
Original Contribution

Estimating in Real Time the Efficacy of Measures to Control Emerging
Communicable Diseases
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Controlling an emerging communicable disease requires prompt adoption of measures such as quarantine.
Assessment of the efficacy of these measures must be rapid as well. In this paper, the authors present a framework
to monitor the efficacy of control measures in real time. Bayesian estimation of the reproduction number R (mean
number of cases generated by a single infectious person) during an outbreak allows them to judge rapidly whether
the epidemic is under control (R < 1). Only counts and time of onset of symptoms, plus tracing information from
a subset of cases, are required. Markov chain Monte Carlo andMonte Carlo sampling are used to infer the temporal
pattern of R up to the last observation. The operating characteristics of the method are investigated in a simulation
study of severe acute respiratory syndrome–like outbreaks. In this particular setting, control measures lacking
efficacy (R � 1.1) could be detected after 2 weeks in at least 70% of the epidemics, with less than a 5% probability
of a wrong conclusion. When control measures are efficacious (R¼ 0.5), this situation may be evidenced in 68% of
the epidemics after 2 weeks and 92% of the epidemics after 3 weeks, with less than a 5% probability of a wrong
conclusion.

communicable diseases, emerging; disease outbreaks; epidemiologic methods; population surveillance; SARS virus

Abbreviation: SARS, severe acute respiratory syndrome.

Outbreaks of severe communicable diseases usually
prompt rapid intervention, as was the case with severe acute
respiratory syndrome (SARS) in 2003 and for a number of
epidemics reported to the Communicable Disease Surveil-
lance and Response division of the World Health Organi-
zation (http://www.who.int/csr/en/). However, assessing the
effectiveness of these interventions during the course of the
epidemic remains a difficult task because of a lack of con-
venient tools.

The reproduction number R (the average number of cases
generated by a single infectious person) is central to mon-
itoring efficacy, since a natural threshold allows one to
distinguish epidemics under control (R < 1) from others

(R > 1) (1). The change in R with time could be obtained
from perfect tracing of transmission but is seldom feasible
because of biologic as well as logistic limitations in the field.

When the transmission rate is low and cases are clustered,
the distribution of cluster sizes may be used to estimate R
and detect increases in transmissibility (2–5).

In the epidemic context, it is possible to model transmis-
sion and derive R from the fit to available data, as was done
with SARS, for instance (6). Doing so requires a detailed
description of the natural history of the disease—likely to
be missing at first for an emerging disease—and makes the
approach very disease dependent. An alternative approach,
which requires fewer assumptions, consists of reconstructing
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the chain of transmission. This approach is feasible, for
example, when detailed data containing the spatial loca-
tion of the cases are available (7, 8). In many instances,
available data consist simply of the epidemic curve and
partial tracing information. Generic estimation methods
that could be used routinely with such data would be very
useful for public health decision makers who have to de-
termine in real time whether control measures should be
reinforced.

It is remarkable that an estimate of R may be obtained
from the epidemic curve alone, after marginalization over
all possible chains of transmission, as described byWallinga
and Teunis (9). More precisely, these authors showed that, in
the retrospective case, the distribution of the generation in-
terval (the time separating onset of symptoms in an index
case and that of a typical secondary case) enabled weighting
of the chains of transmission and coming up with an esti-
mate. In Cauchemez et al. (10), we extended their work to
real time. However, in practice, the use of this last approach
would be limited by two elements: 1) precise knowledge of
the generation interval may not be available beforehand, es-
pecially for an emerging communicable disease; and 2) the
use of daily estimates, often highly variable, makes appre-
ciating the effect of control measures difficult.

