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TUFTED PUFFINS (FRATERCULA CIRRHATA) RESPOND TO 
PREDATION DANGER DURING COLONY APPROACH FLIGHTS

B��A��� A������,1,3 R���	� C. Y���
���,1 ��� B���� D. S���2

1Centre for Wildlife Ecology, Department of Biological Sciences, Simon Fraser University, Burnaby, 
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A
������.—In spite of their putative importance in the evolution of certain traits 
(e.g., nocturnality, coloniality, cliff  nesting), the eff ects of aerial predators on behav-
ior of adult seabirds at colonies have been poorly investigated. We hypothesized 
that Tu� ed Puffi  ns (Fratercula cirrhata) respond to danger posed by aerial preda-
tors by modifying their behavior to mitigate danger. We observed Tu� ed Puffi  ns 
making repeated colony fl y-ins and departures and characterized (1) the timing 
of this behavior, (2) the activity rate (number of birds arriving or departing), and 
(3) the risk-level of activity, with respect to predation danger posed by Bald Eagles 
(Haliaeetus leucocephalus) and Peregrine Falcons (Falco peregrinus). As we predicted, 
we found that Tu� ed Puffi  ns (1) dilute danger by synchronizing their fl y-in and 
departure activities, (2) reduce fl y-in and departure activity rates when predators 
are present, and (3) switch to lower-risk fl y-in activities (e.g., staying over water 
where they have an escape route from an aerial a� ack) when predators are present. 
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Réaction de Fratercula cirrhata au Danger de Prédation au cours des Vols d’Approche de 
la Colonie

R����.—Malgré leur importance putative dans l’évolution de certains caractères 
(e.g. nocturnalité, colonialité, nidifi cation sur une falaise), les eff ets des prédateurs 
aériens sur le comportement des oiseaux de mer adultes dans les colonies ont peu 
été étudiés. Nous avons posé l’hypothèse que les Macareux huppés (Fratercula 
cirrhata) réagissent au danger que représentent les prédateurs aériens en modifi ant 
leur comportement pour a� énuer le danger. Nous avons observé des Macareux 
huppés eff ectuant des arrivées et des départs répétés et nous avons caractérisé (1) 
la synchronisation de ce comportement, (2) le taux d’activité (nombre d’oiseaux 
arrivant ou qui� ant la colonie) et (3) le niveau de risque de l’activité en relation 
avec le danger de prédation représenté par les Pygargues à tête blanche (Haliaeetus 
leucocephalus) et les Faucons pèlerins (Falco peregrinus). Comme nous l’avions prédit, 
nous avons trouvé que les Macareux huppés (1) diluent le danger en synchronisant 
leurs activités d’arrivée et de départ, (2) réduisent le taux d’activité lorsque les 
prédateurs sont présents et (3) reviennent à des activités d’arrivée à risque plus 
faible (e.g. restent sur l’eau où ils peuvent avoir une voie pour s’échapper en cas 
d’une a� aque aérienne) lorsque les prédateurs sont présents.
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I� ��� ����, predator–prey research has pri-
marily been concerned with the lethal eff ects of 
predators on their prey, but predators also have 
important nonlethal eff ects on their prey. There 
is a growing body of literature on the ecology of 
fear, and the eff ect that the perception of danger 
can have on the behavior, and ultimately on 
the life-history strategy and numbers, of a prey 
species (Brown et al. 1999). When animals per-
ceive danger, they may modify their behavior 
to reduce that danger (Lima and Dill 1990, Lank 
and Ydenberg 2003), which in turn can aff ect 
life-history decisions made by an individual. 
Thus, consideration of fear is a critical compo-
nent in understanding an animal’s ecology, even 
when actual mortality events are rare.

