, with follow-up by
one of the other three designs to rule out the possibility of
population association between genes.
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APPENDIX

Approach to Computation of Required Sample Sizes

For a single sampling unit, the expected value of the
likelihood in equation 1 (designs 1–3) or equation 2 (design
4) is computed as

E�ln�L�����

� �
g

�
h

ln�L��; G, H�� Pr�g, h�D, �*, �*, qA , qB�. (A1)

The summation is over all possible observable genotypes g
and h in a sampling unit, and the first factor L(�; G, H) is
the contribution to the likelihood for a single sampling unit
with a specific realization of g and h. The factor Pr(g, h�D,
�*, �*, qA, qB) is the probability distribution for the ob-
servable genotypes, conditional on the disease-based ascer-
tainment rule and the true baseline disease rate parameter
�* and genetic-effect parameters �* � {�*g, �*h, �*gh}. By
Bayes’ rule, this second factor is proportional to Pr(D�G, H,
�*, �*) Pr(g, h�qA, qB). For the true disease model Pr(D� �),
I assume a logistic form in the case-control and case-sibling
designs and a log-linear form in the case-parent and case-
only designs. This is done so that the � parameters esti-
mated in the likelihoods of equation 1 or equation 2 are
unbiased estimates of the corresponding �* parameters,
even if the disease is not rare. However, to facilitate com-
parisons among designs, I assume a rare disease in the
calculations (population disease prevalence 1/10,000) so
that the odds ratio parameters in designs 1 and 2 are equiv-
alent to the relative risk parameters in designs 3 and 4. For
the case-only design, Pr(g, h�qA, qB) � Pr(g�qA) Pr(h�qB)
under the assumption of no disequilibrium between loci.
The form of the joint probability of g and h for the other
three designs is given elsewhere (6).

For each design, I maximize the expected log-likelihood
in equation A1 twice, once letting �gh be a free parameter
and once fixing �gh � 0 (i.e., under H0). I let L̂1 and
L̂0 denote the maximum values of the corresponding log-
likelihoods. In both maximizations, �g and �h are free pa-
rameters. The quantity  � 2(L̂1 � L̂0) is the expected
likelihood ratio test statistic for a single sampling unit, and
N is the noncentrality parameter of the �2 distribution
under the alternative hypothesis (27, 42). Since I assume
that each gene can be coded by a single covariate, sample
size may be computed as

N � �za/2 � zb�
2/, (A2)

where zu denotes the (1 � u)th percentile of the standard
normal distribution and a and 1 � b are the significance
level and power, respectively. One could also use equation
A2 to estimate power for a given N—for example, to
determine whether a completed study that failed to find a
significant effect had reasonable power to detect an inter-
action of a specified magnitude. In the context of a case-
parent study, one might also want to condition power esti-
mation on an observed distribution of genotypes in the
parents, which would eliminate the need for the Hardy-
Weinberg equilibrium assumption.
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