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The integrated discrimination improvement (IDI) index is a popular tool for evaluating the capacity of a marker to
predict a binary outcome of interest. Recent reports have proposed that the IDI is more sensitive than other metrics
for identifying useful predictive markers. In this article, the authors use simulated data sets and theoretical analysis
to investigate the statistical properties of the IDI. The authors consider the common situation in which a risk model
is fitted to a data set with and without the new, candidate predictor(s). Results demonstrate that the published
method of estimating the standard error of an IDI estimate tends to underestimate the error. The z test proposed in
the literature for IDI-based testing of a new biomarker is not valid, because the null distribution of the test statistic is
not standard normal, even in large samples. If a test for the incremental value of a marker is desired, the authors
recommend the test based on the model. For investigators who find the IDI to be a useful measure, bootstrap
methods may offer a reasonable option for inference when evaluating new predictors, as long as the added
predictive capacity is large.

biological markers; bootstrap confidence interval; prediction; risk assessment; sampling distribution; sampling
error; selection bias; type I error

Abbreviations: AUC, area under the receiver operating characteristic curve; HIV, human immunodeficiency virus; IDI, integrated
discrimination improvement.

Various metrics have been proposed for quantifying the
predictive ability of a classification model or quantifying
the incremental value of a new biomarker or predictor (1).
The most common single-number summary of the ability of
a classification tool to discriminate between cases and con-
trols is the area under the receiver operating characteristic
curve (AUC), also known as the c index. To quantify the
incremental value of a new marker, one can use the im-
provement in the AUC when the marker is added to an
existing classification model. However, the AUC has been
widely criticized because it does not measure a clinically
meaningful quantity (2, 3). There is also concern that the
AUC is ‘‘insensitive’’ and does not demonstrate the value of
new markers that are useful for prediction (2). Recently,
several investigators proposed measures of incremental
value that examine the extent to which a new marker reclas-

sifies subjects (2, 4). However, such measures can be sensi-
tive to arbitrary boundaries delineating discrete categories
of risk (5).

Pencina et al. (4) proposed the integrated discrimination
improvement (IDI) index as complementary to the AUC.
The IDI is defined as

IDI ¼ ðISnew � ISoldÞ � ðIPnew � IPoldÞ: ð1Þ

In this equation, IS is the integral of sensitivity over all
possible cutoff values and IP is the corresponding integral
of ‘‘1 minus specificity.’’ In equation 1, ‘‘new’’ refers to
the classification model that includes the new biomarker
and ‘‘old’’ refers to the classification model that does not.
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Pencina et al. (4) provide the following estimator for the
IDI:

cIDI ¼ ��̂
pnew;events �

�̂
pold;events

�
�

��̂
pnew;nonevents �

�̂
pold;nonevents

�
: ð2Þ

In equation 2,
�̂
p is an average of estimated probabilities of

an event. An average is taken over the people in the sample
who experienced events (‘‘events’’), and an average is taken
over those who did not experience an event (‘‘nonevents’’).
In other words, events are cases and nonevents are controls.
Use of the IDI can be motivated from multiple perspectives
(3, 6–9). Perhaps the simplest motivation for the IDI is that
a useful marker leads to increased estimated risks of disease
for cases and decreased estimated risks for controls. If the
new marker contributes to risk prediction, the first term of
equation 2 will be large in the positive direction and the
second term will be large in the negative direction; subtract-
ing them produces a large IDI.

Pencina et al. (4) give an example of using the IDI to
evaluate the incremental value of a marker. Two regression
models are fitted to a data set, with and without the new
marker. Each regression model yields estimated risks of
disease p̂ for every individual, case and control, in the data
set. The estimated risks from the 2 fitted models are aver-

aged appropriately, and cIDI is computed for the data set
using equation 2. Although Pencina et al. (4) do not use
logistic regression in their example, we expect this to be
a common choice in practice, and we use logistic regression
throughout most of this paper.

To test the null hypothesis that IDI ¼ 0, Pencina et al. (4)
provide the test statistic

zIDI ¼
cIDIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibðSEeventsÞ

2
þ bðSEnoneventsÞ

2
q : ð3Þ

In equation 3, bSEevents is the standard error of paired dif-
ferences of new and old model-based predicted probabilities
among cases; bSEnonevents is the corresponding standard error
among controls. Pencina et al. (4) conjecture that zIDI is
asymptotically standard normal under the null hypothesis
that the new biomarker does not contribute to prediction.