In the following article, we describe a general estimation
method that overcomes these problems. The approach re-
quires no prior knowledge of the generation interval, but it
uses partial tracing information that accrues during the out-
break. In a Bayesian framework, real-time estimates of R are
therefore obtained from the epidemic curve and partial trac-
ing information, simultaneously accounting for censored in-
cubation times during the course of the outbreak and poor
initial knowledge of the natural history of the disease. The
new framework allows real-time estimation of R for any
time period (as opposed to our previous study (10)), improv-
ing precision of the estimates and making it easier to judge
the efficacy of control measures. In a simulation study, we
use surrogate SARS-like outbreaks to investigate how the
method performs.

MATERIALS AND METHODS

Assumptions and notations

Consider an epidemic outbreak observed from day 0 to
day T. We make the following assumptions regarding the
epidemic and collected data:

H1: No cases are imported during the course of the
epidemic. In other words, all cases in the epidemic may
ultimately be traced to those present at day 0.
H2: All cases are detected.
H3: Secondary cases are always reported after their

index case.
H4: The characteristics of the generation interval do not

change throughout the epidemic.
H5: Traced cases are a random sample of all cases.
H6: In the absence of an observed epidemic curve and of

tracing information, all chains of transmission are equally
likely.

We denote Oj the day of symptoms onset for case j and Uj

the day of symptoms onset for his or her index case. At time
T, a case j is in the ‘‘traced’’ set KT when both Oj and Uj

are known and linked together and is in the ‘‘untraced’’
set JT when only Oj is known.

The generation interval of case j is the time Oj � Uj

from symptoms onset of his or her index case to his or
her own symptoms onset. A Weibull distribution with
shape parameter g and scale parameter c is assumed for
the generation interval, with w(x; c,g) ¼ expf�(x/c)gg �
expf�((x þ 1)/c)gg the probability that the generation in-
terval lasts x days.

For t � T, we define nt as the number of cases with
symptoms onset at day t and Xt as the number of cases they
infected. We will make use of the following decomposition:

Xt ¼ X
�
t ðTÞþ X

þ
t ðTÞ; ð1Þ

where the number of secondary cases from cases with
onset at time t has been split into those with onset before
or at TðX�

t ðTÞ; ‘‘early’’ cases) and those with onset after
TðXþ

t ðTÞ; ‘‘late’’ cases). Obviously, late secondary cases are
censored at time T.

We define the reproduction number

RD¼
P

t2DXtP
t2D nt

ð2Þ

over a time period D as the average number of cases infected
by a case with symptoms onset occurring during D. There-
fore, the reproduction number is defined only when at least
one case has been observed during the period D.

Statistical analysis

Bayesian hierarchical model. A four-level Bayesian hi-
erarchical model, described in detail in appendix 1, is built.
The first level specifies the prior distribution of parameters
fc,gg characterizing the generation interval. The second
level gives the likelihood of the observed sample of gen-
eration intervals. The third level allows reconstruction of
complete case tracing data, where each untraced case is
allocated to an observed index case (9). The last level char-
acterizes the late number of secondary cases given the early
number of secondary cases and allows correction for cen-
sorship of late secondary cases (10).

Predictive distribution of the temporal pattern of R. Given
observations and parameters fc,gg, it is straightforward
to sample from the distribution of the temporal pattern of
(Xt)t�T considering the two last levels of the full Bayesian
model. In appendix 2, we construct the predictive distribu-
tion of (Xt)t�T when parameters fc,gg are imperfectly
known and estimated from the subset of traced cases. In
particular, we design a three-step procedure to sample from
this distribution. A Markov chain Monte Carlo algorithm is
set up to sample from the posterior distribution of parame-
ters fc,gg given available tracing data; the output of the
Markov chain Monte Carlo procedure is then used in a
Monte Carlo algorithm to reconstruct complete case trac-
ing data, where each untraced case is allocated to an ob-
served primary case; eventually, we correct for censorship
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of late secondary cases. Figure 1 summarizes the statistical
framework.

A decision rule to reinforce control measures. Assume
that control measures are implemented at time TCM (<T).
Here, we propose a decision rule to determine whether con-
trol measures are efficacious (R < 1), whether they lack
efficacy (R > 1), or whether more data are required for
decision.

