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Some authors argue that systematic reviews and meta-analyses of intervention studies should include only
randomized controlled trials because the randomized controlled trial is a more valid study design for causal in-
ference compared with the observational study design. However, a review of the principal elements underlying this
claim (randomization removes the chance of confounding, and the double-blind process minimizes biases caused
by the placebo effect) suggests that both classes of study designs have strengths and weaknesses, and including
information from observational studies may improve the inference based on only randomized controlled trials.
Furthermore, a review of empirical studies suggests that meta-analyses based on observational studies generally
produce estimates of effect similar to those frommeta-analyses based on randomized controlled trials. The authors
found that the advantages of including both observational studies and randomized studies in a meta-analysis could
outweigh the disadvantages in many situations and that observational studies should not be excluded a priori.

intervention studies; meta-analysis; observation; randomized controlled trials

Abbreviation: RCT, randomized controlled trial.

When randomized controlled trials (RCTs) are unethical
(e.g., randomization to a probable harmful exposure, ran-
domization to a drug that has proven benefits but uncertain
side effects), observational studies are essential. However,
the merit of the observational study compared with the merit
of the RCTwhen a question can be addressed through either
methodology has remained an ongoing debate over the last
10 years (1–6). An extension of this argument pertains to
systematic reviews and meta-analyses. In 2001, Oxman sug-
gested that ‘‘coherent and transparent decision rules are
needed for deciding when only to include RCTs, when to

include non-randomized controlled trials and when to in-
clude other types of evidence. So far as possible, there
should be an empirical basis for these decision rules, as well
as logical arguments’’ (7, p. 468). The issue is important
because meta-analyses are frequently conducted on a limited
number of RCTs. Shrier (8) reviewed a random 1 percent
sample of meta-analyses published by the Cochrane Collab-
oration in 2003 and found that six of 16 reviews included
two studies or fewer. Furthermore, 158 of 183 analyses con-
ducted in seven additional studies were limited to two or
fewer studies. In meta-analyses such as these, adding more
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information from observational studies may aid in clinical
reasoning and establish a more solid foundation for causal
inferences.

A strict rule for excluding all non-RCT evidence would
lead to the conclusion that, prior to 2005, we should not have
indicated to the public that smoking increases mortality (an
RCT published in 2005 showed reduced mortality following
a smoking cessation program (9), but, even so, there was no
statistically significant effect in subjects over age 45 years or
in those smoking fewer than 39 cigarettes per day). Al-
though some proponents might be willing to allow non-
RCT evidence where no RCTs exist, does one RCT provide
sufficient evidence to ignore all the non-RCT evidence?
What if the quality of the one (or two or three) RCT(s) is
poor? In this situation, one has to question whether recom-
mendations based on all the evidence, experimental and
nonexperimental, might not have been more appropriate.
As a concrete example of the potential usefulness of this
approach, the prevailing opinion prior to 1999 was that
stretching immediately before exercise was of benefit, a rec-
ommendation mostly based on four small RCTs. Shrier (10)
published a systematic review that included these RCTs, but
also the observational and basic science evidence, and con-
cluded that stretching immediately before exercise would
not reduce injury. A subsequent large RCT that directly
addressed the question supported Shrier’s hypothesis (11),
as have other systematic reviews and meta-analyses (12, 13).

In this article, we address Oxman’s (7) request for logical
arguments. To date, the logical arguments against including
observational studies reflect the view that observational
studies are more prone to bias because 1) randomization
removes the chance of confounding (because of the infinite
population assumption), and 2) the double-blind process
minimizes biases caused by the placebo effect.

We review evidence that questions whether these argu-
ments are justified and propose alternative perspectives on
this topic. We also critically examine the question of con-
founding in observational studies and raise questions as to
whether one might be able to assess the likelihood of bias
due to confounding. Next, we explore the empirical evi-
dence comparing meta-analyses based on RCTs with meta-
analyses based on observational studies on the same topic.

We conclude that the totality of the evidence suggests
that, under some conditions, including observational studies
would increase precision appropriately and may produce
equally or more relevant and valid results for the question
being asked. Doing so could reduce false inferences based
solely on RCTs (such as occurred in the example of stretch-
ing noted above (10)) or the inability to make any inferences
because of the paucity of RCTs on the subject. This article
focuses on health care interventions. We believe that our
results are applicable to the development of patient care
guidelines or to create institutional policy, regardless of
whether it is important to establish causality.