Not all investigators agree that the IDI is a major im-
provement over the AUC as a measure of incremental value.
Greenland (8) comments that the IDI, like the AUC, incor-
porates information that is irrelevant. That is, both measures
summarize the entire receiver operating characteristic curve,
including regions where false-positive or false-negative
rates are unacceptable. Chi and Zhou (6) fault the IDI for
putting equal weight on sensitivity and specificity, when the
relative importance of sensitivity and specificity varies with
the objective. Mihaescu et al. (10) comment that the IDI,
like the AUC, is a measure of clinical validity rather than
clinical utility. Without endorsing the AUC, we note that
most researchers have enough experience with the AUC to
interpret the measure and to know when an AUC value is

‘‘large.’’ It is not clear whether the same holds for the IDI.
On the other hand, the IDI has become increasingly popular
in predictive modeling research. In a scientific statement
from the American Heart Association, Hlatky et al. noted
that ‘‘the IDI test appears to be more powerful than the c
index’’ for establishing that a new biomarker has positive
incremental value (11, p. 2411). On February 17, 2011, 353
articles in the Science Citation Index referenced the article
by Pencina et al. (4). Many of these authors used the IDI or
the test statistic zIDI as supporting evidence in favor of a pro-
posed biomarker.

In this article, we sidestep the debate on the inherent
value of the IDI as a measure and focus instead on the
statistical properties of the IDI. The popularity of the IDI
warrants further investigation of its behavior, particularly
in the common situation in which the ‘‘new’’ and ‘‘old’’
risk models are estimated using the same set of data. Pepe
et al. (12) raised concerns that the denominator of equation
3 is an underestimate of the standard error of cIDI. We in-
vestigate this particular question, as well as the sampling
distribution of cIDI. We provide empirical and theoretical
evidence that cIDI is approximately normal only for large
values of the IDI. In particular, we show that the test sta-
tistic zIDI does not have a standard normal distribution un-
der the null hypothesis that IDI ¼ 0, and thus the test based
on zIDI is not valid.

MATERIALS AND METHODS

We used both simulation and statistical theory to explore
the sampling distribution of cIDI and the null distribution
of zIDI. Throughout this paper, we consider the behavior ofcIDI in the common situation where ‘‘old’’ and ‘‘new’’ nested
risk models are fitted to the same data set.

Data simulation schemes

We employed multiple schemes for simulating data. We
always use D to denote the binary variable indicating the
outcome, that is, disease status. Y denotes established
(‘‘old’’) predictors. Candidate (‘‘new’’) predictors are de-
noted with W, W1, or W2.

Logistic simulation models. We simulated the log odds of
disease according to a logistic risk model in which we think
of age as the established predictor Y and cardiovascular
disease as the outcome D. In our simplest simulation model,
there is a single candidate predictor W:

logit PðD ¼ 1jY ;WÞ ¼ �6:2þ 0:05Y þ cW : ð4Þ

We also consider scenarios in which there are 2 candidate
predictors W1 and W2:

logit PðD ¼ 1jY ;W1;W2Þ
¼ �6:2þ 0:05Y þ c1W1 þ c2W2: ð5Þ

We simulated Y as N(65, 10) and independently simulated
each of W, W1, and W2 as N(0, 1). These simulation
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parameters yield an event rate of approximately 5% when
c ¼ 0 or c1 ¼ c2 ¼ 0. Using simulated data, we computed
risks of disease using equation 4 or equation 5, and we
simulated disease statuses from each risk independently us-
ing a Bernoulli distribution. If a c parameter equals zero,
then the corresponding W has no predictive value. If a c
parameter is not zero, then the corresponding W is predic-
tive, although its incremental value depends, of course, on
the magnitude of its coefficient.

Alternative logistic simulation model. The alternative lo-
gistic simulation model was designed to mimic situations in
which the established predictor is not very predictive. The
simulation model is similar to equation 4:

logit PðD ¼ 1jY ;WÞ ¼ �3þ 0:05Y þ cW : ð6Þ

Y is randomly generated from a standard exponential distri-
bution, and W is independently generated from a Poisson
distribution with mean 4. As in the previous logistic sim-
ulation model, the prevalence is approximately 5% when
c ¼ 0.

HIV simulation model. In this simulation, we start with
a real data set from a clinical trial for prevention of mother-
to-child transmission of human immunodeficiency virus
(HIV) (13). Table 1 gives basic descriptive statistics for this
data set. Of the 1,882 deliveries by HIV-infected women
recorded in this data set, 8% of the infants had a positive
HIV test at birth. There is an established predictor Y, which

is maternal viral load at 20–24 weeks of gestation. A higher
viral load means that the mother has more copies of the virus
circulating in her blood and is modestly predictive of
whether she will transmit HIV to her child during pregnancy
or delivery. We consider the mother’s age as the candidate
predictor. One would not expect the age of an HIV-infected
pregnant woman to predict whether her infant will be born
with HIV infection. In each simulated data set, we randomly
permute mother’s age, ensuring no predictive ability of the
‘‘new’’ predictor W.

