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� Background Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey
quarter-power scaling rules. Among the most famous of these rules is Kleiber’s (i.e. basal metabolic rates scale as the
three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the
three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has
been heavily criticized either on conceptual or empirical grounds.
� N,P-Stoichiometry Recent models predicting growth rates on the basis of how total cell, tissue, or organism
nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer,
particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf
mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf
phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-
stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species.
� Conclusions The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling
approach that conceptually links the subcellular ‘machinery’ of protein/ribosomal metabolism to observed growth
rates of uni- and multicellular organisms. Because the operation of this ‘machinery’ is basic to the biology of all life
forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling
rules.

Key words: Biomass allocation, Dobberfuhl models, leaf chemistry, leaf protein investment, relative growth rates,
quarter-power scaling rules, ribosomal RNA.

INTRODUCTION

Numerous quarter-power scaling rules appear to span all
levels of biological organization, from molecules to eco-
systems, across pro- and eukaryotes, plants and animals
(Hemmingsen, 1960; Peters, 1983; Calder, 1984, 1996;
Schmidt-Nielsen, 1984). For example, across animal spe-
cies ranging in size from that of a mouse to an elephant,
maximum life span in captivity, blood volume circulation,
fast muscle contraction, and a host of other phenomena,
each scale closely to the one-quarter power of body mass
(Lindstedt and Calder, 1981). Perhaps the most famous of
these rules is Kleiber’s, which states that basal metabolic
rates scale as the three-quarter power of body mass (Kleiber,
1932, 1961)—a scaling relationship that finds its analogue
in the allometry of growth rate versus body mass across the
polyphyletically and ecologically diverse unicellular algae
and terrestrial vascular embryophytes (Banse, 1976; Niklas,
1994; Niklas and Enquist, 2001).

Yet, the identification of an unambiguous mechanistic
explanation for the origin of these scaling rules remains
an open theoretical problem. Numerous explanations have
been advanced, but each has been viewed with a critical if
not jaundiced eye (e.g. Blaxter, 1965; Blum, 1977; Gray,
1981; Economos, 1982, 1983; Heusner, 1982; Feldman and
McMahon, 1983; Feldman, 1995; Prothero, 1986a). Among
the most recent of these theories is that of West, Brown and
Enquist, who assert that all quarter-power scaling rules (and
their one-quarter multiples such as three-quarters) emerge

from the interplay between the physical or geometric con-
straints resulting from three functional properties of every
biological network transport system (West et al., 1997,
1999, 2001). Specifically, their theory (the ‘WBE’ theory)
claims that all networks (a) are space-filling, hierarchical
branching systems, (b) have terminal branch elements that
are invariant in size, and (c), by virtue of natural selection,
minimize the energy required to transport and deliver nutri-
ents (and thus minimize either the time or distance nutrients
are moved).

As so many theories before it, the WBE theory has been
heavily criticized on empirical, theoretical and even strictly
mathematical grounds (e.g. Dodds et al., 2001; Darveau
et al., 2002; Weibel, 2002). Arguably, the first assumption
(i.e. that biological delivery networks are ‘fractal’ in nature)
is consistent with the ‘self-similarity’ typically observed
when branched nutrient networks within multicellular
organisms are dissected and numerically quantified. How-
ever, if the WBE theory is valid across all levels of bio-
logical organization, from that of molecules to ecosystems
as claimed by its authors, fractal-like delivery networks must
exist at each level. This is difficult to imagine for some (e.g.
molecules) and undocumented for others (e.g. organelles
and ecosystems). Similar concerns exist for the two remain-
ing assumptions of the WBE theory, e.g. it has yet to be
established that capillaries, bronchioles and terminal xylary
elements are invariant in size or that they minimize the time
and energy required to exchange mass or energy.