If, in interval D�½TCM,T�, there is high predictive proba-
bility that RD < 1, efficacy of control measures should be
concluded, whereas lack of efficacy should be concluded if
there is low predictive probability that RD < 1. To make this
rule operational, we choose two thresholds s1 percent, s2
percent (s1 < s2) and conclude lack of efficacy when the
predictive probability P(RD < 1) is <s1 and efficacy when
P(RD < 1) is>s2. If s1 � P(RD < 1) is�s2, the conclusion is
delayed until more data are available.

We divided interval ½TCM,T� into three equal-sized inter-
vals ð½TCM; tmin�; ½tmin; tmax�; ½tmax; T �Þ and applied the rule to
interval D ¼ ½tmin,tmax�. We took s1 ¼ 5 percent and s2 ¼ 95
percent in the applications.

Simulation of SARS-like outbreaks

A simulation study of SARS-like outbreaks was used to
investigate the operating characteristics of the proposed de-
cision rule. Control measures were implemented on day
TCM ¼ 20 days. The mean reproduction number before
TCM was 3. Four scenarios were simulated, with a mean
reproduction number after TCM equal to 0.5, 0.7, 1.1, or
1.3. Case tracing was simulated for 5 percent of the cases.

For each scenario, 300 epidemics were simulated. Simula-
tions are detailed in appendix 3.

In a first stage, the estimation method is used to analyze
a single epidemic, simulated with R ¼ 0.7 after control
measures. The posterior distribution of the generation in-
terval, the predictive mean, and the 95 percent credible in-
terval of the temporal pattern of R are given according to
time T of the last observation.

In a second stage, we give, for each scenario, the prob-
ability that control measures are said to be efficacious;
that control measures are said to lack efficacy; or that more
data are required, 2 and 3 weeks after control measures are
implemented.

RESULTS

Real-time surveillance of an epidemic

Collected data. In figure 2, parts (a) and (b) show the
simulated data. Part (a) shows the daily rate of case onset. A
total of 2,086 subjects were infected, with a peak incidence
at day 28.

Part (b) presents the cumulative number of traced cases.
Twelve cases were traced after 3 weeks, 36 after 4 weeks,
and 61 after 5 weeks. In total, 114 cases were traced during
the epidemic.

Posterior distribution of the generation interval. Figure 2
also shows the posterior mean and 95 percent credible in-
terval of the mean (part c) and standard deviation (part d) of
the generation interval according to time T of the last obser-
vation. The Markov chain Monte Carlo algorithm did not
converge for T< 14 days because there were�3 traced cases.

For both the mean and standard deviation of the genera-
tion interval, the 95 percent credible intervals shortened as
the number of traced cases increased.

The mean of the generation interval was slightly biased
for small values of T. Its posterior mean was 6.5 days (T ¼
21 days), 7.0 days (T¼ 28 days), 7.7 days (T¼ 35 days), and
8.4 days (T> 50 days) for a simulation value equal to 8.4 days.

Temporal pattern of the reproduction number. In figure 2,
part (e) shows the expectation and 95 percent credible
interval of the reproduction number calculated for the
last 10 days of observation, according to time T of the last
observation.

Real-time estimates of R could be computed only once
the posterior distribution of the generation interval was
available, that is, for T � 14. The real-time expectation of
R remained close to its simulation value, irrespective of T.

Evaluating the efficiency of control measures

Table 1 gives the probability that control measures are
said to lack efficacy; that control measures are said to be
efficacious; or that more data are required, after 2 and 3
weeks, according to the mean reproduction number R.

When control measures lack efficacy (R � 1.1), the prob-
ability of making the wrong judgment is less than 5 percent
after 2 and 3 weeks. When control measures are effica-
cious (R � 0.7), that probability is less than 2 percent
after 3 weeks but may reach 7.2 percent after 2 weeks.