Risk models

For simulated data sets, we fit logistic regression models
to the data set with and without the ‘‘new’’ predictors. In
other words, for a given simulated data set, we fit the model

Table 1. Data From a Clinical Trial for Prevention of Mother-to-

Child Transmission of Human Immunodeficiency Virusa

Mean (SD) Q1 Median Q3

Log10 viral load,
copies/mL

4.3 (0.82) 3.8 4.4 4.9

Mother’s age,
years

25.3 (4.7) 22 25 28

Abbreviations: Q, quartile; SD, standard deviation.
a Data were obtained from Taha et al. (13).
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Figure 1. Bias in bSE�cIDI�. For each sample size, we simulated 10,000 data sets using the logistic simulation model with c ¼ 0 and computed cIDI.
The standard deviation of cIDI across these 10,000 simulations estimates the null standard error (SE) of cIDI. For each simulated data set, we also
computed bSE�cIDI� using the formula in the denominator of equation 3. This figure displays the ratio of bSE�cIDI� with the estimate from the empirical
approximation of the sampling distribution. On average, the standard error estimate used in equation 3 underestimates the standard error of cIDI by
a factor of approximately 2. (IDI, integrated discrimination improvement).
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logit PðD ¼ 1jYÞ ¼ aþ bY ð7Þ

to estimate risks of disease using only the established pre-
dictor Y. If there is a single candidate predictor, we fit the
model

logit PðD ¼ 1jY ;WÞ ¼ aþ bY þ cW

to estimate the risks of disease using both the established
and candidate predictors. We used the ‘‘new’’ and ‘‘old’’

estimated risks to compute cIDI and zIDI.
In the original IDI paper, Pencina et al. (4) proposed the

IDI for comparing 2 nested models. In particular, the pro-
posal does not limit the IDI to evaluating a single candidate
marker. In fact, the IDI has been used to evaluate multiple
markers as a set (14, 15). In a similar spirit, we used logistic
simulations with 2 new predictors to compare equation 7
and the larger model

logit PðD ¼ 1jY;W1;W2Þ ¼ aþ bY þ c1W1 þ c2W2: ð8Þ

For simulations with a single candidate predictorW, we also
consider the following 2 nested prediction models:

logit PðD ¼ 1jYÞ ¼ aþ bY

and

logit P
�
D ¼ 1jY;W

�
¼ aþ bY þ c1W þ c2W

2: ð9Þ

Thus, in the larger model there is a single candidate pre-
dictor but the 2 fitted models differ by 2 degrees of freedom
(df). As before, we used the ‘‘new’’ and ‘‘old’’ estimated
risks to compute cIDI and zIDI.

RESULTS

The sampling distribution of cIDI: empirical results

Sampling distributions when IDI ¼ 0. Using the logistic
simulation model and setting c ¼ 0, we simulated data sets
with a useful predictor of disease and a candidate predictor
of disease that has no predictive capacity. Similarly, we used
the HIV simulation model to generate data sets in which
a candidate predictor had no incremental value.

First, we investigated the accuracy of the standard error
estimate used in equation 3. For a given sample size, we si-
mulated 10,000 data sets using the logistic simulation model
with c¼ 0 and computed cIDI. The standard deviation of cIDI
across these 10,000 simulations estimates the standard error
of cIDI under the null hypothesis that IDI ¼ 0. For each
simulated data set, we also computed bSE�cIDI� using the
formula in the denominator of equation 3. In Figure 1, we
compare our empirical estimate of bSE�cIDI� with the esti-
mate used in equation 3 by dividing the latter by the former.

Figure 2. Null distribution of cIDI and zIDI for 10,000 data sets simulated using the logistic model (top row; n ¼ 1,500) and the human immuno-
deficiency virus simulation model (bottom row; n¼ 1,882). For zIDI, a standard normal density curve is given for reference. There is a 1-df difference
between the ‘‘old’’ and ‘‘new’’ risk models. (IDI, integrated discrimination improvement).
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We see that the standard error estimate in equation 3 is, on
average, about half as large as it should be. The magnitude
of the bias is (perhaps remarkably) stable as sample size
increases. Our results confirm the suspicion of Pepe et al.
(12) that the standard error estimate used in equation 3 is
an underestimate of the standard error of cIDI.