Despite these concerns (or perhaps because of them), the
WBE theory has engendered a renaissance in the field of* For correspondence. E-mail kjn2@cornell.edu
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allometric theory and empirical enquiry—one in which
alternative theories for the existence of quarter-power scal-
ing rules continue to be sought. It is in this context that
recent developments in modelling the effects of nitrogen
and phosphorus allocation patterns on protein synthesis
rates and thus ‘growth’ are particularly exciting. These
models emerge from this perspective that, irrespective of
phyletic affinity or ecological preference, the growth rate of
any kind of organism is positively correlated with ribosome
number and rate of activity and negatively correlated with
protein concentration (Dobberfuhl, 1999; Sterner and Elser,
2002; Elser et al., 2003; Ågren, 2004; Vrede et al., 2004).
Conceptually, the amounts of ribosomes and proteins are
thought of as respective measures of an organism’s protein-
production ‘machinery’ and the ‘overhead’ that must be
produced per unit time to maintain a constant growth
rate. Nitrogen and phosphorus (N and P) stoichiometry is
emphasized, because large fractions of the total N and P are
allocated to the construction of proteins and rRNA. Thus,
N,P-stoichiometry is predicted to correlate with growth rate
at the level of cells, tissues or the whole organism
(Dobberfuhl, 1999; Sterner and Elser, 2002; Vrede et al.,
2004). Specifically, growth rates should correlate positively
with increasing rRNA (and P) investments relative to pro-
tein (and N) investments.

This prediction is particularly relevant to three previously
reported allometric relationships for plants (Niklas and
Enquist, 2001, 2002). First, annual growth rates in body
mass across phyletically and ecologically diverse species
appear to scale as the three-quarters power of body size.
Secondly, growth rates scale linearly (isometrically) with
the capacity to intercept sunlight. And, thirdly, total leaf N
appears to scale as the three-quarters power of total leaf P,
across and within some species (Niklas and Cobb, 2005;
Niklas et al., 2005). The goal of this paper is to review these
relationships and to explore them empirically with the aid
of a recently expanded database for non-woody and woody
plant species ranging across 11 orders of magnitude in
total body size.

A STATISTICAL PROLEGOMENA

However, before proceeding with this review, it is important
to consider first how allometric scaling relationships are
adduced statistically, particularly because these techniques
are used to evaluate the numerical parameters that describe
all allometric relationships, including those discussed
throughout this paper (e.g. Tables 1 and 2).

Each of the biological scaling relationships referred to
as ‘power rules’ complies mathematically with the formula

Yo = bYa
a ð1Þ

where Yo and Ya are the variables plotted on the ordinate and
abscissa axes, respectively, b is the normalization constant
and a is the scaling exponent. In most cases, but not all,
Ya is some measure of mass (typically but not invariably
expressed in units of carbon mass). When a = 1, eqn (1)
describes an isometric relationship, i.e. one that plots as
a straight line on both linear and logarithmic axes. When

a 6¼ 1, eqn (1) describes an allometric relationship, i.e. one
that plots as a linear function on logarithmic axes. Logar-
ithmic transformation of eqn (1) shows that logb and a are
the Yo-intercept and the slope of the log–log linear allomet-
ric relationship, respectively, i.e.

logYo = logb + alogYa ð2Þ
The linearization of data by means of logarithmic trans-
formation has become a conventional practice in allometric
studies, in part because it minimizes the sum of squared
residuals for the transformed as opposed to the original
function. It should be noted, however, that regression
parameters estimated in this way do not invariably provide
the best fit of data to a regression model compared with
minimizing the squared residuals for the actual function by
using nonlinear regression protocols. Analyses of residuals
are required to determine whether log–log linear or log–
log nonlinear functions optimize the goodness-of-fit. This
protocol does not appear to be a ‘standard practice’, perhaps
because most allometric theories assert (or require) the
existence of numerically unique scaling exponents, which
do not exist for log–log nonlinear relationships.

T A B L E 1. Reduced major axis regression scaling exponents,
allometric constants, and their respective 95% confidence
intervals (see eqns 3–6) for log10-transformed annual growth
rates GT, light interception capabilities H, and total dry body
mass MT of unicellular algae, non-woody plants, and woody

plants (see Figs 1 and 2)

aRMA (95 % CI) logbRMA (95 % CI) r2 F

Unicellular algae (H gauged by cell pigment concentration CP), N = 68
H vs. GT 0.95 (0.87; 1.03) �3.51 (�4.43; �2.60) 0.886 488
GT vs. MT 0.75 (0.73; 0.76) �0.91 (�1.10; �0.70) 0.995 9745
H vs. MT 0.71 (0.64; 0.78) �4.38 (�5.25; �3.50) 0.876 453