Predation danger can alter an animal’s forag-
ing decisions (Lima and Dill 1990), migratory 
decisions (Lank and Ydenberg 2003), and even 
life history (Lima 1987). Seabird biology has 
focused on foraging and breeding, with rela-
tively li� le consideration of the nonlethal eff ects 
of predators at the colonies (but see Finney et al. 
2003). Predation danger may be an important 
factor aff ecting nest-site selection (Ne� leship 
1972, Finney et al. 2003), reproductive eff ort 
and provisioning (Harfenist and Ydenberg 
1995), and general behavior in seabirds. Tu� ed 
Puffi  ns (Fratercula cirrhata; herea� er “puffi  ns”) 
are highly wing-loaded (Livezey 1988) and tend 
to be awkward fl yers and even more awkward 
landers (Pia�  and Kitaysky 2002). Puffi  ns face 
predation danger when fl ying into the colony, 
especially with a load of food for chick provi-
sioning. While provisioning, they are at risk for 
kleptoparasitism (St. Clair et al. 2001) and aerial 
predation (Pia�  and Kitaysky 2002).

The dangers of approaching the colony make 
one particular behavior of puffi  ns very puz-
zling: repeated fl y-in behavior. Throughout 
the breeding season puffi  ns can be observed 
circling toward and then away from the colony, 
tracing an ellipse over the nearshore water adja-
cent to the colony. Puffi  ns appear to be repeat-
edly approaching the colony, as though with 
the intention of landing, and then aborting the 
a� empt. The behavior is similar to the wheel-
ing behavior of other alcid species (Gaston and 
Ne� leship 1981, Harris 1984), except that it is 
o� en done by individuals or pairs, rather than 
large groups. 

At Triangle Island, British Columbia, we 
observed puffi  ns making repeated fl y-ins to the 

colony slopes. We predicted that if puffi  ns were 
sensitive to the danger posed by the presence 
of aerial predators, there would be a tendency 
for (1) fl y-ins and departures to be clustered (or 
synchronized) rather than randomly distributed 
in time, that (2) higher rates of fl y-in and depar-
ture activity would tend to be associated with 
periods of predator absence, and that (3) puffi  ns 
would use lower-risk activities when predators 
were present. Therefore, we statistically tested 
these predictions against their equivalent null 
models using a data set consisting of measure-
ments of the sequential time intervals between 
the landings of puffi  ns at their burrows during 
three diff erent and frequently observed (daily) 
regimes of predatory danger. We present data 
revealing that fear aff ects fl ight decisions by 
puffi  ns, and use a novel statistical model to 
measure synchronicity in behavioral decisions.

M������

Study site.—In June and July 2002, during 
incubation and very early chick rearing, we 
observed puffi  ns in the south bay of Triangle 
Island, British Columbia (50°52’N, 129°05’W) 
from a cabin located at the base of a long cliff  in 
the eastern half of the bay. This cabin was ideally 
situated to observe the steep and high (194 m) 
south slope of Triangle Island characterized by 
grassy vegetation and a narrow band of fl at 
cobble beach above the high-tide line. A pair of 
Bald Eagles (Haliaeetus leucocephalus; herea� er 
“eagles”) nests at the west end of the slope and 
Peregrine Falcons (Falco peregrinus; herea� er 
“falcons”) nest in the central part of the slope. 
Provisioning puffi  ns are rarely observed on this 
slope, which is away from the main puffi  n colony; 
however, puffi  ns made repeated fl y-ins to these 
slopes as if prospecting for new nest sites, and so 
these puffi  ns’ response to predation danger is not 
infl uenced by a chick waiting in the nest.

Observations.—We made 84 standardized 5-
min observations of a ∼300-m-wide strip of the 
south slope and used a custom event-recording 
program to record all fl y-ins and departures by 
puffi  ns, as well as arrivals and departures of 
eagles and falcons in fl ight along or above the 
south slope. Observations were spread over 
all daylight hours (0530–2130 hours PST), and 
evenly throughout the study period, with the 
exception of a stormy week in the middle dur-
ing which no observations were made. Several 
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5-min observations were done each day. There 
were always at least 5 min between observation 
periods. We a� empted to record the timing of 
arrivals to the nearest second. We later orga-
nized the frequency distribution of arrivals into 
two-second intervals to minimize the infl uence 
of measurement error associated with observ-
ers’ delayed reaction times being a signifi cant 
fraction of a second. 