We also investigated more fully the sampling distribution
of cIDI and zIDI when the null hypothesis, IDI ¼ 0, is true.
The top row of Figure 2 shows the results for the logistic
simulation model (c¼ 0). The bottom row shows the results
for the HIV simulation model. Results are based on 10,000
simulations of data sets of size n ¼ 1,500 for the logistic
model and n ¼ 1,882 for the HIV simulation model. The
null distribution of cIDI is highly nonsymmetric, with a long
right tail. The strong positive skewness in the distribution
results from the fact that the 2 components of cIDI have
a strong negative correlation. Pepe et al. (12) also pointed
out that the IDI is equal to the proportion of explained
variation, which is either always or predominantly positive,
depending on the type of regression model. That is, adding
a new variable to a set of predictors rarely decreases the
proportion of explained variation (and never decreases the
proportion of explained variation in linear regression). The
null distribution of zIDI is more symmetric but is centered
away from zero and is not standard normal. Other simula-
tion models gave very similar results (data not shown).

We also studied the sampling distribution of cIDI and zIDI
for 2-df IDIs. For the logistic simulation model, the larger
model is equation 8, and for the HIV simulation model, the
larger model is equation 9. Results are shown in Figure 3.
Compared with Figure 2, Figure 3 shows that cIDI is more
prominently skewed toward positive values and the distri-
bution of zIDI is further shifted to the right in comparison
with a standard normal curve.

False-positive rates. We have seen that the null distribu-
tion of zIDI is not standard normal (Figures 2 and 3). What is
the implication for investigators attempting to use zIDI to
evaluate a new biomarker? We used the logistic simulation
model with c ¼ 0 to investigate the type I error (false-
positive) rate of the zIDI test. Suppose an investigator uses
zIDI to conduct a 2-sided hypothesis test of H0: IDI ¼ 0 for
a single biomarker and a 1-df difference between the ‘‘new’’
and ‘‘old’’ predictive models. It turns out that the zIDI test
is slightly conservative. A nominal 5%-level test uses a
cutoff of 1.96; the true size of the test is actually slightly
smaller, approximately 3.9.

The IDI is a measure of the improvement in prediction. As
previously noted (14), a 2-sided hypothesis test is not ap-
propriate when interest is in markers that improve predic-
tion. If one uses an IDI-based hypothesis test to evaluate
a new biomarker, an appropriate test is 1-sided—that is, H0:
IDI ¼ 0 vs. H1: IDI > 0. Performing the test by comparing

Figure 3. Null distribution of cIDI and zIDI for 10,000 data sets simulated using the logistic model with 2 candidate predictors (top row; n ¼ 1,500)
and the human immunodeficiency virus simulation model (bottom row; n ¼ 1,882). For zIDI, a standard normal density curve is given for reference.
In each case, there is a 2-df difference between the ‘‘old’’ and ‘‘new’’ risk models. Compared with Figure 2, cIDI is more heavily skewed toward
positive values and zIDI is more prone to giving false-positive results. (IDI, integrated discrimination improvement).
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zIDI with a standard normal distribution, the cutoff 1.96
nominally corresponds to a 2.5%-level 1-sided test. The
actual type I or false-positive error rate is approximately
3.9%. An intended a level of 5% corresponds to an actual
a level of approximately 9.3%.

We also considered the case in which 2 df separate the
‘‘new’’ and ‘‘old’’ predictive models. In this case, both
1-sided and 2-sided hypothesis tests are anticonservative,
with higher false-positive rates than the nominal levels.
Figure 4 illustrates the results described above.

Sampling distributions away from the null. Using the lo-
gistic simulation model, we also simulated data sets where
the new predictor W has some predictive value by choosing
c 6¼ 0. We examined a range of values of c. As before, we
computed cIDI for each simulated data set.

Figure 5 shows estimated sampling distributions of cIDI
for a range of c values. (Results are shown in 2 plots because
of the drastically different scales for the distributions for
small and large c.) For small values of c, cIDI has a severe
right skewness, as we saw in Figure 2. For larger values of
c, cIDI has a fairly symmetric distribution. To help interpret
these results, Table 2 (first row of data) provides the average
P value for the coefficient of c in the fitted logistic regres-
sion model. A value of c ¼ 0.4 is a marginally significant
predictor according to this metric.

The sampling distribution of cIDI: theoretical results
The extremely nonnormal empirical distribution of cIDI is

surprising, so we investigated the distribution analytically in
a simplified scenario to help explain the simulation findings.

