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Epidemiologic studies have demonstrated that physical inactivity is an important determinant of numerous
chronic diseases. However, self-reported estimates of physical activity contain measurement errors responsible
for attenuating relative risk estimates. A validation study conducted in 2002–2003 at the Alberta Cancer Board
(Canada) included a physical activity questionnaire, four 7-day physical activity logs, and four sets of accelerom-
eter data from 154 study subjects (51% women) aged 35–65 years. The authors used a measurement error model
to evaluate validity of the different types of physical activity assessment, and the attenuation factors, after taking
into account error correlations between self-reported measurements. The validity coefficients, which express the
correlation between measured and true exposure, were higher for accelerometers (0.81, 95% confidence interval
(CI): 0.76, 0.85) compared with the physical activity log (0.57, 95% CI: 0.47, 0.66) and questionnaire measure-
ments (0.26, 95% CI: 0.12, 0.40). The estimate of the attenuation factor for questionnaires was 0.13 (95% CI: 0.05,
0.23). Accuracy of physical activity questionnaire measurements was higher for men than for women, for younger
individuals, and for those with a lower body mass index. Because the degree of attenuation in relative risk
estimates is substantial, after the role of error correlations was considered, validation studies quantifying the impact
of measurement errors on physical activity estimates are essential to evaluate the impact of physical inactivity on
health.

bias (epidemiology); measurement error; questionnaires

Abbreviations: CI, confidence interval; PA LOG, physical activity log; PAQ, physical activity questionnaire.

It is recognized that physical activity measurements used
in large epidemiologic investigations contain a sizable level
of measurement error (1–3). Under certain conditions, when
measurement errors are nondifferentially expressed, the
association between physical activity and an outcome of
interest is attenuated toward the null hypothesis of no asso-
ciation (4–7), thus making it difficult to evaluate the likely
beneficial effects of physical activity on the full range of
health outcomes.

It is possible to estimate the magnitude of measurement
errors and the impact on the estimation of associations when
assessing individuals’ physical activity exposure. In so do-

ing, the effect of measurement errors can be quantified.
Numerous statistical methods to correct for bias attributable
to measurement error when evaluating a statistical associa-
tion between an exposure and an outcome of interest have
been proposed (8–10).

No ‘‘gold standard’’ measurements of physical activity
levels among free-living individuals are available to directly
measure true levels of exposure. Physical activity assess-
ment methods that make use of recall methods, such as
questionnaires, are a subjective means of estimating indi-
vidual exposure because they rely on individuals’ ability
to remember levels of exposure. It has been observed that
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many factors influence the accuracy of exposure estimates,
all based primarily on personal perception of the exposure
being evaluated and quantified.

Design and analysis of validation studies in terms of sta-
tistical latent variable models (11, 12) have shown that the
validity coefficient can be estimated by comparison with a
third objective measurement. It is assumed that errors in the
objective measurements are independent from self-reported
measurements.

Currently, the methods that provide the most feasible and
accurate measurements of activity in large validation studies
are physical activity logs (PA LOGs) and objective mea-
sures obtained from accelerometers. PA LOGs are thought to
minimize errors associated with long-term recall of activity
and estimation of activity frequency, whereas objective
measures do not rely on self-report at all. When assessing
the validity of physical activity measurements, it is therefore
important to use statistical models that account for random
and systematic errors, as well as error correlation between
questionnaires and PA LOG measurements and between
replicates of the same instrument.

In a recent study (13), validity and reliability of a self-
administered past-year physical activity questionnaire
(PAQ) developed for use in research studies conducted at
the Alberta Cancer Board (Canada) were assessed by com-
parison with 7-day PA LOGs and 7-day accelerometer data.
In the absence of individual estimates of true physical ac-
tivity level, 7-day PA LOG and accelerometer measure-
ments were used as the reference methods. In this paper,
we propose to acknowledge and take into account measure-
ment errors in all observed measurements and to estimate
the validity of PAQs, PA LOGs, and accelerometer data.
This assessment is accomplished by means of structural
equation models, where inclusion of objective measures of
physical activity allows estimation of correlation between
errors of self-report instruments (questionnaire and PA
LOGs). In addition, we estimate the attenuation factor that
quantifies the effect of measurement error on the association
with an outcome. Numerous aspects of measurement error
in individual estimates of physical activity level are evalu-
ated and discussed.