Non-woody species (H gauged by standing leaf mass ML), N = 1147
H vs. GT 1.01 (0.97; 1.06) �0.91 (�1.01; �0.80) 0.903 3957
GT vs. MT 0.99 (0.95; 1.04) 0.51 (0.39; 0.63) 0.907 3046
H vs. MT 1.01 (0.99; 1.03) �0.39 (�0.46; �0.32) 0.975 8144

Woody species (H gauged by standing leaf mass ML), N = 265
H vs. GT 0.90 (0.84; 0.97) �0.11 (�0.19; �0.03) 0.790 545
GT vs. MT 0.77 (0.71; 0.83) �0.74 (�0.87; �0.61) 0.804 581
H vs. MT 0.70 (0.64; 0.75) �0.78 (�0.91; �0.65) 0.766 1065

T A B L E 2. Reduced major axis regression scaling exponents,
allometric constants, and their respective 95% confidence
intervals (see eqns 3–6) for log10–transformed data of total
leaf nitrogen, phosphorus, and carbon content (MLN, MLP

and MLC, respectively)

aRMA (95 % CI) log bRMA (95 % CI) r2 F

Across herbaceous species, N = 131
MLN vs. MLC 1.06 (0.95; 1.17) �1.67 (�1.76; �1.58) 0.941 2058
MLP vs. MLC 1.37 (1.27; 1.48) �2.61 (�2.70; �2.52) 0.968 3881
MLN vs. MLP 0.78 (0.72; 0.85) �0.74 (�0.72; �0.76) 0.948 2339

Eranthis hyemalis, N = 17
MLN vs. MLC 1.00 (0.98; 1.03) �1.33 (�1.39; �1.26) 0.996 3929
MLP vs. MLC 1.37 (1.32; 1.42) 0.77 (0.65; 0.90) 0.993 2283
MLN vs. MLP 0.73 (0.70; 0.76) �1.89 (�1.97; �1.82) 0.996 3425

Across Reich and Oleksyn (2004) data set, N = 7445
MLN vs. MLP 0.73 (0.71; 0.75) 1.08 (1.07; 1.08) 0.335 3753
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The objective of the vast majority of allometric studies
is to determine the numerical values of logb and a. When
a predictive relationship is sought, simple ordinary least
squares (OLS) regression analysis can be used. When the
objective is to establish a functional relationship between Yo

and Ya, as is generally in case, OLS regression analysis is
ill equipped for this purpose, in part because it is based
on the assumption that Ya is biologically independent of Yo

and that it is measured without error. Three regression meth-
ods have been suggested to overcome this limitation, i.e.
Bartlett’s three-group method, principal axis regression,
and reduced major axis regression (Sokal and Rohlf,
1980). Considerable controversy revolves around which
of these methods is the most appropriate (Smith, 1980;
Harvey, 1982; Seim, 1983; Rayner, 1985; Prothero,
1986b; McArdle, 1988, 2003; Jolicoeur, 1990). This issue
is not trivial, especially when the goal is to ‘test’ when
empirically determined scaling exponents agree statistically
with those predicted by a particular theory, because the
numerical values of a and logb depend on the regression
techniques used and because different techniques can pro-
duce significantly different numerical values even for the
same data set.

Space precludes a detailed discussion of the merits
and detractions of each of the three regression methods.
However, reduced major axis (RMA) regression analysis
has emerged as a ‘standard’ allometric technique over the
past few years. Statistical software is available to perform
RMA regression analyses, but access to this software is
not critical, because OLS regression summary statistics
provide all the necessary information to compute the
numerical values of a and logb, and their corresponding
95 % confidence intervals.

Specifically, these regression parameters can be com-
puted using the formulas

aRMA = aOLS=r ð3Þ

and

log bRMA = log Yo �aRMA log Ya ð4Þ

where aRMA is the (reduced major axis) scaling exponent,
aOLS is the OLS regression slope, r is the OLS correlation
coefficient, log bRMA is now called the allometric constant,
and log Y denotes the mean value of log Y. The correspond-
ing 95 % confidence intervals of these two regression
parameters are computed using the formulas

aRMA 6 tN�2

MSE

SSa

� �1=2

ð5Þ

and

log bRMA 6 tN�2 MSE
1

N
+

log Y
2

a

SSa

 !" #1=2

ð6Þ

where MSE is the OLS mean square error, SSa is the
OLS sums of squares for log Ya, N is the sample size,
and tN�2 = 1�96 when N – 2 > 120.