Each fl ight toward the slope was classifi ed as 
an “approach” if the bird turned back before the 
tide line (∼30 m between slope and tide line). 
Each fl ight in which the bird crossed the tide 
line and came to within 30 m of the cliff  was 
classifi ed as a “close approach.” For a fl ight 
to be classifi ed as a “landing,” the bird had to 
stand on the slope. On several occasions, birds 
came within a few centimeters of the slope and 
appeared to be preparing to land, but then 
turned back. These fl ights were classifi ed as 
close approaches. We also logged “departures,” 
because birds landing on the slope usually did 
not spend much time there, and subsequently 
continued repeated fl y-in behavior. 

Each fl y-in was classifi ed into one of three 
danger–risk categories. We classifi ed a fl y-in 
as occurring (1) when eagles were present, (2) 
when eagles had been present recently (within 
the observation period), or (3) during a predator-
free period (no eagles present within the obser-
vation period). In the south bay of Triangle 
Island, it is not possible to separate the eff ects 
of eagle and falcon presence, because both rap-
tor species almost always occur together. We 
rarely observed eagles fl ying in the bay without 
falcons chasing them, and we never saw falcons 
in the bay when eagles were not present. Eagle 
presence is therefore a surrogate for raptor 
presence, and is used in the analysis as a single 
“predator” value. By recording eagle presence 
only when eagles are visible in fl ight above the 
observer, we have used a conservative measure 
of predation danger, because some activities 
actually occurring during dangerous periods 
will be recorded as occurring in safe periods, 
thus diminishing the eff ect of eagle absence.

Statistics.—If fl y-in and departure events are 
randomly timed, the expected probability dis-
tribution of inter-event intervals—in our case, 
the time interval from one fl y-in or departure 
event to the next—follows an exponential dis-
tribution: the exponential distribution is a spe-
cial case of the gamma probability  distribution 

 having its standard deviation (σ) equal to its 
mean (µ) (Walpole et al. 1998). Alternatively, if 
these events tend to be clustered or synchro-
nized in time, the gamma distribution will have 
σ > µ; whereas if the timing of events tends to 
be regulated (spaced), σ < µ. For our analyses, 
µ and σ estimate the mean time (in seconds) 
and standard deviation (in seconds) between 
sequentially arriving and departing puffi  ns.

To test prediction (1), we coded the appropri-
ate predictive models as VISUAL BASIC macros 
in EXCEL (Microso� , Sea� le, Washington). 
These models were used to statistically evaluate 
the observed frequency distribution of inter-
event intervals (within two-second bin sizes) 
against the expected distribution of inter-event 
intervals calculated under the null hypothesis 
that arrivals and departures were randomly 
distributed. This evaluation was done for three 
independent hypotheses representing each 
of our three diff erent predation-risk regimes 
(eagles present, eagles recently present, preda-
tor-free). We used the method of maximum like-
lihood as it applies to multinomial frequencies 
to solve for the best-fi t gamma (µ and σ free) 
and exponential (forcing σ = µ) distributions; 
we then used an information-theoretic approach 
(Burnham and Anderson 2002) to determine the 
model that was best supported by our data for 
each predator-presence regime. We used t-tests 
to judge the statistical signifi cance of σ ≠ µ (clus-
tered) versus σ = µ (random, null).