MATERIALS AND METHODS

Data were available on 154 men and women aged 35–65
years who completed four PAQ measurements (PAQ1–
PAQ4), four 7-day PA LOGs, and four sets of accelerometer
data over a 1-year period. The design and methods for this
initial validation study have been described previously (13).

Assessment of physical activity

In brief, two measurements of physical activity in the
previous 12 months were taken at baseline in a 1-year
follow-up study by using the self-administered PAQ known
as the Past Year Total Physical Activity Questionnaire.
These repeat measurements were taken, on average, 9 weeks
apart. At the end of the 1-year follow-up validation study,
the questionnaire was completed again, first as a self-
administered (PAQ3) and then as a telephone-administered

(PAQ4) questionnaire. During the year-long follow-up,
study participants wore the accelerometers for four 1-week
periods at intervals approximately 12 weeks apart. Immedi-
ately after wearing the accelerometers for 1 week, they
completed the 7-day PA LOGs by coding their activity for
each 15-minute interval of every hour of the day for 7 days
consecutively. These data were transformed to express
metabolic equivalent task-hours per week, as determined
from the Compendium of Physical Activities (14, 15).

Hence, during the year, four sets of accelerometer data
and PA LOGs were collected. Accelerometer data estimate
the intensity and duration of motion in the sampling interval
(i.e., counts/minute). The basic activity count data were
summarized in terms of hours per week and, using total
energy expenditure (metabolic equivalent task-hours/week),
were derived from the equation of Swartz et al. (16), after
censoring recorded values below 150 counts/minute. In ad-
dition, physical activity that was done when the accelerom-
eters were not worn was recorded, with a separate activity
monitor log that the respondents completed.

Statistical model

In the present study, the validity of PAQ3, accelerometer,
and PA LOG measurements was evaluated. This evaluation
was achieved by estimating the validity coefficient that re-
flects the correlation between the observed measurement
of exposure, be it questionnaire, accelerometer data, or PA
LOG, and the unknown true level (T). A measurement error
model was therefore defined that assumes relations between
questionnaire (Q), PA LOG (R), and accelerometer (A)
measurements and true level of activity, for subject i ¼ 1,
. . ., I, and measurements j ¼ 1, . . ., JX (X ¼ R, A), as

Qi¼ aQþbQTiþ eQi ð1aÞ
Rij¼ Tiþ eRij ð1bÞ
Aij¼ aAþbATiþ eAij: ð1cÞ

The following relations are assumed for random measure-
ment errors eQi and eXij, E(eQijTi) ¼ 0, E(eRijjTi) ¼ 0,
E(eAijjTi) ¼ 0, and Var(eQi) ¼ r2

eQ; Var(eRij) ¼ r2
eR; and

Var(eAij) ¼ r2
eA: For the questionnaire measurement Q, the

coefficients aQ and bQ in model 1a express constant and
proportional scaling biases (17), while the residual terms
eQi models the random part of measurement errors in Q and
are assumed to be uncorrelated with true physical activity
level Ti, after aQ and bQ have captured the systematic com-
ponent of measurement error (12).

In this analysis, the 7-day PA LOG was chosen to be
the ‘‘reference measurement,’’ with aR ¼ 0 and bR ¼ 1.
The relation expressed in model 1b assumes that errors
are strictly random and that variation around individuals’
unknown true physical activity is entirely attributable to
within-person random variability or to random measure-
ment errors in reporting physical activity levels (i.e.,
cov(eRij, Ti) ¼ 0, for " j 2 JR).

In addition, throughout this analysis, it is assumed that
random errors in questionnaire and 7-day PA LOG measure-
ments are correlated (cov(eQi,eRij) 6¼ 0, for " j 2 JR), as
a result of individuals’ tendency to consistently misreport
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their activity level. Furthermore, correlation between errors
in questionnaire-based assessments may arise because these
measurements may share some common source of variabil-
ity. Similar assumptions were made for the replicates of PA
LOG measurements (cov(eRij,eRik) 6¼ 0; j 6¼ k).

Although measurements collected by using an accelerom-
eter have been reported to be reliable for estimating dynamic
physical activities (18–22), some concerns have been raised
about the capacity of accelerometers to provide a valid esti-
mate of absolute physical activity levels (20). For this reason,
in expression 1c, the terms aA and bA were introduced for
accelerometer data to take into account systematic error,
while eA captures the random measurement error component.