Eqns (3)–(6) are used throughout this paper to evaluate
the numerical values of scaling exponents, allometric con-
stants, and their respective 95 % confidence intervals (see
Tables 1 and 2). As noted, the data base used to establish
these numerical values has been recently expanded in terms
of species number, body size range and phylogenetic divers-
ity compared with that used previously to establish scaling
exponents (e.g. Niklas, 1994, 2004; Niklas and Enquist,
2001, 2002).

LIGHT, GROWTH AND BODY SIZE

Two scaling relationships appear to cut across phyletically
diverse unicellular algae and tree-sized embryophytes.
Growth in dry mass per individual per year (‘annual
growth’, GT) scales isometrically with respect to the
capacity to intercept sunlight (quantified by pigment
concentration per cell for unicellular algae, CP, and by
standing leaf mass for tree species, ML), and annual growth
scales as the three-quarters power of body mass (total cell
or organism dry mass, MT) (Banse, 1976; Niklas, 1994,
2004; Niklas and Enquist, 2001). Respectively, these
scaling relationships are expressed by the isometric and
allometric formulas

H = b0GT ð7Þ

and

GT = b1M
3=4
T ð8Þ

where H denotes CP or ML and allometric constants are
distinguished from each other by different numerical sub-
scripts. Combining eqns (7) and (8) the prediction is
obtained that the ability to harvest sunlight as gauged by
CP or ML should remain proportional to the three-quarters
power of total body mass, i.e.

H = b2M
3=4
T ð9Þ

where b2 = b0b1. These log–log linear scaling relationships
are illustrated in Figs 1 and 2 with newly acquired data.

The isometric relationship between H and GT represented
by eqn (7) makes some intuitive sense. Even though the
ability to ‘harvest sunlight’ and its corresponding ‘energy
use efficiency’ are very different biophysical phenomena,
it is not unreasonable to expect growth rates to correlate
linearly with the ability to capture radiant energy. In con-
trast, it is far less obvious why either annual growth rate or
light-harvesting ability should scale as the three-quarters
power of body mass. Early workers exploring the relation-
ship between basal metabolic rates across animals differing
in body size expected a two-thirds scaling exponent,
because it was assumed that the ability of cells or entire
organisms to exchange mass or energy with the environment
is governed by body surface area (which scales as the square
of any linear reference dimension L) and that the demand
for nutrients is gauged by body volume (which scales as the
cube of L). Of course the two-thirds scaling relation-
ship between surface area and volume holds true only for
a series of geometrically identical objects that retain the
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same shape as they increase in size—two conditions that are
repeatedly violated by unicellular and multicellular organ-
isms, either ontogenetically or phylogenetically.

Regardless of the mechanistic explanation for why the
three scaling relationships exist, each receives reasonably
strong statistical support when ‘tested’ against empirically
observed trends for phylogenetically diverse unicellular
algae and tree-sized dicots and conifers (Table 1). For
these organisms, the 95 % confidence intervals of the
slope of the log–log linear relationship between light har-
vesting capability and annual growth approach or include
unity. Likewise, the intervals of the slope of the log–log
linear relationship between annual growth and total body
mass include 0�75. Thus, the proportional relationships
summarized by H / GT / MT

3/4 are reasonably accurate
for unicellular algae and tree-sized plants.

In pointed contrast, the allometry of non-woody plants
(i.e. herbaceous species and 1-year old-dicot and conifer
tree species) deviates from that predicted by eqns (8) and
(9) and observed for unicellular algae and tree-sized indi-
viduals, because it is strongly isometric in terms of all three
biological variables, i.e. H / GT / MT (Table 1). In this
sense, the three-quarters scaling ‘rule’ asserted for all uni-
cellular and multicellular plants and animals is not ‘invari-
ant’ as is sometimes claimed (although it cannot escape
attention that isometry can emerge as a ‘quarter-power
rule’ in the most general sense).

LEAF N, P STOICHIOMETRY

That growth does not invariably scale as the three-quarters
power of body mass is evident from the analyses of data
for non-woody vascular plants presented in the previous
section. Nevertheless, the claim that annual growth across
ecologically and phyletically diverse unicellular and mul-
ticellular photoautotrophic eukaryotes scales isometrically
or nearly so with respect to light-harvesting ability (see
Niklas and Enquist, 2001, 2002) is statistically robust
(Table 1). In the case of unicellular photoautotrophs, H is
measured in units of photosynthetic pigment concentrations
per cell, CP. However, for terrestrial embryophytes, H is
measured in terms of standing dry leaf mass per plant, ML.
Thus, annual growth appears to be inexorably linked to the
‘machinery’ of photosynthesis in some very basic way that
cuts across otherwise sharply defined phyletic boundaries.