MAIN DIFFERENCES BETWEEN RCTS AND
OBSERVATIONAL STUDIES

Many advantages routinely ascribed to the RCT design
can be achieved through careful observational designs, such

as risk of detection bias, ensuring that the people assessing
the outcome are blinded to exposure status, and problems
with data quality. In this section, we discuss the two main
limitations ascribed to observational studies: confounding
and potential for the placebo effect.

Confounding

In this paper, confounding is defined with respect to its
effect on causal inference for an individual study, that is,
whether the intervention is responsible for the observed
differences in outcome. Therefore, confounding exists if
the two groups ‘‘differ in their probability distribution for
the outcome . . . for reasons other than effects of exposure’’
(14, p. 40), regardless of whether the difference in proba-
bility distribution occurred by chance (as may occur in an
RCT) or for other reasons. That said, if a disease is well
understood, a well-conducted observational study may yield
an unconfounded estimate by adjusting for the correct mix
of potential confounders at the design stage by matching or
restriction, or at the analysis stage with a multiple regression
analysis, propensity scores, and so forth (14, 15) (as long as
the underlying statistical assumptions are valid; e.g., is
transformation of variables required, directed acyclic graphs
suggest that structural selection bias would not be intro-
duced (16)). The problem of confounding occurs when po-
tential confounders have not been incorporated in the model
because one is unaware of them, they have not been mea-
sured, or they have not been measured well.

In the presence of unknown, unmeasured, or poorly mea-
sured confounders, treatment allocation by randomization
improves one’s ability to make causal inferences about the
treatment because there is an expectation that potential con-
founders will be equally distributed in each group. Although
randomization is intended to create equal distributions of the
potential confounders (and therefore remove any associa-
tion between exposure and the potential confounder), this
result is obtained on average and confounding can still occur
in individual studies (17). For example, let us assume that
a randomized trial results in an unequal distribution of a vari-
able (e.g., diabetes) that affects the outcome (e.g., mortal-
ity), such that 15 percent of the treatment group and 25
percent of the comparison group are diabetic. Concluding
that the treatment had a causal effect on mortality without
adjusting for the proportion of diabetics in each group would
be incorrect in this particular study (i.e., the estimate from
this study is confounded) even though the trial was random-
ized because the difference in mortality might be solely or
partly due to the distribution of diabetic patients (17).

How likely is such a situation? The expectation of a per-
fectly equal distribution of covariates with randomization is
based on the assumption of an infinitely large sample (18).
In practice, all studies are conducted on finite samples. For
example, if 20 percent of subjects in a moderate-sized trial
of 400 people are expected to have diabetes (a potential
confounder for the outcome mortality), there is a 95 percent
probability that the proportion of diabetes in one group will
be 15.6–24.4 percent (18) (representing the 95 percent prob-
ability for the sampling interval) and a 5 percent probability
that it will lie outside this interval (refer to the Appendix for
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calculations). Furthermore, diabetes may not be the only
potential confounder (e.g., hypertension, smoking, hyper-
cholesterolemia, physical inactivity), and we must therefore
consider the probability of an unequal distribution of any
one of the confounders. If there are five important confound-
ers, each with a 20 percent prevalence and independent of
each other, there is a 23 percent probability that the distri-
bution of at least one covariate will lie outside the 15.6–24.4
percent interval. In randomized trials of 50 subjects per
group, the corresponding sampling interval is 11.2–28.8
percent. These conditions affect the ability to make appro-
priate causal inferences, which could be referred to as ‘‘con-
founding by chance.’’ Even though confounding by chance
might be rare in very large RCTs, it would be expected to
occur more frequently within subgroup analyses because
these comparisons are based on much smaller sample sizes.

Confounding by chance will occur with the same proba-
bility in observational studies because it is, by definition,
due to chance. In both RCTs and observational studies, the
pvalue automatically incorporates the uncertainty due to con-
founding by chance. Furthermore, in the context of a meta-
analysis, confounding by chance in one direction in one
study is expected to be matched by confounding by chance
in the other direction in another study. The main problem
with observational studies is the additional potential limita-
tion of ‘‘confounding by indication.’’ Confounding by in-
dication occurs when a treatment is specifically provided to
a subject because of his or her probability of experiencing
the outcome (19).