Accelerometer measurements provide objective estimates
of physical activity levels. It was assumed that random errors
in questionnaire-based and accelerometer measurements are
independent, that is, cov(eQi,eAij) ¼ cov(eRij,eAij) ¼ 0 for "
j 2 JA and " j 2 JR, under the hypothesis that errors in the
latter are not influenced by study subjects’ ability to recall
past activity levels. Measurement errors in model 1 could
also be expressed in terms of person-specific bias and random
variation (23, 24). However, the two notations are equivalent,
as has been shown previously (25).

Model parameter estimates can be obtained through struc-
tural equation models. In this context, given the linear associa-
tions in expression 1 and the related assumptions regarding
error variances and covariances, the population covariance
matrix (R) of a set of observed variables (X1, . . ., Xp) is a func-
tion of a set of basic parameters (q ¼ (q1, . . ., qt)), as
R̂ ¼ Rðq̂Þ (26, 27). For the model to be identifiable, a situa-
tion that arises when a unique set of parameter estimates
corresponds to the observed data, it is necessary that the
components of q are not more than the elements of the sample
covariance matrix S, that is, t � p(p þ 1)/2. Classically, the
maximum likelihood method is used for such model fitting,
which usually requires the assumption that variables are nor-
mally distributed (27). Notably, in this study, the components
of q are the regression coefficients in equation 1 as well as the
variance of the independent variable ðr2

TÞ; and the error var-
iances and covariances.

Having estimated the parameter vector q, the validity co-
efficient for questionnaire Q can be calculated, as detailed in
the Appendix:

q̂QT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ r̂2

eQ

b̂
2

Qr̂
2

T

vuuut : ð2Þ

The validity coefficients for the accelerometer measure-
ments, qAT, and PA LOG, qRT, are estimated in the same
manner.

When measurement errors in exposure variables are pres-
ent, the estimated association describing the exposure-
disease relation (e.g., relative risk estimates) may be biased,
typically toward the null. A number of statistical methods
have been proposed for correcting the effects of covariate
measurement error (7–9). One simple adjustment for mea-
surement error is the regression calibration method (8),
where the attenuation factor, k, is estimated by the slope

of true on observed exposure in a validation study. The log-
relative risk in the disease model is corrected (deattenuated)
by dividing by k̂ (8). For this reason, values of the attenu-
ation factor close to 0 lead to more serious underestimations
of risk. In this work, the attenuation factor is calculated as

k̂QT ¼
b̂Qr̂

2
T

b̂
2
Qr̂

2
T þ r̂2

eQ

: ð3Þ

The regression calibration method corrects for random and
systematic within-person error in observed measurements of
exposure, provided that a reference measure is available
(24). By estimating the validity coefficient and the attenua-
tion factor using models 1 and 2, the possible error correla-
tion between questionnaire and PA LOG measurements is
quantified and the effect of taking into account this error
correlation is evaluated.

A model with an instrumental variable

It is conceivable that replicates of accelerometers contain
components of intraindividual systematic errors, because
accelerometer data for subjects who engage in very dynamic
kinds of pursuits (e.g., walking, running) for a larger pro-
portion of their overall activity would be predicted to have
less systematic error, whereas the actigraph data for partic-
ipants who engage in more static pursuits for a larger pro-
portion of their activity, which may expend considerable
energy but cause less acceleration of the body (e.g., house-
hold chores, gardening), might contain systematic errors.
For this reason, two strategies have been used to examine
these possible errors.

Estimation of error correlation in replicates of accelerom-
eter data in models 1a–1c leads to identifiability issues. To
address this, two complementing strategies have been fol-
lowed. First, a sensitivity analysis was conducted in model 1
by imputing values of the correlation between errors in rep-
licates of accelerometer data, thus pursuing estimation of
the validity coefficients. Second, an additional model was
considered by introducing an instrumental variable (24, 28,
29), as follows:

Qi¼ aQþbQTiþ eQi

Rij¼ Tiþ eRij
Aij¼ aAþbATiþ eAij
Bi¼ aBþbBTiþ eBi; ð4Þ

where Ti, aQ, aA, bQ, bA, eQi, eRij, and eAij have been defined
in model 1. It is further assumed that the errors in Bi mea-
surements are E(eBijTi) ¼ 0, Var(eBi) ¼ r2

eB and are uncor-
related with any other residual error terms in model 4.
Furthermore, it is assumed that (cov(eAij,eAik) 6¼ 0; " j 2
JA, with j 6¼ k). Parameter estimation was conducted by
using structural equation models, similarly to model 1. De-
tails are provided in the Appendix.

