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Health officials faced a daunting task with the emergence
of severe acute respiratory syndrome (SARS) last year: fore-
casting the trajectory of an emerging infectious disease and
implementing effective control measures, even as the etio-
logic agent was still being identified. Investigators initially
had little to go on beyond crude epidemiologic data such as
the timing of new cases (the epidemic curve). With such
limited data, it was difficult to disentangle two fundamental
epidemiologic quantities: the time from one transmission of
the infection to the next, known as the serial interval or
generation time, and the average number of secondary cases
resulting from each infection, known as the reproductive
number.

A simple example illustrates the problem. Compare two
idealized diseases, A and B. Disease A has a short generation
time of 4 days but has relatively low transmissibility, such
that each primary infection generates two secondary infec-
tions. Disease B has a longer generation time of 8 days but is
more transmissible, such that each primary infection gener-
ates four secondary infections. The initial epidemic curves
for these two infections will be nearly superimposable, with
approximately a doubling of new cases every 4 days. (These
calculations are approximate. In fact, the generation time for
any given transmission will be a random variable, with some
distribution. This distribution will affect the precise doubling
time of the epidemic and will also affect the shape of the
epidemic curve in the period before the epidemic enters an
exponential growth phase (1–3).) Thus, investigators cannot
separate generation time from reproductive number on the
basis of the epidemic curves alone. As a result, they are
limited in their ability to predict the efficacy of potential
interventions. Despite nearly identical epidemic curves, an
outbreak of disease A can stemmed by an intervention that
reduces transmission threefold, while disease B will
continue to spread even with such control measures in place.

In the current issue of the Journal, Wallinga and Teunis
(4) present a statistical escape from this analytical Catch-22.
Their approach is this: Once epidemiologists have traced the

chains of transmission in a single isolated outbreak, they can
use the transmission network to infer the distribution of
generation times for that disease. This distribution, which
results from the biology of host-pathogen interaction, should
be relatively constant in comparison with transmission rates,
which will vary from location to location and over the course
of an epidemic as the pool of susceptible persons declines
and as control measures are implemented. Therefore, inves-
tigators can use this generation time distribution as a
grounding point from which to infer the reproductive
number, R, from epidemic curves observed in other settings
where extensive contact tracing may not have been achieved.
Most importantly, Wallinga and Teunis describe an elegant
method for following the instantaneous reproductive number
as it evolves over time in a single epidemic. They provide a
means of transforming the time series of cases, along with a
“known” distribution for the generation time, into a time
series of estimated values for the instantaneous reproductive
number on each day.

This method allows nearly real-time tracking of the effect
of control measures and other changes in an epidemic on the
level of transmission ongoing in the population. Estimates
are not precisely real-time, because accurate estimates of the
instantaneous reproductive number on a given date cannot be
made until some time after that date. Specifically, one can
only estimate the number of persons a given case has
infected when a sufficient amount of time has passed that all
patients with secondary cases generated by that case (and by
other, surrounding cases) have become infected, become
symptomatic, and had their infections reported. While this
lag period (slightly more than the generation time, plus the
incubation period, plus the reporting delay) could be decades
long for diseases with extended latency periods such as
human immunodeficiency virus disease, in the case of SARS
the lag period is a matter of a few weeks, and the information
provided is as fresh as one could obtain, given the available
data.
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Wallinga and Teunis’s elegantly simple approach is
related to more complex applications of back-calculation
that have been used to derive incidence of infection from
data on disease prevalence or incidence in human immuno-
deficiency virus disease (5) and to derive annual average
reproductive numbers from case data in the United Kingdom
epidemic of bovine spongiform encephalopathy (6). The
present work is distinguished by its real-time applicability to
a rapidly transmitted disease and its requirements for only
the serial interval distribution and the epidemic curve as
inputs.

In their report (4), Wallinga and Teunis demonstrate the
power of this analytical approach by improving our under-
standing of the 2003 SARS outbreaks in Hong Kong,
Vietnam, Singapore, and Canada. The authors find that
despite the very different epidemic curves observed in each
location, pre-intervention reproductive numbers appear to
have been similar. Furthermore, they infer that control inter-
ventions appear to have reduced transmission rates approxi-
mately fourfold in each location—enough to stop the
epidemics, but only barely.

Like any model, this one has some limitations, which the
authors note. First, the method makes the simplifying
assumption of independence of transmission events—that
the assignment of a source to any case A is independent of
the assignment of the source to each other case B. This is, at
best, an approximation. For example, if different persons
vary in their degree of infectiousness (e.g., because of differ-
ences in viral shedding) or in their duration of infectiousness,
the numbers of secondary infections per individual will be
overdispersed (even within the same short time period). Put
another way, if we know that case i was still infectious at a
time when case j became infected, we know that case i is a
likely candidate for having infected other secondary cases
around the same time. Second, the method assumes that
interventions do not affect the generation time of the
pathogen. In reality, when interventions involve improved
monitoring followed by either isolation or effective treat-
ment, most transmissions will occur early, before detection.
As a result, the mean generation time will be reduced, and
the algorithm presented here could lead to an overestimate of
the instantaneous transmission rate for the period subsequent
to intervention.