The formulation of the IDI in equation 4 does not restrict how
the risk models are to be fitted, so we examined the distribu-
tion that arose when the risk scores were fitted by linear re-
gression. This would be an unusual choice in practice, but it is
convenient here because it allows us to derive simple formulas
for the risk scores. In contrast, logistic regression models are
fitted to data using iterative algorithms, and there are not
simple formulas for model parameters as a function of the
data. However, since the computational algorithms for logis-
tic regression use iterative weighted linear regression, we

Figure 5. Sampling distribution of cIDI. Data were simulated with the
logistic model and c ¼ 0, 0.1, 0.2, 0.3 (upper panel) and c ¼ 0.4, 0.6,
0.8, 1, 1.2, 1.4 (lower panel). Curves are labeled with their c values.
Each density estimate was based on 10,000 simulated data sets of
size 1,000. Notice the change in the horizontal scale between the 2

plots. The figures demonstrate that the distribution of cIDI varies con-
siderably in shape and scale depending on the incremental value of the
marker that is evaluated. (IDI, integrated discrimination improvement).

Nominal level

le
ve

l

Figure 4. Estimated type I error rates of the zIDI test. (The identity
line (- - -) is given for reference; points above the line represent in-
creased false-positive rates.) The false-positive rate of the test is
lower than the nominal a level for a 2-sided hypothesis test when
the integrated discrimination improvement (IDI) index is evaluating
a single biomarker and there is a 1-df difference between the ‘‘new’’
and ‘‘old’’ predictive models. For the more appropriate 1-sided test or
when evaluating a set of candidate markers, the zIDI test is anticon-
servative, with false-positive rates higher than the nominal a levels.
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would expect the distribution of cIDI based on linear regres-
sion to be a good guide to the distribution based on logistic
regression (at least when prediction is weak). Our analytic
results for linear regression explain both the asymmetric

null distribution of cIDI and the underestimation of its stan-
dard error.

Without loss of generality, the ‘‘old’’ model contains a
single variable Yand the ‘‘new’’ model additionally includes
a variable W that is independent of Y and with mean zero
(otherwise, replace Y by Yb and W by W – E[WjY]). We
show in the Appendix that

cIDI ¼ 1

qð1� qÞVar
�
W
�
ĉ2; ð10Þ

where ĉ is the estimated coefficient of W in the fitted model
and q is the prevalence of disease. Under the strong null
hypothesis that both marker Y and marker W have no pre-
dictive value,

cIDI ~ 1

n
v21;

where n is the sample size. Under the more general null
hypothesis that Y is a useful predictor, we need to
know Var[WjY], which we denote ¼ r2. This is the
scenario we are most interested in—the incremental value
of W above and beyond an existing predictor Y. In this case,
we have

cIDI ~ r2

nqð1� qÞv
2
1:

Equation 10 allows us to use well-established results
about parameter estimates in linear models to understand
the distribution of cIDI. Under the alternative hypothesis
(c 6¼ 0), ĉ2 has a noncentral chi-squared distribution with a
noncentrality parameter increasing with n and c. As the
noncentrality parameter increases, the distribution gets
closer to normal, but the normal approximation is only good
in situations where the power of the test for c ¼ 0 is high.
Since

Table 2. Bootstrap Coverage for Logistic and Alternative Logistic Simulation Models

g

0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

Logistic simulation model

Average P valuea 0.50 0.44 0.30 0.16 0.06 0.01 <0.01 <0.01 <0.01

True IDIb 0 0.0093 0.0363 0.0793 0.1337 0.2620 0.3920 0.5029 0.5910

Bootstrap CI coverage, %c 92.2 96.8 96.6 94.8 94.8 94.5 93.8 94.2 94.1

Alternative logistic simulation model

Average P value 0.50 0.24 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

True IDI 0 0.0030 0.0186 0.0555 0.1114 0.2265 0.3090 0.3629 0.4008

Bootstrap CI coverage, % 74.1 97.7 93.7 94.6 95.9 96.0 95.0 93.5 94.4

Abbreviations: CI, confidence interval; IDI, integrated discrimination improvement.
a Average P value for ĉ as estimated with logistic regression. The average is taken over 10,000 simulated data sets of size 800.
b True IDI value for the new predictor. For c> 0, true IDI values were calculated by simulating a data set of size 1,000,000, calculating risks, and

applying equation 2.
c Coverage probability of nominal 95% bootstrap CIs using the percentile method. Results are based on 1,000 simulated data sets of size 800

using 1,200 bootstrap resamplings.