Structural equation models assume that the random vari-
ables approximate a multivariate normal distribution. For
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this reason, the data have been log transformed. To deal with
missing values (n ¼ 56 over the nine different physical
activity variables), an expectation-maximization algorithm
was used to estimate the maximum likelihood covariance
matrix that was used as input data to estimate model param-
eters in the structural equation model. This approach as-
sumes that data are missing at random (30). Parameter
estimates were obtained by using the CALIS procedure in
SAS software (31), as well as associated approximate stan-
dard errors. For validity coefficient and attenuation factor
estimates, 95 percent confidence intervals were obtained by

computing the 2.5th and 97.5th percentiles of a distribution
determined with bootstrap sampling (32). A total of 1,000
repetitions gave sufficiently stable intervals.

Models for men and women combined were systemati-
cally adjusted for gender by regressing physical activity
measurements on gender and using residuals. To evaluate
the degree of correlated errors after controlling for study
subjects’ characteristics, residuals of physical activity mea-
surements on, in turn, age, body mass index, and level of phys-
ical fitness at baseline were computed. However, results were
very similar, and only unadjusted results are presented here.

TABLE 2. Overall (n ¼ 154) and sex-specific (men, n ¼ 75; women, n ¼ 79) estimates of validity coefficient (r̂XT ) and attenuation

factors (l̂), estimates of true variance (ŝ2
T ), error correlations (r̂eijeik ), and associated 95% confidence intervals under model 1 for

measurements X, in turn, PAQ,* 7-day PA LOG,* and ACC* measurements

Measurement
Variable
name

q̂XT k̂ r̂2
T q̂eijeik

Estimate 95% CI* Estimate 95% CI Estimate 95% CI Estimate 95% CI

Overally

PAQ Q 0.258 0.115, 0.398 0.132 0.052, 0.233 0.067 0.037, 0.098 0.225z 0.066, 0.379

PA LOG R 0.568 0.467, 0.662 0.553§ 0.445, 0.638

ACC A 0.813 0.762, 0.853

Men

PAQ Q 0.386 0.197, 0.576 0.228 0.092, 0.414 0.070 0.020, 0.120 0.273z 0.102, 0.415

PA LOG R 0.534 0.384, 0.650 0.545§ 0.390, 0.661

ACC A 0.786 0.689, 0.847

Women

PAQ Q 0.146 0.010, 0.330 0.066 �0.030, 0.183 0.065 0.027, 0.104 0.211z �0.050, 0.439

PA LOG R 0.613 0.452, 0.736 0.558§ 0.392, 0.664

ACC A 0.863 0.760, 0.877

* PAQ, physical activity questionnaire; PA LOG, physical activity log; ACC, accelerometer; CI, confidence interval.

y Gender-adjusted values.

z Correlation between errors in Q and R measurements.

§ Correlation between errors among replicates of R measurements.

TABLE 1. Overall and gender-specific sample size, mean, and standard deviation of log-

transformed PAQ* and 7-day PA LOG,* ACC*measurements (log-MET*-hours/week), and

weight (kg)

Measurement
Variable
name

Overall Men Women

No. Mean (SD*) No. Mean (SD) No. Mean (SD)

PAQ Q 154 4.78 (0.51) 75 4.84 (0.45) 79 4.73 (0.56)

PA LOG1 R1 153 4.82 (0.42) 74 4.85 (0.42) 79 4.78 (0.41)

PA LOG2 R2 153 4.83 (0.46) 75 4.81 (0.53) 78 4.85 (0.39)

PA LOG3 R3 153 4.72 (0.50) 74 4.72 (0.55) 79 4.72 (0.45)

PA LOG4 R4 151 4.78 (0.44) 74 4.79 (0.48) 77 4.78 (0.41)

ACC1 A1 143 4.91 (0.23) 73 4.91 (0.24) 70 4.92 (0.22)

ACC2 A2 144 4.92 (0.24) 72 4.90 (0.26) 72 4.93 (0.22)