Confounding by indication

We have already mentioned that when a disease is well
understood and prognostic factors are measured appropri-
ately, the appropriate statistical model can yield an uncon-
founded estimate (14, 15). In this situation, the difference
between the RCTand observational study concerns potential
unknown or imperfectly measured confounders. Although
confounding by indication is always possible in an observa-
tional study because the assumption of no unknown con-
founders is unverifiable, important nuances can help
qualitatively determine the plausibility of this situation oc-
curring; it is accepted practice in science to accept small
probabilities that the data/interpretation will not be repro-
ducible (e.g., type I error rates of 0.05 or confounding by
chance).

First, we must distinguish between potential confounders
and potential confounding because it is not necessary to
adjust for every potential confounder (17, 20). Even when
a variable is associated with the exposure and the outcome,
an unconfounded estimate of the effect would still be ob-
tained if the statistical model included a variable that lay
along a causal pathway (i.e., an intermediary variable) be-
tween either the ‘‘confounder’’ and the exposure or the con-
founder and the outcome (it would not be appropriate to
include a covariate that lay along the causal pathway be-
tween the main exposure of interest and the outcome) (14,
15, 17, 20). That said, the unknown confounder could still
create a problem if it partially acted through a mechanism
that does not include any of the measured variables.

Second, including all variables associated with both ex-
posure and outcome (i.e., ‘‘potential confounders’’) in a sta-
tistical model will sometimes introduce bias rather than
remove it. This situation occurs because including a covar-
iate caused by two otherwise independent variables (i.e.,
a covariate that is a common effect) creates a conditional
association between the otherwise independent variables (a
full discussion of this topic is beyond the scope of this paper
(14, 15, 21)). Identification of the appropriate subset of co-
variates required to obtain an unbiased estimate requires an
underlying theory of the causal pathways (21, 22). There-
fore, even if an existing unknown potential confounder be-
came known later, it is not correct to assume that it should
have necessarily been included in the statistical model.

Within the context described above (i.e., awell-understood
disease for which known prognostic factors are appropriately
measured and included in the statistical model by investiga-
tors), a systematic approach using basic epidemiologic prin-
ciples allows for a qualitative assessment of the plausibility
of confounding by indication in observational studies. We
now discuss the following three situations: 1) the covariate is
not considered important, 2) treatment is allocated by some-
one unaware of the patient’s probability of experiencing the
outcome, and 3) treatment is allocated by someone knowl-
edgeable about the patient’s probability of experiencing the
outcome.

If the covariate is not thought to be important by the
person allocating the treatment, it is highly unlikely to be
causally related to exposure to treatment, and any unequal
distribution must have occurred solely by chance. For ex-
ample, if physicians are unaware that a drug affects the liver,
there is an expectation that subjects with preexisting liver
disease would be randomly distributed between the two
groups; there would be no confounding by indication, and
the risk of confounding due to this factor would be the same
as in an RCT. Therefore, it is important to know who allo-
cated the treatment and why.

If treatment allocation in an observational study is deter-
mined by a method/person uninformed about the probability
of the outcome for the individuals (e.g., a hospital changes
the type of drug used to treat a condition because of cost),
then the situation is similar to when the factor is considered
unimportant: the likelihood of equal distributions of disease
severity in the treatment and comparison groups is the same
as in an RCT. Therefore, under these conditions, the risk of
confounding in an observational study should be minimal,
and including observational studies in a meta-analysis
would lead to increased precision of the estimate.