This linkage probably exists at numerous metabolic
and structural levels, but the view advocated here is that
it is sensitive to the manner in which nitrogen and phos-
phorus is allocated in light-harvesting structures. This per-
spective is based on the comparatively strong scaling
relationships that exist between total leaf carbon mass
(MLC) and total leaf nitrogen and phosphorus (MLN and
MLP, respectively)—relationships that appear to obey
their own quarter-power ‘rules’ across and within those
species that have been examined in sufficient detail.

For example, based on stoichiometric data collected from
131 herbaceous species, including C3 and C4 species, Niklas
et al. (2005) report that leaf nitrogen content scales almost
isometrically with respect to increasing leaf carbon content,
whereas leaf phosphorus content scales as the four-thirds
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power of leaf carbon content (Fig. 3A and Table 2). For
these species, it follows from MLN / MLC and MLP / MLC

4/3

that MLN / MLP
3/4 (Fig. 3B and Table 2). Although stoi-

chiometric analyses of plant conspecifics differing in size
are sparse, those few data that are available indicate that
intraspecific trends may abide by the same ‘rules’. For
example, in a recent study of Eranthis hyemalis (a perennial
member of the Ranunculaceae), Niklas and Cobb (2005)
report scaling exponents for MLN, MLP and MLC relation-
ships that are statistically indistinguishable from the pro-
portional relationships MLN / MLC and MLP / MLC

4/3 and
MLN / MLP

3/4 (Fig. 4A and Table 2).
Whether these scaling relationships are ‘universal’ prop-

erties of vascular plant biology remains problematic.
Based on an extensive world-wide survey of leaf N and
P composition, Wright et al. (2004) report that leaf nitrogen
scales roughly as the two-thirds power of leaf phosphorus
content. In contrast, using an expanded version of the
leaf N and P data reported by Reich and Oleksyn (2004)
(consisting of 7445 entries for individual species reflecting
conspecifics differing in age), regression analysis of MLN

versus MLP yields a scaling exponent of 0�73 with confi-
dence intervals that contain the numerical value of three-
quarters but exclude that of two-thirds (Fig. 4B and Table 2).
This inconsistency may be the result of phyletic effects (i.e.
biases introduced by differences in the taxonomic composi-
tion of the data sets used), but, regardless of the reason, it
remains clear that the relationship between leaf N and P
content is allometric and governed by the generic formula

MLN = b3 M
a<1�0
LP ð10Þ

GROWTH AND A SIMPLE N, P-MODEL

Equation (10) takes on significance when it is wedded to a
recently developed stoichiometric model for predicting the
relative growth rates of diverse organisms based on their
cell or tissue N and P contents.

Dobberfuhl (1999) first proposed that growth depends on
total body nitrogen (NT) and total body phosphorus (PT)
allocation patterns to protein and ribosomal RNA (rRNA)
construction, respectively (also see Sterner and Elser, 2002;
Ågren, 2004; Vrede et al., 2004). This model conceptu-
ally relates relative growth rates to N, P stoichiometry by
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envisioning proteins as the ‘overhead’ that is required to
achieve growth and rRNA as the protein-output ‘machinery’
required to maintain or recycle it. Dobberfuhl and others
noted that, when an organism maintains a constant chemical
composition, its relative growth rate m can be mathemati-
cally expressed in terms of the amounts and rates of change
of carbon C, nitrogen N and phosphorus P content by the
formula

m =
1

C

dC

dt

� �
=

1

N

dN

dt

� �
=

1

P

dP

dt

� �
ð11Þ

For any one of these essential substances, designated here
by X, eqn (11) can be approximated by

m =
1

X

dX

dt

� �
= ln

X2

X1

� �
· t2 � t1ð Þ�1 ð12Þ

where X2 is the total cell, tissue or organismal concentration
of substance x at time t2 and X1 is the total concentration of
x at time t1 (see Hunt, 1990). If the substance x is some
measure of protein synthesis, eqn (12) can be recast as

m = ln
fNNT + ksreFfPPT

mr

� �
fNNT

2
4

3
5 · t�1 ð13Þ

where fN is the decimal fraction of NT invested in proteins,
ks is the protein synthesis rate per ribosome, re is the protein
retention efficiency, F is the decimal fraction of total RNA
allocated to rRNA, fP is the decimal fraction of PT invested
in RNA, mr is the mass of an average ribosome, and hence-
forth t denotes the time interval t2 – t1 (Dobberfuhl, 1999;
Vrede et al., 2004).