Figure 6. Illustration of the fact that the resampling-subjects boot-

strap does not provide valid inference for small values of the inte-

grated discrimination improvement (IDI) index. We simulated 1,000

data sets of size 1,500 using the logistic simulation model with c ¼ 0.

The dotted curve is the empirical sampling distribution of cIDI for these
1,000 data sets. For each data set, we also computed a bootstrap

distribution of cIDI, which we denote cIDIB , using 1,000 bootstrap sam-

ples. The solid curves show distributions of cIDIB for simulated data

sets with cIDI values in the top 30%. The graph shows cIDI values at the
70th (thinnest curve), 75th, 80th, 85th, 90th, and 95th (thickest curve)

percentiles across the 1,000 simulations.
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ĉ2 ¼ c2 þ 2cðĉ� cÞ þ ðĉ� cÞ2 � c2 þ 2cðĉ� cÞ

for large c or n, the distribution will eventually be centered
around c2 with a normal distribution and with variance pro-
portional to c2.

Our simulation studies show that these results for the
linear model hold approximately for logistic regression. In
the first part of the Results section, we saw that the null
distribution of cIDI has a chi-square-shaped distribution
and the sampling distribution appears approximately normal
for IDI away from zero.

An interesting result applies to a scenario in which risk
models have been estimated using a separate set of training
data. If a case-control validation sample is taken to estimate
the IDI using the existing (fixed) risk models, then the
formula for estimating Var

�cIDI� provided by Pencina
et al. (4) turns out to be correct (Appendix).

Monte Carlo inference for the IDI

Bootstrapping is a popular method with which to make
inferences about a parameter using an estimator whose sam-
pling distribution is not well characterized. Unfortunately,
bootstrapping is not always a reliable method for making
inferences about the IDI. Figure 5 and Figure 6 show why.
The sampling distribution of cIDI changes rapidly in shape
and scale as IDI approaches zero. The bootstrap estimates
the sampling distribution of cIDI under conditions as they
exist in the sample. If the true IDI in the population is zero,
then cIDI in the sample will typically be positive, and the
sampling distribution under conditions in the sample will be
substantially different from the sampling distribution under
the true, zero, IDI. The bootstrap distribution will be more
symmetrical, more spread out, and shifted to the right com-
pared with the true sampling distribution.

The third and sixth rows in Table 2 show that the boot-
strap has an anticonservative bias when the true incremental
value of a marker is null. In particular, for the alternative
logistic simulation model, the anticonservatism of the boot-

strap was severe, with only 74.1% of nominal 95% bootstrap
confidence intervals covering the true IDI value of zero.
We obtained similar results when 2 new markers were
simultaneously evaluated with the IDI, with unreliable,
anticonservative inferences for small values of the IDI
(Table 3).

DISCUSSION

In this paper, we investigated IDI as a measure of the
incremental value of a biomarker. In our simulation studies,
the published formula for estimating the standard error ofcIDI tended to underestimate the true standard error by a fac-
tor of approximately 2. Moreover, the sampling distribution
of cIDI for a marker with no predictive value is strongly
skewed toward positive values. We also considered testing
the null hypothesis H0: IDI ¼ 0. The null distribution of the
proposed z statistic does not follow a standard normal dis-
tribution. For evaluating the incremental value of a single
biomarker, 2-sided hypothesis testing using the z test is
conservative. More appropriate 1-sided hypothesis testing
is anticonservative, meaning that the IDI z test is prone to
giving false-positive results.

Most of the empirical results we have presented involved
fitting logistic regression models to data simulated under
a logistic model. This is an idealized situation where the
exactly correct model is fitted to the data and used to esti-
mate risks and the IDI. The fact that the sampling distribu-
tion of cIDI in such a highly idealized situation did not
conform to the expectations set out in equation 4 does not
bode well for its behavior with real data.