So will Wallinga and Teunis’s approach work despite
these limitations? Computer simulations offer some limited
evidence that it will, but further study is warranted to assess
its performance under various departures from its assump-
tions. If the method proves robust, it will be a very useful
tool for policy-makers in the midst of an outbreak. Rapid
assessment of the reproductive number of an emerging infec-
tion in the absence of interventions is a crucial first step in
understanding and controlling the disease.

Control of a disease in a population requires that the repro-
ductive number be brought below 1 and kept there. By
assessing the initial reproductive number (before the imple-
mentation of control measures), health officials can estimate
the magnitude of the control measures that will be necessary.
As the infection spreads in a particular population and as
control measures are instituted, real-time tracking is needed to
establish the impact of control. The success of a control

program for a disease like SARS, in which isolation of symp-
tomatic patients and quarantine of contacts were the key
control measures, can be measured in part by “process” indi-
cators, such as the time from the onset of symptoms in a case
to the isolation of that case to prevent transmission, or the frac-
tion of incident cases that were identified by contact tracing
prior to symptom onset. However, real-time measurements of
disease transmission, using methods like the one developed by
Wallinga and Teunis, will provide “bottom-line” evidence of
whether an epidemic is being brought under control. During
the 2003 SARS outbreak, health officials used a conservative
definition—no new cases in a time span exceeding twice the
longest known incubation period for the infection—to declare
an epidemic fully controlled in a particular jurisdiction, but
health officials responsible for daily control efforts need a
more immediate and quantitative measure of the effects of
control measures as they work toward the goal of eliminating
the local epidemic. Wallinga and Teunis’ method of tracking
the instantaneous reproductive number provides just such a
measure.

More broadly, new tools are needed to facilitate data entry,
management, visualization, analysis, and forecasting in the
early days of an outbreak. For example, epidemiologists
attempting to track a natural outbreak of a disease like SARS
or pandemic influenza or the deliberate release of a biologic
agent would benefit from the ability to manipulate a rapidly
changing database with ease, to map spatial and temporal
patterns in disease incidence according to the home, school,
hospital, or workplace of cases, and to perform key analyses
in ways that have been thought through and validated in
advance. As data become available during the course of an
epidemic, public health officials should have at their
disposal tools to allow the integration of these data into real-
time predictions of the relative costs and benefits of potential
control strategies. Many such tools were developed in real
time during the 2001 epizootic outbreak of foot-and-mouth
disease in the United Kingdom (7), and since then, refined
methods for “predictive” vaccination strategies have been
proposed (8). It would be encouraging to see similar effort
being put toward planning for human disease outbreaks.

Spurred by the perceived threat of biological terrorism,
current epidemiologic efforts to prepare for outbreaks have
taken two major forms. The first is the development of
“syndromic surveillance” systems designed to detect the first
anomalous cases and alert health officials that an outbreak is
under way (9). While they are well suited to this purpose,
such systems are not designed to provide much additional
information once the outbreak has been identified. Other
efforts have concentrated on modeling particular attack
scenarios with different pathogens, particularly smallpox
(10, 11) and anthrax (12, 13). These models provide valuable
a priori guidance about the range of possible responses to
given scenarios, but they require, of necessity, untestable
assumptions about the size and nature of the outbreak; more-
over, to some degree, each of these models gives results
whose application is limited to the pathogen under consider-
ation or pathogens that closely resemble it. As with
syndromic surveillance, the usefulness of such models is
greatest prior to or at the moment of an attack, but unless the
models are designed to incorporate up-to-the-minute data on
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the state of the outbreak, they will provide limited real-time
assistance once an outbreak is under way.

Given the indisputable creativity of Nature and the poten-
tial creativity of biologically sophisticated evildoers, we
cannot expect to have an appropriate a priori model for every
outbreak. Therefore, development of tools for understanding
and responding to a novel outbreak as it unfolds is a pressing
task, and one that differs from those that have received the
most epidemiologic attention thus far. Transmission models,
as well as the spatial-temporal analysis tools used in
syndromic surveillance, may be readily adapted to meet the
need for analysis of and response to an outbreak in progress,
but the adaptation requires additional work. The technique
described by Wallinga and Teunis would be a valuable
component of a suite of tools that should be made available
to public health officials before the next important outbreak
occurs.
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