Using estimates or published numerical values of the vari-
ables required by this model, eqn (13) (or its variants) has
been used to successfully predict the relative growth rates of
different unicellular algae and small aquatic animals (e.g.
Nielsen et al., 1996; Klausmeier et al., 2004; Vrede et al.,
2004) despite the assumptions that NT and PT allocation
patterns are ontogenetically invariant, that balanced growth
has been achieved, and the supposition that resources are not
limiting.

Importantly, the complex stoichiometry redacted by
eqn (13) can be integrated with allometric theory by noting
that the ability to harvest light scales isometrically with res-
pect to total annual plant growth across unicellular algae and
vascular plant species (see Table 1; Niklas and Enquist,
2001). For vascular plants, this ability is gauged by standing
leaf dry mass ML. It is not unreasonable to suppose therefore
that the relative growth rate of leaves mL may provide a
reliable gauge of the relative growth rate of the entire plant
body. Accordingly, if eqn (13) is generally valid across all
manner of life forms, mL should be governed by total leaf
nitrogen and phosphorus such that eqn (13) takes the form

mL = ln
fNMLN + ksreFfPMLP

mr

� �
fNMLN

2
4

3
5 · t�1

= ln 1 +
ksreF

mr

fP

fN

� �
MLP

MLN

� �� �
· t�1 ð14Þ

Finally, combining this last formula with eqn (10) provides
a quantitative description of leaf relative growth rates in
terms of the allometry of total leaf nitrogen and phosphorus:

mL = ln 1 +
ksreF

mr

� �
fP

fN

� �
M1�a

LP

b3

� �
· t�1

= ln 1 +
ksreF

mr

� �
fP

fN

� �
M

1
a�1

LN

b
1
a
3

" #
· t�1 ð15Þ

Note that eqn (15) predicts that leaf relative growth rates
will increase across species with either increasing leaf nitro-
gen or phosphorus allocations if and only if a < 1�0.

TESTING THE MODEL

Equation (15) has three significant attributes. First, it
directly incorporates an allometric relationship for leaf
nitrogen and phosphorus allocation; secondly, it relates
the N, P-stoichiometry of leaves directly to relative growth
rates (and thus prior allometric theory treating the relation-
ship between leaf dry mass and total plant annual growth);
and, thirdly, it can be examined empirically based on
observed leaf growth rates, thereby setting limits on the
numerical values of a and other allometric or physiological
parameters.

However, this model can be evaluated empirically only if
the numerical values of all physiological variables are stipu-
lated. For bacteria and animals, the values of some of these
variables are comparatively well known, i.e. ks = 2�5 ·
10�11 mg protein ribosome�1 d�1, re = 0�60, F = 0�80
and mr = 4�53 · 10�12 mg rRNA ribosome�1 (Campana
and Schwartz, 1981; McKee and Knowles, 1987; Mathers
et al., 1993; Sadava, 1993; Vrede et al., 2004). Assuming
that these values are equally applicable to plants, it follows
that ks re F/mr = 2�648. Prior work also shows that between
16 % and 27 % of total leaf nitrogen is incorporated in
Rubisco (Evans, 1989) and that, depending on whether
ambient light conditions are high or low, between 15 %
and 60 % of total leaf nitrogen is found in chloroplast
thylakoids [pigment–protein complexes, electron transport
constituents, reaction centres, components of the electron
transport chain (particularly cyto b/f ) and ferredoxin]
(Evans, 1989). Based on published nitrogen allocation
to Rubisco and thylakoids, it is reasonable to suppose
that fN � 0�55 across otherwise diverse species.