ACC3 A3 142 4.82 (0.25) 67 4.81 (0.28) 75 4.83 (0.22)

ACC4 A4 137 4.85 (0.26) 67 4.86 (0.29) 70 4.85 (0.24)

Weight B 154 78.1 (15.2) 75 84.2 (12.4) 79 72.3 (15.4)

* PAQ, physical activity questionnaire; PA LOG, physical activity log; ACC, accelerometer;

MET, metabolic-equivalent task; SD, standard deviation.
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In addition, in an attempt to evaluate the effect of mea-
surement errors on the validity of physical activity measure-
ments, models were run according to study subjects’ age,
body mass index, and level of physical fitness at baseline.
Separately for each variable, two groups were created by
taking, respectively, cutoffs equal to 50 years for age, the
gender-specific body mass index median values, equal to
27.5 and 25.7 (kg/m2) in men and women, respectively, and
the gender-specific level of fitness, based on predicted maxi-
mum oxygen consumption at baseline, equal to 31.3 and 25.8
(ml/kg per minute) in men and women, respectively.

Log-transformed body weight was used to estimate the
validity of questionnaire measurements using an instru-
mental variable in model 4. Using level of fitness instead
of weight provided very similar results.

RESULTS

Although average values in log-transformed question-
naire, PA LOG, and accelerometer physical activity mea-
surements were not very different, greater heterogeneity
was observed for variability in the different types of data
(table 1). Mean values were very similar for men and
women, but variability of different measurements was
higher in men than in women.

The values for estimates of the validity coefficients were
higher for accelerometer measurements (0.81, 95 percent
confidence interval (CI): 0.76, 0.85) compared with PA
LOG (0.57, 95 percent CI: 0.47, 0.66) and questionnaire
(0.26, 95 percent CI: 0.12, 0.40) measurements (table 2).
Higher validity coefficients for questionnaire measurements
were observed for men (0.39, 95 percent CI: 0.20, 0.58) than
for women (0.15, 95 percent CI: 0.01, 0.33), while similar
coefficients were observed for PA LOG and accelerometer
data for the two genders. The 95 percent confidence intervals
showed that these parameters were estimated with precision.
Attenuation factor estimates for questionnaires were equal to
0.13 (95 percent CI: 0.05, 0.23), with a lower value for women
(0.07, 95 percent CI: �0.03, 0.18) than for men (0.23, 95
percent CI: 0.09, 0.41). True variability was equal to 0.07
(95 percent CI: 0.04, 0.10).

Higher error correlations were observed between repli-
cates of PA LOG measurements (0.55, 95 percent CI: 0.45,
0.64) than between questionnaire and PA LOG (0.23, 95 per-
cent CI: 0.07, 0.38). Similar values were observed for men
and women.

The results of assessment of measurement error by study
subjects’ specific characteristics (table 3) show that validity
of questionnaire measurements varied by age, with lower
coefficients observed for subjects older than age 50 years,
and also by body mass index, with lower validity for partic-
ipants with a higher body mass index. Although adjustment
for age did not produce noticeable changes, some minor
confounding by age cannot be ruled out. Similarly, higher
coefficients were observed for individuals with a better level
of fitness, although the lower body mass index values and, to
a lesser extent, the younger age of participants with higher
predicted maximum oxygen consumption might have par-
tially driven these findings. T
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The sensitivity analysis showed that the validity coeffi-
cients and the attenuation factors increased slightly with
increasing values of the correlation between errors in repli-
cates of accelerometer measurements, although only for
values of accelerometer error correlations higher than 0.4
was the change (bias) appreciable (table 4).

When an instrumental variable was used, the question-
naire validity coefficient was equal to 0.27 (95 percent
CI: 0.13, 0.49), a value very similar to the coefficient esti-
mated in model 1 (table 5). The correlation between error
in replicates of accelerometer measurements was equal to
0.17 (95 percent CI: �0.75, 0.54). The confidence intervals
for correlation between errors in model 4 were wide and
asymmetrical.

DISCUSSION

We evaluated the validity of PAQ, PA LOG, and acceler-
ometer measurements by using an integrated structural
equation model. It was assumed that none of these measure-
ments are themselves true gold standards but rather contain
components of random and systematic measurement error.

Although earlier studies investigated the role of measure-
ment error in physical activity assessments (33, 34), to our
knowledge we evaluated and quantified for the first time in
this work the effect of error correlations in self-reported
physical activity measurements.