Our empirical and theoretical results indicate that a valid
test of H0: IDI¼ 0 that is based on cIDI will be very difficult
to develop. However, the hypothesis H0: IDI ¼ 0 is equiv-
alent to H0: P(DjY, W) ¼ P(DjY), where W is the candidate
biomarker and Y is the set of existing predictors (12). This
is fortunate, because it means that an IDI-based test is
unnecessary. Therefore, if a test of positive incremental
value is desired, we recommend using a test based on the

Table 3. Bootstrap Coverage in Logistic Simulations With 2 New Predictorsa

g2

g1

0 0.1 0.2 0.3 0.4

Bootstrap CI
Coverage, %b True IDIc

Bootstrap CI
Coverage, %

True IDI
Bootstrap CI
Coverage, %

True IDI
Bootstrap CI
Coverage, %

True IDI
Bootstrap CI
Coverage, %

True IDI

0 49.4 0

0.1 90.4 0.0007 91.8 0.0013

0.2 94.7 0.0026 94.8 0.0034 95.9 0.0052

0.3 95.9 0.0062 96.1 0.0069 96.5 0.0089 95.1 0.0128

0.4 97.5 0.0112 94.7 0.0117 96.5 0.0141 96.5 0.0179 95.1 0.0234

Abbreviations: CI, confidence interval; IDI, integrated discrimination improvement.
a Results for larger values of c1 and c2 had coverage probabilities near the 94%–96% range and are not shown.
b Coverage probability of nominal 95% bootstrap CIs using the percentile method. Results are based on 1,000 simulated data sets of size 800

using 1,200 bootstrap resamplings.
c True IDI values were obtained by simulating a data set of size 1,000,000, calculating risks, and applying equation 2.
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model. For example, if a regression function is used for
risk modeling, then the likelihood ratio test for the coef-
ficient of W in the risk model can be used to test the null
hypothesis H0: P(DjY, W) ¼ P(DjY). The likelihood ratio
test is implemented in all major statistical packages, can
be applied to single markers or sets of markers, and is the
uniformly most powerful test.

In certain cases in practice, IDI-based tests of the predic-
tiveness of a novel biomarker give small P values, whereas
tests based on regression coefficients or the AUC are far
from significant. For example, see Table III in the article
by Criqui et al. (16), Table 2 in the article by Blankenberg
et al. (17), or Table 3 in the article by Lin et al. (18). Since
all tests evaluate the same null hypothesis, a tempting con-
clusion is that the IDI-based test is more powerful than the
others (11). Unfortunately, the results in this paper lead to an
alternate explanation, namely that IDI-based results are in-
consistent with the other results because the test based on
zIDI is not valid.

We remind readers that the value of hypothesis testing
in evaluating new biomarkers is, at best, limited. The real
challenge in biomarker research is to identify markers
with a predictive capacity that is substantial enough to
improve clinical practice. The motivation for the develop-
ment of the IDI still stands: to find measures that quantify
the incremental value in a meaningful way. For investiga-
tors who find the IDI to be a useful measure, bootstrapping
to obtain confidence intervals may offer a reasonable
option for inference, as long as the true IDI is well away
from zero.
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APPENDIX

Derivation of Mathematical Results

Old and new models fitted to the same data

We consider adding a single new variable W that is fitted
by linear regression. There is no loss of generality in assum-
ing that the ‘‘old’’ model contains a single variable Y, so the
‘‘new’’ model contains W and Y. We can also assume that W
has a mean value of zero and is uncorrelated with Y in the
sample (otherwise, replace Y by Yb and W by W � E[WjY]).

Now

cIDI ¼ 1

pn

Xn
i¼1

�
l̂i1 � l̂i0

�
Di

� 1

ð1� pÞn
Xn
i¼1

�
l̂i1 � l̂i0

��
1� Di

�

¼ 1

npð1� pÞ
Xn
i¼1

�
l̂i1 � l̂i0

�
Di

� 1

ð1� pÞn
Xn
i¼1

�
l̂i1 � l̂i0

�

¼ 1

npð1� pÞ
Xn
i¼1

�
l̂i1 � l̂i0

�
Di :

The last equality holds because in any generalized linear
model with an intercept, the residuals sum to zero.

Since

l̂i1 � l̂i0 ¼ wi

X
i

�
WTW

��1
wiðDi � li0Þ;

we have

cIDI ¼ 1

npð1� pÞ
X
i

wi

X
j

�
WTW

��1
wjðDj � lj0ÞDi

and

cIDI ¼ 1

npð1� pÞ
X
i

�
WTW

��
WTW

��1
wiDi

3
X
j

�
WTW

��1
wj

�
Dj � lj0

�
¼ 1

pð1� pÞVar
�
W
�
ĉ2;

where ĉ is the coefficient of the proposed marker W in the
‘‘new’’ model.

Under the strong null hypothesis that neither the ‘‘old’’
marker Y nor the ‘‘new’’ marker W is predictive of disease,

then Var(DjY,W)¼ Var(D)¼ p(1 – p) and ĉ ~N
�
0; pð1�pÞ

nVar½W �

�
.