If the probability of the outcome influences treatment
allocation, confounding by indication remains a problem,
but it is still possible to adjust for the confounding if one
appropriately measures the covariate. For example, if a phy-
sician prescribes one medication over another because a pa-
tient appears fatigued, including the physician’s assessment
of ‘‘appearance of fatigue’’ in the model would remove the
confounding by indication. It is important that one measures
the covariate accurately (e.g., the physician’s assessment of
patient fatigue and not patient fatigue itself). In addition, this
method is obviously not possible when the relevant variable
has not been recorded, which may occur in database studies.
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What if physicians’ prescribing practices are determined
on non-evidence-based criteria that are difficult to measure
(as opposed to easy-to-measure variables that could be in-
cluded in the model)? In this case, one must remember that
to be a confounder, the covariate must cause the outcome (or
be associated with a cause of the outcome) (15). Therefore,
for this to be used as an argument against including obser-
vational studies in a meta-analysis, one would have to argue
that these non-evidence-based criteria are often direct or
indirect causes of the outcome and act through mechanisms
(i.e., covariates) not already included in the model. In addi-
tion, the criteria for prescription must remain an important
confounder even after correcting for other known potential
confounders. Thus, the probability of bias under the condi-
tions mentioned above may be low enough to be acceptable
and should be evaluated in each individual study.

A more difficult situation arises when subjects influence
the treatment allocation. For example, patients may specif-
ically choose one treatment over another because they are
aware of some of their own personal factors that might
affect prognosis. In this case, the probability of confounding
by indication in observational studies becomes much
greater, and interpretations need to be more cautious. It is
in this context that randomized trial methods have a signif-
icant advantage over observational studies. That being said,
if the prognostic factor is known, appropriately measured by
the investigators, and included in the model, any bias would
be minimized. Furthermore, observational studies are still
likely to yield equal distributions of disease severity when
one investigates ‘‘unintended effects’’ or side effects of
a treatment, that is, effects that are not the reason that the
subject is exposed to the treatment (23). In postmarketing
observational studies, patients taking minoxidil for hyper-
tension were observed to have increased hair growth. Be-
cause this effect was unintended, it is likely that there was an
equal distribution of male-pattern baldness at baseline in the
groups of hypertensive individuals who decided to take or
not to take this blood pressure medication.

Bias due to the placebo effect

One of the fundamental assumptions underlying clinical
trials is that the double-blind, placebo-controlled method (or
any intervention used as the comparison group) yields an
estimate of the true effect of the treatment in a specific
population by comparing subjects with similar expectations
(neither group knows whether they receive the active expo-
sure). This method is generally possible with RCT method-
ology only, and it is an important strength when interpreted
correctly. However, the results of some recent studies have
suggested that the methodological advantages may be over-
stated (24, 25). Perhaps more importantly, some authors
challenge its status as a ‘‘gold standard’’ based both on
theory and on the results of studies that compare different
methods of eliminating the placebo effect (26, 27). The
following studies represent some empirical examples illus-
trating why the causal parameter estimated by a double-blind
RCT may not be the parameter we are most interested in.

The double-blind RCT is not the only method that ad-
dresses the bias due to the placebo effect. In one study,

researchers created similar expectations for pain relief in
patients with mild cancer pain by telling them they would
receive naproxen and then giving 50 percent of the subjects
the active drug and 50 percent placebo (deception method);
the results differed from those obtained when subjects were
asked to participate in a traditional randomized double-blind
trial (28). Similar differences between double-blind and de-
ception methods were obtained for smoking cessation (29),
caffeine (30), and insomnia (31), although the intervention
effect was sometimes larger with the deception technique
and sometimes larger with the double-blind technique.

These results suggest that each specific method used to
address the bias due to the placebo effect results in a differ-
ent parameter of interest being measured and that it is not
possible to ‘‘eliminate’’ the placebo bias. Although the dif-
ferences in results between the study designs may or may
not be minimized with more objective outcome measures
(this issue remains to be studied), the results from deception
studies would remain relevant to the many standardized, but
subjective outcomes currently receiving wide attention (e.g.,
pain scales, quality-of-life scales).

Is the estimate of the effect from the double-blind method
or deception method more relevant to the clinician? When
prescribing treatment to a patient, physicians most often tell
the patient the treatment will work. Observational studies
reproduce what happens in real life, where patients know
what they are receiving and they comply with the interven-
tion if they believe it helps them. If in reality there is no
biologic effect, the context for the patient is that of a de-
ception study (i.e., the patient is told a treatment is effective
when it is not). However, there are obvious ethical problems
with performing deception studies when exposures may
cause harm. Still, the evidence suggests that although the
double-blind technique may be the most acceptable method
to remove the bias associated with the placebo effect for
many interventions, it does not always lead us to the un-
biased estimate of effect we are interested in. At this point,
we do not have answers but simply raise the question as to
whether meta-analyses based on only RCTs yield the effect
estimate we are most interested in.