Finally, from prior analyses of 131 herbaceous species,
the allometry of leaf nitrogen with respect to leaf phospho-
rus is reasonably well approximated by the formula MLN =
0�18 MLP

3/4 (see Table 2 and Fig. 3B) (Niklas et al., 2005).
Inserting these values into eqn (15) gives a model for the
relative growth rates of leaves that lack the numerical value
of only one parameter, the decimal fraction of total leaf P
contributing to RNA:

mL = ln 1 + 47�37fp M
1=3
LN

h i
· t�1

= ln 1 + 26�75fp M
1=4
LP

h i
· t�1 ð16Þ
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Assuming that this decimal fraction varies little or not at all
across species, this model predicts that mL will increase as
a function of either increasing MLN or MLP that, in turn,
should increase with leaf size as measured in terms of leaf
carbon mass. It also predicts that mL should decrease as
a function of increasing MLN/MLP. Unfortunately, reliable
estimates for fP for vascular plant species are currently
unavailable. However, eqn (16) can be used to calculate
mL using different values of fP and the results can, in
turn, be compared with observed leaf growth rates to set
limits on the range of fP-values that may occur in leaves.

Despite its simplicity and numerous assumptions, the
behaviour of the model accords reasonably well with
empirical trends observed for 131 ecologically and phyleti-
cally diverse herbaceous species (for details, see Niklas
et al., 2005). For these plants, observed mL scales as the
0�33 power of total leaf nitrogen (r2 = 0�72), as the 0�25
power of total leaf phosphorus (r2 = 0�76) and as the 0�22
power of total leaf carbon mass (r2 = 0�78; see Fig. 5).
Likewise, as predicted, mL decreases as the quotient MLN/
MLP increases (Fig. 6). And, finally, the OLS regression
curve for predicted versus observed mL is log–log linear
with a slope very near unity.

CAVEATS

Nevertheless, considerable variation exists when observed
leaf growth rates are plotted as a function of leaf carbon
mass (see Fig. 3A). This feature can be attributed to a
number of factors not addressed in the model but that
are nevertheless of great ecological importance. Among
the more obvious of these are species-specific differences
or ecotypic variation in protein synthesis rates or retention
efficiencies (Mathers et al., 1993; Sadava, 1993; Güsewell,
2004), differences in the fractional allocation of leaf
nitrogen to proteins as a consequence of leaf age or differ-
ent ambient light intensities (Evans, 1989; Ryser et al.,
1997), morphological and anatomical differences in leaf

construction (Nielsen et al., 1996), recruitment of N and
P from older organs during early growth (Meyer and Tukey,
1965), differences in leaf tissue ploidy and nitrogen-use
efficiency (Brown, 1978), and changes in N or P allocation
to leaf components during leaf ontogeny.

Despite the remarkable success of the model in light of
the undoubted influence of these and other physiological
and ecological variables on growth, there are grounds for
concern. As noted, one of the attributes of eqn (16) is that it
can be challenged empirically by comparing the numerical
values of physiological variables used to predict observed
growth rates with those that are actually reported in the
literature. One of these variables is the decimal fraction
of total body phosphorus allocated to RNA construction,
denoted by fP. Inspection of Fig. 5 indicates that the relative
growth rates observed for 131 plant species plot between
those predicted by eqn (16) when fP is a priori set equal to
0�05 and 0�15. The fact that all observed leaf growth rates
plot within the ‘corridor’ defined by these two values sug-
gests that between 5 % and 15 % of total leaf phosphorus is
invested in the construction of RNA.

However, this range does not resonate well with fP-values
reported for other life forms such as bacteria, small aquatic
heterotrophs, or unicellular algae. For these species, the
decimal fraction of total cell or body phosphorus committed
to RNA ranges between 0�20 and 0�90 (with an average
value of 0�50 for animals) (see Rhee, 1978; Elser et al.,
2003). Therefore, the range 0�05 < fP < 0�15 identified by
the model to ‘contain’ the leaf growth rates of vascular
plants is unusually low.