FIGURE 1. Statistical framework used to estimate the reproduction
number with data (epidemic curve and subset of traced cases)
available up to time T. To handle uncertainty about the generation
interval, a Markov chain Monte Carlo (MCMC) algorithm is set up to
investigate the posterior distribution of the generation interval given
case tracing data. The output of the MCMC is then used in a Monte
Carlo algorithm to make an inference about complete case tracing up
to time T. Eventually, a correction is applied for the censorship of late
secondary cases during the course of the epidemic.
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When control measures are efficacious, a correct conclu-
sion is obtained in 67.6 percent (R ¼ 0.5) and 21.8 percent
(R ¼ 0.7) of the simulations after 2 weeks and in 92.4
percent (R ¼ 0.5) and 83.5 percent (R ¼ 0.7) of the simu-
lations after 3 weeks.

When control measures lack efficacy, a correct conclusion
is obtained in 89.7 percent (R ¼ 1.3) and 77.9 percent (R ¼
1.1) of the simulations after 2 weeks and in 89.7 percent
(R¼ 1.3) and 71.6 percent (R¼ 1.1) of the simulations after
3 weeks.

FIGURE 2. Monitoring of a severe acute respiratory syndrome–like outbreak using simulated data. Daily rate of case onset (part a) and
cumulative number of traced cases (part b). In the simulation, the reproduction number was 3 before day 20 and 0.7 after; case tracing was
available for 5% of the cases. Mean (part c) and standard deviation ((SD), part d) of the generation interval (GI) derived from case tracing data,
according to time T of the last observation (solid line: posterior mean; dotted lines: 95% credible interval; dashed line: simulation value). Part (e):
expectation (solid line) and 95% credible interval (dotted line) of the reproduction number R calculated for the last 10 days of observation (over the
period [T-10, T-3]), according to time T of the last observation; dashed line, simulation value.

TABLE 1. Posterior probability (%) that control measures are said to lack efficacy, that

control measures are said to be efficacious, or that more data are required, after 2 and 3

weeks, according to the mean reproduction number R*

After 2 weeks After 3 weeks

Lack of
efficacy

More data
required

Efficacy
Lack of
efficacy

More data
required

Efficacy

R ¼ 0.5 1.8 30.6 67.6 0.3 7.3 92.4

R ¼ 0.7 7.2 71.0 21.8 1.8 14.7 83.5

R ¼ 1.1 77.9 20.7 1.4 71.6 23.6 4.8

R ¼ 1.3 89.7 8.9 1.4 89.7 8.5 1.8

* The decision rule is based on the predictive probability p that R < 1: if p < 5%, control

measures lack efficacy; if p > 95%, control measures are efficacious. Otherwise, more data are

required.
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DISCUSSION

In this paper, we have proposed a statistical framework
for real-time monitoring of communicable disease out-
breaks. In this context, requiring as few data as possible is
desirable in order to limit exposure of data collectors and
allow efficient use of resources. The method we proposed
simply used the epidemic curve and a subset of traced cases.
The approach required no prior knowledge of the disease
and could therefore be used for emerging communicable
diseases.

The existence of a deterministic threshold (R ¼ 1) with
a simple interpretation in terms of control of the epidemic
led us to propose formal rules for assessing the efficacy of
control depending on this threshold. However, it is possible
to define alternative rules; for example, one could assess
whether R is decreasing by monitoring the posterior proba-
bility of the ratio of R in one period to an earlier one. De-
fining and evaluating other rules requires further research.
The method could also be used to estimate the basic repro-
duction number R0, which is the mean number of cases
generated by a typical infectious person when the entire
population is susceptible. This information would naturally
arise from the value estimated in the early part of the out-
break, before many people recovered or died.