EMPIRICAL EVIDENCE FOR SIMILAR RESULTS

Although the findings of RCTs sometimes contradict the
findings of highly publicized observational studies, they also
sometimes contradict the findings of highly publicized ran-
domized trials (32). Given the methodological heterogeneity
of individual studies, Oxman’s request for empirically based
decision rules (7) is better addressed by examining the
conclusions based on meta-analyses using only RCTs ver-
sus meta-analyses using only observational studies. We
searched the literature for articles using the search strategy
(meta-analysis or meta-analyses or ‘‘systematic review’’)
AND (observational or non-randomised or non-randomized)
AND (randomised or randomized) and examined all articles
in which the purpose was specifically to compare the results
of meta-analyses based on the two study designs over a broad
range of conditions. We also hand-searched the bibliog-
raphies and then conducted a citation search on the most
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comprehensive report published (MacLehose et al. (33)).
The following paragraphs summarize the results and the
pros and cons of each authors’ approach.

Sacks et al. (34) examined the inclusion of studies with
historical controls versus RCTs and found that historical
control studies produce effect estimates of much larger mag-
nitude. The underlying assumption when using historical
controls is that there has not been a change in the manage-
ment of the disease and that outcome incidence (e.g., mor-
tality rate) is constant over time. These assumptions were
not evaluated for each study, and this problem alone might
explain much of the large discrepancies observed in the
review.

Because epidemiology has made recent advances in study
design and the ability to adjust for potential confounders,
one must be careful to compare studies of similar quality.
Several papers have attempted to do so, and, even though
they all have limitations (6, 35), the findings are still in-
formative. In brief, Concato et al. (36) found similar esti-
mates of effect for meta-analyses based on RCTs versus
high-quality cohort studies, MacLehose et al. (33) con-
cluded that discrepancies for high-quality studies were
small but that discrepancies for low-quality studies were
large, Benson and Hartz (37) found similar results between
meta-analyses based on RCTs and on cohort studies per-
formed after 1984 (a proxy for better quality studies), and
Ionnadis et al. (5) found discrepancies in only 8 percent of
topics covered by prospective studies.At the FourthCanadian
Cochrane Symposium in Montreal, Canada, in 2005, Furlan
et al. (38–40) showed that the discrepant results between
cohort and RCT studies regarding low back pain were almost
all attributable to the quality of the studies and to the homo-
geneity (i.e., similarities in settings, population, interven-
tions, control group, and outcomes) of the pair cohort RCT.

If observational studies include all the biases of RCTs
plus additional problems, how can meta-analyses based on
observational studies so often yield the same results as meta-
analyses based on RCTs? Well-conducted observational
studies will yield similar estimates of effect compared with
RCTs when the bias created by the potential limitations
exclusive to observational studies is small in magnitude
compared with the variability and/or bias created by choice
of study population, types of subjects willing to enter
a study, quality of data acquired, and other random effects
(the analogy in electrical terms is a small signal-to-noise
ratio). Therefore, it is important to study the discrepancies
that occur between studies (whether due to study design or
otherwise) because they provide information that can be
used for appropriate clinical reasoning and causal inferen-
ces. For example, Galbraith plots help identify outliers that
might provide clues to differences that matter (41, 42), and
meta-regression can help identify the magnitude of effect
for hypothesized effect modifiers. The important point here
is that one has a choice to either 1) qualitatively/quantita-
tively assess the probability of bias due to lack of random-
ization (i.e., confounding by indication) to determine
whether it is appropriate to include the observational data,
or 2) decide a priori without assessment that the obser-
vational study is not worthwhile. In choosing to include
observational studies, we must remain cautious not to over-

interpret the data because there may be a greater risk of
publication bias (43), and any between-study heterogeneity
needs to be appropriately explored.