The models used in this study relied on several statistical
assumptions. First, it was assumed that PA LOG measure-
ments can be used as the reference and that errors are strictly
random and unrelated to true long-term physical activity
level (3, 35, 36). It should be noted that PA LOGs are
burdensome for participants to complete, and they measure
activities specified a priori, thus having the potential to
introduce systematic errors. However, if the assumption of
random error in PA LOG measurements does not hold (i.e.,
model 1b), underestimation of the validity coefficients can
result. Therefore, our estimates are likely to be conservative.
Second, to estimate all the parameters, thus making the
model identifiable, a third objective measurement is needed
whose errors are assumed to be independent of the self-
reported physical activity measurements (11, 12, 24, 37).

For this purpose, accelerometer data were used, which
were assumed to contain random and systematic measure-
ment errors. Accelerometers optimally capture more dy-
namic activities (e.g., walking and running) but provide
limited or no estimates of cycling or swimming, which in
this study were systematically recorded with monitor logs.
Although this could introduce an aspect of self-report to the
actigraph, the contribution of these activities to total activity
is likely very low. We found the validity coefficients of PAQ
measurements to be threefold lower for women, and of sim-
ilar magnitude for men, compared with values previously
observed (13). This result is mainly attributable to the fact
that the methods used in this study allow the error correla-
tion between replicates of the same types of instruments, as
well as between different types, to be evaluated and taken
into account. Estimating the validity coefficients by compar-
ison of measurements that share the same source of errors
can lead to overestimating the quantity of interest (23).

It is realistic to assume that the sources of errors in self-
reported estimates of physical activity are similar, thus lead-
ing to error correlations between the measurements of two
types of instruments—in our study, PAQ and PA LOGs—
and between replicates of the same instrument. The results

TABLE 5. Estimates of validity coefficient (r̂XT) and attenuation factors (l̂) for measurements X, in turn, PAQ,* 7-day PA LOG,* and

ACC* measurements, estimates of true variance (ŝ2
T ), and error correlations (r̂eijeik ) and associated 95% confidence interval under

model 4, assuming correlation between errors in replicates of accelerometer measurements

Measurement
Variable
name

q̂XT k̂ r̂2
T q̂eijeik

Estimate 95% CI* Estimate 95% CI Estimate 95% CI Estimate 95% CI

PAQ Q 0.269 0.129, 0.486 0.145 0.059, 0.381 0.076 0.015, 0.134 0.213y �0.170, 0.375

PA LOG R 0.603 0.479, 0.879 0.523z �0.400, 0.626

ACC A 0.762 0.507, 0.897 0.177§ �0.750, 0.537

* PAQ, physical activity questionnaire; PA LOG, physical activity log; ACC, accelerometer; CI, confidence interval.

yCorrelation between errors in Q and R measurements.

zCorrelation between errors among replicates of R measurements.

§ Correlation between errors among replicates of A measurements.

TABLE 4. Values of the validity coefficients for questionnaire

measurements ðr̂QT Þ; attenuation factor (l̂), correlation

between error in questionnaire and PA LOG (r̂eRij,eQik
), and

correlation between errors in replicates of PA LOG (r̂eRij,eRik) for

different values of the correlation between error in replicates of

accelerometer data (reAij,eAik), as estimated in a sensitivity

analysis

qeAij ;eAik ( j 6¼ k) q̂QT k̂ q̂eRij ;eQik
q̂eRij ;eRik

�0.400 0.244 0.116 0.238 0.579

�0.200 0.251 0.122 0.233 0.569

0* 0.258* 0.132* 0.225* 0.553*

0.200 0.281 0.153 0.203 0.520

0.400 0.323 0.202 0.148 0.408

0.500 0.374 0.273 0.039 0.113

* No correlation between errors of accelerometer measurements is

assumed.
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of this study confirm that, after the role of error correlations
has been taken into account, the validity coefficients of
physical activity levels from questionnaire measurements
can be relatively low. It is therefore of primary interest to
set up validation studies in which physical activity levels are
estimated through different assessment instruments.