A natural choice would be to implement the decision rule
for the whole postintervention period. However, this choice
was not found optimal because 1) daily estimates of R are
biased for the first days of the interval (the method smoothes
the temporal pattern of R; refer to Cauchemez et al. (10));
and 2) daily estimates of R have a large variance for the last
days of the interval (10). Our approach of discarding the first
and last days of the interval reduced both the bias and var-
iance of the estimates.

There is a compromise to reach between 1) the capture
of the temporal pattern of R and 2) the precision of the
estimates for each time period. Since precision increases
with the number of symptoms onsets over the time period
(10), the second objective contradicts the first one. Conse-
quently, at the peak of the epidemic, it might be possible to
estimate R during short periods, whereas, during periods of
low incidence, it might be optimal to consider longer time
periods.

A number of assumptions were made regarding the epi-
demic and the data collected. First, we assumed that no
cases were imported during the course of the epidemic
(H1). If this assumption is violated, the estimate of R will
be inflated for the days preceding the arrival of such a case,
albeit to a small extent. Next, we assumed that all cases were
detected (H2), therefore excluding asymptomatic carriage
or underreporting. The effect of underreporting on the esti-
mate of R is not clear-cut: downward bias is likely because
undetected cases are discounted from the total offspring of
earlier cases. However, at the same time, upward bias may
follow because the offspring of an undetected case will be
allocated to observed cases. We assumed that secondary
cases were always reported after their index case (H3)
was by considering w(.) null for negative values. This as-
sumption is required for real-time analysis. It could be vio-

lated, especially if the incubation period of the disease is
long and variable.

The next two assumptions concerned the generation in-
terval, which was supposed to be unknown at the beginning
of the epidemic. We assumed that the parameters defining
the generation interval would not change throughout the
epidemic (H4). This assumption could be relaxed, at the
price of increased variability in the estimates, by restricting
estimation to the subset of the most recent traced cases and
provided that tracing is carried out throughout the epi-
demic. In the application, we found that, at the very begin-
ning of the epidemic, it might not be possible to provide
estimates because too few cases were traced. Using a more
informative prior on the generation interval could be con-
sidered, until a few dozen cases have been traced. First
estimates of the mean of the generation interval were
underestimated, which was expected because the first-
generation intervals to be detected are the shortest ones.
However, for our simulation, the bias remained small and
had little effect on the predictive distribution of the repro-
duction number. Hypothesis H5 was that a random sample
of all cases would be traced, which would not be the case
if, for example, long generation intervals were unlikely to
be sampled. Adopting a parametric form for the generation
interval may make the procedure more robust in this re-
spect. Truncation of the generation interval could also be
considered explicitly.

Last, we assumed that, in the absence of an observed
epidemic curve and tracing information, all chains of trans-
mission were equally likely (H6). This assumption was re-
quired to reconstruct complete case tracing data up to the
last observation (9). The framework could be extended to
integrate more detailed information regarding the social
network when available.

An alternative approach for inference would be to sample
from the full Bayesian model (refer to appendixes 1 and 2;
in particular, compare equations A5 and A6). However,
there is little reason to think that it would improve the results
because case tracing data are expected to be the main source
of information on the generation interval. The approach
would be more difficult to implement (11, 12), with little
anticipated benefit. The use of two separate steps (inference
on the generation interval from the observed case tracing
data, followed by reconstruction of the complete case trac-
ing data) appeared to be more pragmatic. If the epidemic
curve significantly improved our knowledge of the genera-
tion interval, exploration of the full Bayesian model would
reduce credible intervals for the reproduction number, but
our approach would remain valid.

In the simulation study, we assumed that dates of symp-
toms onset and case tracing information were available in
real time. In practice, we may expect symptoms onset to be
available nearly in real time, with a time lag required for
case tracing information. The proposed framework makes it
possible to retrospectively add case tracing information.