This discrepancy may be the result of systematically
underestimating plant growth rates because of their ability
to store and annually recycle large pools of N and P.
Specifically, the relative growth rates plotted in Fig. 5
are based on the difference in leaf N and P levels measured
early and late in the growing season (see Niklas et al., 2005).
In retrospect, this procedure may have introduced a system-
atic bias because there is substantial evidence that vascular
plants recruit N and P from older organs as new tissues and
organs are produced during the early growth season (e.g.
Mochizuki and Hanada, 1958; Meyer and Tukey, 1965;
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F I G . 5. Log–log bivariate plot of relative leaf growth rate versus total leaf
carbon content (mL and MLC, respectively) for 131 herbaceous species
(for details, see Niklas et al., 2005). The continuous lines denote
predicted mL using eqn (16) and assuming that the decimal fraction of
total leaf phosphorus allocated to the construction of RNA (fP) equals

0�05 and 0�15.
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MLP, respectively) for 131 herbaceous species (for details, see Niklas
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Taylor, 1967; Taylor and May, 1967; Niklas and Cobb,
2005) and resorb substantial quantifies of N and P toward
the end of the growing season, e.g. an average of 50 % of
total P is reabsorbed before leaf senescence (50 % of which
comes from nucleic acid hydrolysis; see Chapin and
Kedrowski, 1983; Aerts, 1996). Therefore, N and P levels
in newly formed leaves may be significantly higher than
those reached once constant growth rates are achieved (thus
violating a basic assumption of the model), and N and P
levels may be on the decline even before visible signs of leaf
senescence. If leaf relative growth rates are systematically
underestimated for these (or any other) reasons, the upper
and lower fP-levels identified by the model to fit the data
would be likewise underestimated.

VARIATION AND FUTURE DIRECTIONS

That significant differences in leaf N,P-stoichiometry exist
even among vascular plants is strongly suggested by the
allometric and stoichiometric trends reviewed here. As
noted, the relationships between total leaf mass, annual
growth rates, and total body mass differ between non-
woody and woody plants (see Table 1). Across non-
woody plants, total leaf mass scales isometrically with
respect to both annual growth rate and total body mass
(i.e. ML / GT / MT), whereas, across woody plants, leaf
mass scales as the three-quarters power to total body mass
(i.e. ML /GT /MT

3/4). Yet, based on the data presented here
and elsewhere, total leaf mass (in units of carbon mass)
scales isometrically with respect to total leaf nitrogen
and allometrically albeit roughly as the three-quarters
power of total leaf phosphorus (i.e. MLC / MLN / MLP

3/4)
(see Table 2). Assuming that these relationships are defin-
itive, it follows that total annual growth rates should scale
across all species as the three-quarters power of total leaf
phosphorus across (i.e. GT /MLP

3/4). However, it also follows
that total leaf phosphorus should increase as the four/thirds
power of the total body mass for non-woody plants (i.e. MLP

/ MT
4/3) but scale isometrically with respect to the body

mass for woody plants (i.e. MLP / MT).
These predictions have yet to be explored empirically,

but they are in accord with the observation that much of
the total body mass of woody plants is composed of physio-
logically inert material (heartwood) that increases in vol-
ume fraction with each passing year. Indeed, we need to
know much more about the allometry and stoichiometry of
what may be called ‘necromass’—organic constituents
that contribute to total body mass but that do not participate
in metabolic activity or resource utilization, e.g. cell wall
materials and secondary metabolites sequestered in the
lumens of dead cells, which continue to accumulate
throughout the lifetime of the multicellular individual.
We also need to know much more about the allometry of
annual biomass accumulation with respect to the N, P stoi-
chiometry of meristematic tissues, both for herbaceous
non-woody and woody species.

It is also clear that the juxtaposition of allometric theory
and observation with the potential insights gained from N,
P stoichiometric models is in its infancy. This approach
clearly offers great promise (if for no other reason than

that it helps to identify and quantify interdependencies
across every level of biological organization, from mole-
cules to ecosystems, and across bacteria to multicellular
eukaryotes) but it is perhaps best viewed as a heuristic
device with which to explore important conceptual issues.
To be more effective, this juxtaposition would benefit
greatly from more detailed measurements of how stoichi-
ometric parameters vary ontogenetically and phylogeneti-
cally. In particular, more detailed data sets are needed
for protein synthesis rates per ribosome, protein retention
efficiencies, and the proportion of total P and N commit-
ted, respectively, to the construction of rRNA and non-
structural proteins. Mutants of unicellular algae, like
those of Chlamydomonas, and parasitic plants with a
‘leaf-stem’ construction, like Monotropa, should be used
to ‘dissect’ how total N and P cell or tissue contents are
allocated to the construction of different parts of the pho-
tosynthetic machinery. Perhaps in this way, we will be able
to explain why tissue and organ nitrogen levels and dry mass
scale as the three-quarters power of phosphorus and why
so many other phenomena seem to obey similar quarter-
power rules.
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