In this study, the assumption that errors in replicates of
accelerometer measurements are uncorrelated was chal-
lenged through a sensitivity analysis and by considering
a model with an instrumental variable (24, 28, 29). Our
results provide some evidence that the impact of error cor-
relation in replicates of accelerometers is minor, as the
validity coefficient is not sizably affected for values of ac-
celerometer error correlations ranging from �0.4 to 0.4. To
estimate the validity coefficient, it was assumed that indi-
vidual weights were linearly related to the true level of the
log of physical activity and that errors in this relation were
uncorrelated with errors in physical activity measurements
(Q, R, and M). Concerns regarding the appropriateness of
these assumptions may exist, and our results need to be rep-
licated in models with objective measurements with indepen-
dent errors over replicates (e.g., doubly labeled water).

We also evaluated the effects of measurement errors on the
validity of questionnaire measurements according to study
subjects’ characteristics, notably age, body mass index, and
level of fitness. Higher validity coefficients were observed
for younger subjects (below age 50 years) and for subjects
below the gender-specific body mass index medians, thus
suggesting that these factors are associated with accuracy of
estimates of physical activity level. These results provide
evidence that measurement errors in the assessment of past
year physical activity patterns have a strong systematic
component, which can be the result of within-person sys-
tematic error not randomly distributed between subjects
(38). Kipnis et al. (23) refer to this bias as person- and
group-specific bias. Although the effect of body mass index
on the validity coefficients of dietary measurements has
been repeatedly suggested in the dietary assessment litera-
ture (39–41), the evidence on the role of study subjects’
characteristics in the accuracy of physical activity measure-
ments has been more mixed, with some studies demonstrat-
ing an effect of body mass index on reporting errors (42, 43),
while others have not (3, 44). However, concerns could be
raised about whether these results could be generalized to
populations different from the one under study, that is, with
a different age structure or ethnic composition.

We have shown that the degree of attenuation of risk es-
timates derived from instruments such as the PAQ is likely
substantial. Thus, the magnitude of the associations between
physical activity and health outcomes, such as cancer or
cardiovascular disease, may be severely attenuated by mea-
surement errors. We estimated an attenuation factor equal to
0.13 for the PAQ, and, given this level of attenuation, a true
relative risk of 2 would be estimated as a relative risk of
1.10. Therefore, to estimate the magnitude of the association
between physical activity and health more accurately, care-
fully conducted calibration studies may be required, in
which different types of physical activity assessment are
used, possibly on a subsample of a large-scale epidemiologic
study.

Our findings are based on log-transformed variables and
therefore apply to risk models in which log of physical
activity measurements is related to a specific disease out-
come. However, results on untransformed variables pro-
vided similar results (data not shown). Results from this
study also have implications for the design of calibration
studies. The correlation between errors in self-reported
measurements was substantial and must be properly ac-
counted for in the measurement error model; otherwise,
the model might only partially correct for the effect of mea-
surement error. In our study, estimates of attenuation factors
using a measurement error model were generally two- to
threefold lower than attenuation estimated in a ‘‘standard’’
regression calibration model, in which questionnaire mea-
surements were directly regressed on PA LOG values,
without using accelerometer data. The attenuation factor
estimated in this way was equal to 0.30 (data not shown),
thus leading to underestimation of the deattenuated risk,
which would be equal to 1.23 for a true relative risk of 2.
These results suggest that the overall level of attenuation
may be greater than previously expected, which confirms
the importance of estimating the attenuation factors accu-
rately because quantification of the impact of physical ac-
tivity on public health outcomes will be directly affected by
such attenuation.

In the absence of objective measurements that provide
accurate estimates of absolute level of physical activity,
questionnaires should be combined with accelerometer data
and PA LOG measurements. Accelerometers ensure inde-
pendence of errors with self-reported measurements, thus
fulfilling fundamental requirements for the identifiability
of statistical models for complex validation study designs.
In this way, it is possible to estimate the various quantities
that compose the error structure and to better understand the
associations between physical activity and health.