We have presented a statistical framework for real-time
surveillance of emerging infectious diseases. It should
be of benefit to public health decision makers who have
to determine in real-time whether to reinforce control
measures.
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APPENDIX 1

Bayesian Hierarchical Model

The full Bayesian model follows:

P fXþ
t ðTÞ;X

�
t ðTÞgt�T ;fOjgj2KT

;fUjgj2JT ;
�
h;a;bjfUjgj2KT

;fOjgj2JT
�

}PðhÞP fOjgj2KT
jfUjgj2KT

;h
� �

3P fUjgj2JT jfOjgj2JT[KT
;h

� �
3P fX�

t ðTÞgt�T jfUjgj2JT[KT

� �
3P fXþ

t ðTÞgt�T jfX
�
t ðTÞgt�T ;fOjgj2JT[KT

;h;a;b
� �

3Pða;bÞ ðA1Þ

Level 1. The first term of equation A1 gives the prior
distributions of h ¼ fc,gg. Here, we specify vague Expo-
nential priors Exp(0.001) for these parameters.

Level 2. The second term of equation A1 gives the like-
lihood of the observed sample of generation intervals:

P fOjgj2KT
jfUjgj2KT

c;g
� �

¼
Y
j2KT

wðOj�Uj;c;gÞ ðA2Þ

Level 3. Following Wallinga and Teunis (9), the third
term of equation A1 gives the probability of a completely
reconstructed case tracing, where each untraced case is al-
located to an observed case.

Now, given complete case tracing data, the early number
of secondary cases is readily available:

X
�
t ðTÞ¼

X
j2Jt[Kt

1fUj¼ tg ðA3Þ

The fourth term of equation A1 is therefore the indicator
function.

Level 4. The last terms of equation A1 constitute the
predictive distribution of the late number of secondary cases
given the early number of secondary cases and h. In a pre-
vious study (10), we showed that, under the assumption that
Xt is Poisson distributed with mean ntk, where k has a vague
Gamma prior (a ¼ 10�5, b ¼ 10�5), the predictive distribu-
tion of Xþ

t ðTÞ is Negative Binomial with number X�
t ðTÞ þ a
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and probability ðntWðT � t; c;gÞ þ bÞ=ðnt þ bÞ; where
Wðx; c;gÞ ¼

Px
u¼0 wðu; c;gÞ:

APPENDIX 2

Predictive Distribution of the Temporal Pattern of R

We have to predict Y ¼ ffXþ
t ðTÞgt�T ; fUjgj2JTg given

observations D ¼ ffOjgj2JT ; fOj;Ujgj2KT
g to determine

the temporal pattern of R.
If h ¼ fc,gg was known, it would be a straightforward

process to sample from P(Yjh, D) (refer to levels 3 and 4 of
the full Bayesian model (appendix 1)). In practice, however, h
is a nuisance parameter. A variety of approaches have been
developed to make inferences in the presence of nuisance
parameters (13, 14). In Wallinga and Teunis (9) and
Cauchemez et al. (10), inference was implicitly based on �h
that maximized the likelihood of the observed sample of gen-
eration intervals.An alternative approach is to integrate out the
uncertainty on h by using a predictive distribution of the form

PðYjDÞ¼
Z

f ðhÞPðY jh;DÞdh ðA4Þ

with a suitable f(h) representing uncertainty about its value.
Several choices are possible. One could, for example, use
the prior distribution of h. A more sensible choice is the
posterior distribution given all observed data P(hjD) (15,
16), yielding the following predictive distribution:

PðYjDÞ¼
Z
P hjfOjgj2JT ;fOj;Ujgj2KT

� �
PðY jh;DÞdh ðA5Þ

This quantity may be numerically approximated by Monte
Carlo integration. In this case, samples from the full Bayesian
model must be obtained (11, 12). However, in our problem,
case tracing data are expected to be the main source of infor-
mation on thegeneration interval.A reasonable choice for f(h)
is therefore to use the posterior distribution of h given traced
cases only, yielding the following predictive distribution:

PðY jDÞ¼
Z

P hjfOj;Ujgj2KT

� �
PðYjh;DÞdh ðA6Þ

This formulation makes the calculation easier because the
first term in the integrand is proportional to the product of
levels 1 and 2 of the full Bayesian model, and the second term
is the product of levels 3 and 4 of the full Bayesian model.