Although the results of meta-analyses based on observa-
tional studies are often similar to those based on RCTs,
some authors argue against the inclusion of observational
studies because the researcher needs to know the estimate of
the effect for a particular topic and not whether the obser-
vational studies agree with RCTs ‘‘on average’’ (35, 44). We
agree with this general idea but hasten to add that all of
science, including evidence-based medicine, is based on
probabilities and rational decision making. In economic ap-
praisals and Bayesian decision theoretic approaches, deci-
sion making is a function of both probabilities and utility (or
loss function) (45, 46). Utility is based on two potential
situations: 1) How much harm is the decision maker willing
to accept if she or he decides to act when the action is
actually harmful? and 2) How much benefit is the decision
maker willing to lose if she or he does not act and the action
is actually helpful? For example, if there is a 99 percent
probability that including the observational data would im-
prove our ability to choose the correct treatment for a con-
dition and a 1 percent chance it would hinder our ability,
then observational studies should be included. Because of
the lack of research in this area, we are currently limited to
personal preferences to decide 1) what range of probabilities
we should accept as the cutoff figure for benefit and for harm
(estimating the probability is necessarily subjective at this
time), 2) what other conditions (e.g., how many RCTs exist
on a topic) we should insist on (the current decision to
exclude observational studies if there is one RCT or a given
number of randomized patients is a subjective decision
without supporting evidence itself), and 3) the exact deci-
sion rules required to determine this (as requested by Ox-
man (7)).

As a consequence of the arguments described, we believe
that study design should be explored as an explanatory vari-
able when there are discrepancies between studies, and do-
ing so requires that different study designs be included in the
systematic review. If the study design is not the reason for
the discrepancy, then including observational studies in-
creases the sample size and provides additional evidence
for interstudy differences. If the study design is associated
with a difference in the estimate of the effect, then the
potential reasons for the discrepancies should include a dis-
cussion about the relative probabilities, directions, and mag-
nitudes of the biases, and the pros and cons of each study
design (e.g., confounding by indication, blinding, restricted
sample) because it is the totality of all limitations that de-
termines how we interpret the relative strength of the differ-
ent studies.

Finally, it is important to note that including observa-
tional studies in a systematic review without a meta-analysis
presents fewer problems than including them in one with
a meta-analysis. How does one weight studies of different
design in a meta-analysis? Theoretically, studies should be
weighted according to the probability of bias. We have ar-
gued that observational studies are not always more prone to
bias and therefore applying a weighting scheme based ex-
clusively on study design may lead to misclassification. The
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most promising statistical technique to date may be re-
sponse-surface estimation because it can accommodate fac-
tors that lead to bias from any cause (including study design)
(47, 48). In brief, this analysis appropriately weights the
results of any study by the potential for bias from an ‘‘ideal’’
study that has no bias, which is not possible in a meta-
regression (47). However, the method requires that quality
scores be highly correlated with bias; therefore, there must
be agreement on which items create which biases, in which
direction and of what magnitude. Because the objective of
this paper is to argue that well-conducted observational stud-
ies are not automatically more biased than well-conducted
RCTs, there is clearly not even agreement at this basic level,
and more work is necessary before we can take appropriate
advantage of this statistical technique.

In conclusion, the theoretical and empirical evidence pre-
sented in this paper suggests that excluding observational
studies in systematic reviews a priori is inappropriate and
internally inconsistent with an evidence-based approach.
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APPENDIX

Calculation of 95 Percent Sampling Intervals

The expectation of an equal distribution of covariates
with randomization is based on the assumption of an infi-
nitely large sample (18). If randomization is conducted so
that 200 subjects are in each group and the prevalence of the
covariate is 20 percent, the 95 percent probability for the
sampling interval lies between 1.96 3 the standard error of
20 percent, that is, between 15.6 percent and 24.4 percent
(18). Note that if one group includes 24 percent diabetics,
the other group must have 16 percent diabetics (the differ-
ence between groups is 8 percent) if there are an equal
number of total subjects in each group.
If there are five covariates and each has a 20 percent

prevalence, the probability that the previously stated 95 per-
cent sampling intervals (i.e., 15.6 percent, 24.4 percent) will
be true for all five confounders is only 77 percent (i.e.,
0.955). To know the 95 percent sampling region for five
covariates, one can use the 99 percent sampling interval
for a single confounder because 0.995 ¼ 0.95. The 95
percent probability for the sampling interval is 14.2–25.8
percent.
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