The design of validation studies therefore requires great
care, as well as thoughtful considerations concerning the
sample size of the study, to enable the potential sources of
errors, attributable to study subjects’ individual character-
istics and/or particular types of physical activity, to be in-
vestigated in depth.
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APPENDIX

In this work, parameter estimates were obtained through the CALIS procedure (31) that uses the maximum likelihood
estimation algorithm. As described in the text, one questionnaire, four PA LOGs, and four accelerometer measurements were
modeled in expression 1. In this study, six linear constraints were used for error correlation among replicates of PA LOG
measurements, as reRij,eRik ¼ reR,eR for " j, k 2 JR with j 6¼ k, as well as four constraints for the error correlation between
questionnaire and PA LOG, as reQi,eRij ¼ reQ,eR for " j 2 JR. Parameter estimates can be alternatively obtained with the
method-of-moments estimators, as shown by Spiegelman et al. (24). In model 1, there are eight second moments that allow
eight model parameters to be uniquely determined, as

h1 ¼VarðQiÞ¼ b2
Qr

2
T þr2

eQ bA¼ h8=h7

h2 ¼VarðRijÞ¼r2
T þr2

eR r2
T ¼ h2

7=h8

h3 ¼CovðRij;RikÞ¼r2
T þreR;eR; j 6¼ k bQ¼ h6=h7

h4 ¼CovðQi;RijÞ¼ bQr
2
T þreQ;eR r2

eQ¼ h1 �h2
6=h8

h5 ¼VarðAijÞ¼ b2
Ar

2
T þr2

eA r2
eR¼ h2 �h2

7=h8

h6 ¼CovðAij;QiÞ¼ bAbQr
2
T reR;eR¼ h3 �h2

7=h8

h7 ¼CovðAij;RikÞ¼ bAr
2
T ; j 6¼ k r2

eA¼ h5 �h8

h8 ¼CovðAij;AikÞ¼ b2
Ar

2
T ; j 6¼ k reQ;eR¼ h4 �h6h7=h8

Following the above associations, the validity coefficient for questionnaire measurements that estimates the correlation
between questionnaire Q and true physical activity level, T, is equal to

qQT ¼ CovðQ;TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðQÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðTÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ r̂2

eQ

b̂
2

Qr̂
2

T

vuuut ¼ h6=ðh8h1Þ1=2 ¼CovðAij;QiÞ=½CovðAij;AikÞVarðQiÞ�1=2
:

Similarly, for the attenuation factor,

kQT ¼CovðQ;TÞ
varðQÞ ¼

b̂Qr̂
2
T

b̂
2
Qr̂

2
T þ r̂2

eQ

¼ h6h7=ðh8h1Þ¼CovðAij;QiÞCovðAij;RijÞ=½VarðQiÞCovðAij;AikÞ�:

In model 4, an instrumental variable has been added to the model. It is assumed that reAij,eAik ¼ reA,eA for " j,k 2 JAwith j 6¼ k.
Similarly to model 1,

h1 ¼VarðQiÞ¼ b2
Qr

2
T þr2

eQ bA¼ h12=h11

h2 ¼VarðRijÞ¼r2
T þr2

eR r2
T ¼ h11h7=h12

h3 ¼CovðRij;RikÞ¼r2
T þreR;eR; j 6¼ k r2

eR¼ h2 �h11h7=h12

h4 ¼CovðQi;RijÞ¼ bQr
2
T þreQ;eR; reR;eR¼ h3 �h11h7=h12

h5 ¼VarðAijÞ¼ b2
Ar

2
T þr2

eA bB¼ h12=h7

h6 ¼CovðAij;QiÞ¼ bAbQr
2
T r2

eA¼ h5 �h12h7=h11

h7 ¼CovðAij;RijÞ¼ bAr
2
T ; j 6¼ k r2

eB¼ h9 �h12h11=h7

h8 ¼CovðAij;AikÞ¼ b2
Ar

2
T þreA;eA; j 6¼ k reA;eA¼ h8½1�h8h11=ðh7h12Þ�

h9 ¼VarðBiÞ¼ b2
Br

2
T þr2

eB bQ¼ h6=h7 ¼ h10=h11

h10 ¼CovðBi;QiÞ¼ bBbQr
2
T reQ;eR¼ h4 �h6h11=h12 ¼ h4 �h10h7=h12

h11 ¼CovðBij;RikÞ¼ bBr
2
T ; j 6¼ k r2

eQ¼ h1 �h7h
2
10=ðh12h11Þ

h12 ¼CovðBi;AijÞ¼ bBbAr
2
T

In this model, the number of moments (n ¼ 12) exceeds the number of parameters (n ¼ 11). Therefore, more than one
estimator is available for the parameters bQ, reQ,eR, and r2

eQ: In this work, model parameters are estimated iteratively by
a nonlinear optimization algorithm in the CALIS procedure (31), which uses maximum likelihood theory.
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