To draw a sample Y1, . . ., YN from equation A6, we pro-
ceed as follows (15):

1. Step 1: draw a sample h1, . . ., hN from PðhjfOj;Ujgj2KT
Þ;

defined as the product of levels 1 and 2 of the full
Bayesian model.

2. Step 2: for i ¼ 1, . . ., N, for each untraced case j in JT,
draw the day Ui

j of symptoms of his or her primary case
given hi and the epidemic curve from level 3 of the full
Bayesian model.

3. Step 3: for i ¼ 1, . . ., N, for each t � T, draw Xiþ
t ðTÞ

given hi and Xi�
t ðTÞ ¼

P
j2JT[KT

1ðUi
j ¼ tÞ from level 4

of the full Bayesian model.

For step 1, we designed a Metropolis-Hastings Markov
chain Monte Carlo algorithm (17). We performed 10 3 N
iterations for each run of this algorithm. The output was then
recorded once every 10 iterations to constitute a sample
from the posterior distribution. For step 2, we followed
Wallinga and Teunis (9), who have shown that, given h
and the epidemic curve fOjgj2JT[KT

;

P Uj¼ tjfOjgj2JT[KT
;c;g

� �
¼ ðnt�1fOj¼ tgÞwðOj� t;c;gÞP

k�T ðnk�1fOj¼ kgÞwðOj� k;c;gÞ ðA7Þ

where nt is the number of cases reported on day t. Equa-
tion A7 implies that the imputed date of symptoms onset for
the index case must be a day in which at least one case
was reported. In other words, imputation amounts to adding
a ‘‘connection’’ between two existing cases, but never to
create a nonexisting case. Step 3 was straightforward.

Eventually, we obtain a sample ðfxitgt�TÞi¼1;...;N of N real-
izations of the temporal pattern (Xt)t�T drawn from its pre-
dictive distribution. Then, partitioning the temporal period
0-T in M consecutive periods fDmgm¼1;...;M , equation 1 im-
plies that

r
i
Dm

¼
X
t2Dm

x
i
t

0
@

1
A X

t2Dm

nt

0
@

1
A, 9=
;

m¼1;...;M

8><
>:

1
CA

i¼1;...;N

0
BB@ ðA8Þ

constitutes a sample of size N drawn from the joint predic-
tive distribution of the temporal pattern of the reproduction
number fRDm

gm¼1;...;M.
In practice, we draw a sample of size N ¼ 5,000.

APPENDIX 3

Simulation of SARS-like Outbreaks

Simulated epidemics were started with 10 index cases.
The generation interval had a Weibull distribution with
a mean of 8.4 days and a standard deviation of 3.8 days to
reflect SARS (18). Control measures were implemented on
day TCM¼ 20 days. For each case detected before TCM days,
the number of secondary cases was drawn from a Negative
Binomial with a mean of 3 and a shape parameter of 0.18
(9). Four scenarios were considered in which the mean re-
production number after TCM was r ¼ 0.5, 0.7, 1.1, and 1.3.
Accordingly, the shape parameter k was calculated as k ¼
�0.0236r2 þ 0.131r, which is consistent with Wallinga and
Teunis (9). Case tracing was simulated for 5 percent of the
cases. For each scenario, 300 epidemics were simulated.

We chose TCM¼ 20 days so that, in the scenario consistent
with the SARS outbreak in Hong Kong in 2003 (R¼ 0.7 after
TCM) (9), the expected number of cases (n¼ 1,781) was close
to the number observed during the epidemic (n¼ 1,755) (19).
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