Therefore,

nVar½W �
pð1� pÞĉ

2~ v21

and

cIDI ~ 1

n
v21:

Under the more general null hypothesis that Y is predic-
tive but W is not, let r2 denote Var[DjY]. We then have

ĉ ~N
�
0; r2

nVar½W �

�
and

cIDI ~ r2

npð1� pÞv
2
1:

Under the alternative hypothesis, ĉ2 has a noncentral
chi-squared distribution with a noncentrality parameter
increasing with n and c. As the noncentrality parameter
increases, the distribution gets closer to normal, as shown
in Figure 5.

Bootstrap

We can explicitly demonstrate the failure of the boot-
strap in the simplest case in which the models are linear
and the ‘‘old’’ model is uninformative. The derivations
above show that estimated integrated discrimination im-
provement (IDI) then has a scaled noncentral chi-squared
distribution with noncentrality parameter nc2/2, that is,
v21ðk ¼ nc2=2Þ:

A bootstrap sample is a sample from a population in
which c ¼ ĉ, where ĉ is the estimate in the original data
sample. The distribution of statistics IDI* computed on the
bootstrap samples will correctly estimate the sampling dis-
tribution of IDI when c ¼ ĉ—that is, in large samples, con-
ditional on ĉ;

n3 IDI* ~ v21ðk ¼ nĉ2=2Þ:

When the new biomarker is uninformative, the sampling

distribution of n3 cIDI is a central chi-squared distribution,
that is, v21

�
k ¼ 0

�
; but the conditional sampling distribution

of the bootstrap replicates IDI* is n3 IDI*~ v21ðk ¼ nĉ2=2Þ:
Since nĉ2 does not converge to zero, the bootstrap distribution
does not converge to the sampling distribution. As Figure 6
shows, the bootstrap distribution of IDI* actually varies ac-

cording to the sample value of cIDI.
If c 6¼ 0, however, the distribution of ĉ2 is asymptotically

normal with mean c2 and variance proportional to 1/n and

depending smoothly on c. The sampling distribution of cIDI
is approximately normal with mean

1

pð1� pÞVar
�
W
�
c2

and variance proportional to 1/n and depending smoothly
on c.
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The conditional distribution of the bootstrap replicates
IDI* in a sample with c ¼ ĉ will thus have mean

1

pð1� pÞVar
�
W
�
ĉ2;

which converges to the mean of cIDI, and since the variance
depends smoothly on ĉ, it will converge to the variance of

the cIDI. Thus, the bootstrap gives the correct sampling dis-

tribution for cIDI in large samples when c 6¼ 0.

Conditioning on previously estimated risk scores

To prove the result at the end of the ‘‘Sampling Distribution

of cIDI: Theoretical Results’’ section (see text), assume 2 dif-
ferentiable functions x1 foldðxÞ and ðx;wÞ1 fnewðx;wÞ: If
we are conditioning on the test sample, these can be regarded
as fixed functions. They produce a pair of random variables
(P ¼ fnew(Y), Q ¼ fnew(Y, w)), and we also have the outcome
variable D. Because we are treating the 2 functions as fixed,
the triples (P, Q, Y) for each person are (conditionally) in-
dependent and identically distributed in the training sample.

The IDI is estimated by

IDI
�
P;Q;D

�
¼

P
iðPi � QiÞDiP

iDi
�
P

iðPi � QiÞð1� DiÞP
ið1� DiÞ

:

This is a Hadamard-differentiable function of the empir-
ical cumulative distribution function of (P, Q, D), as

long as the proportion of cases is bounded away from
0 and 1, so it is asymptotically normal and bootstrappable
and is consistent for the value defined by applying
the IDI() functional to the true distributions of P, Q, and
D (19).

The asymptotic variance of the estimated IDI will depend
only on the uncertainty in the numerators and so is the
variance of

1

p

�
P� Q

�
D� 1

1� p

�
Q� P

��
1� D

�
:

Under prospective sampling, this is still larger than the for-
mula given by Pencina et al. (4). However, under case-
control sampling with prespecified numbers of cases and
controls, the variance is the sum of variance contributions
from the case (D ¼ 1) and control (D ¼ 0) strata; so under
these circumstances, the asymptotic variance is

Var

�
1

p

�
P� Q

�
jD ¼ 1

	
þ Var

�
1

1� p

�
Q� P

�
jD ¼ 0

	
:

Therefore, the variance formula presented by Pencina
et al. (4) is correct if one develops the prediction models
in a separate sample, fixes the ‘‘old’’ and ‘‘new’’ risk
models to be those estimated from those samples, and then
estimates the IDI in a separate case-control validation
sample.
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