To evaluate the quality of our model fi ts, we 
performed goodness-of-fi t (GOF) randomiza-
tions of the best-fi t distributions (Burnham and 
Anderson 2002), which in all cases were models 
with σ > µ. Results of these GOF tests detected 
signifi cant, but diff erent, degrees of overdis-
persion in the distribution of puffi  ns as they 
returned to the colony, as measured by the sta-
tistic ĉ (Burnham and Anderson 2002). Note that 
this overdispersion is distinct from any non-
independence (synchrony) of arrival–departure 
times that a gamma distribution (µ ≠ σ) might 
indicate. That is, if each puffi  n is making timing 
decisions independently of other puffi  ns, then 
the GOF statistic ĉ will be close to 1 (Burnham 
and Anderson 2002). If there is a statistical 
indication that puffi  ns are making decisions in 
groups, then ĉ is an estimate of the size of group 
in which puffi  ns appear to be making joint deci-
sions. For example, ĉ = 2 could be interpreted 
as indicating that puffi  ns are  behaving as pairs. 
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A statistical implication of ĉ > 1 is that eff ective 
sample size (n) decreases reciprocally to ñ = n/ĉ, 
which reduces statistical power. Our signifi cant 
results yielded ĉ > 1 in all cases, so we used our 
estimated values of ĉ to calculate QAIC (Akaike 
Information Criterion), QDeviance, and ĉ–cor-
rected standard errors for our estimates of the 
ratio  (Burnham and Anderson 2002). This 
adjustment serves to control for the number of 
birds in a group, thus facilitating a comparable 
measure of arrival–departure synchronicity 
among each predator-presence regime.

We used a contingency table analysis 
(Walpole et al. 1998) to test predictions 2 and 3, 
that is, the eff ect of eagle presence on repeated 
fl y-in and departure activity rate and risk level. 
If prediction 2 is supported, the count of each 
activity (approach, close approach, landing, and 
departure) will be lower when eagles are pres-
ent than when they are absent. If prediction 3 is 
supported, the percentage of lower-risk activi-
ties (approaches) will increase, and the percent-
age of higher-risk activities (close approaches 
and landings) will decrease when eagles are 
present compared with when they are absent.

R���	��

We made a total of 84 5-min watches, total-
ing 420 observation minutes with 3,729 events. 
Predators were present for 21% of observation 
times, but only 10% of fl y-in and departure 
events by puffi  ns occurred when eagles were 
present. The activity rate (i.e., the number of fl y-
ins per observation second in each 5-min obser-
vation period) ranged from 0 to 1.7 (  = 0.6), and 
the number of puffi  ns making approaches to the 
colony at the beginning of each observation 
period ranged from 0 to ∼100 (  = 7). There was 
no consistent time-of-day pa� ern to activities of 
the puffi  ns or the eagles, but puffi  n activity rates 
seemed highest in foggy weather.

As predicted (1), event timing was clustered, 
with more very short intervals and more long 
intervals than expected in a random distribu-
tion (Table 1). The GOF randomizations showed 
that nonindependent groupings of birds also 
occurred, with ĉ being signifi cantly greater than 
unity (1) when predators were absent (ĉ = 5.9 ± 
1.9). This is consistent with both the idea that 
arrival activity was happening in waves when 
eagles were not around and that activity rates 
would be expected to be high in relation to 

when predators were present (see below). By 
contrast, birds tended toward smaller group-
ings, perhaps pairs, when eagles were present. 
The degree of clustering in arrival–departure 
times can be measured with the  ratio. 
Clustering was minimal when there were no 
predators (  = 1.44), higher when eagles were 
recent but not present (  = 1.62), and highest 
when they were present (  = 1.65; Fig. 1). This 
suggests that the degree of synchrony of activi-
ties by the puffi  ns tends to increase as the level 
of danger increases.

We predicted that puffi  ns would also miti-
gate danger by (2) reducing their activity rate 
when danger was high and (3) switching to 
lower-risk activities when danger was high. 
We evaluated these predictions by measuring 
the number, and percentage of total, for fl y-ins 
observed when predators were present versus 
absent. The clustering of activities detected 
when evaluating our fi rst prediction (1) sug-
gests nonindependence among observations. 
To reduce this possible infl uence, we excluded 
from the contingency table all observations for 
which the time since the previous activity was 
<5 s, because this value is greater than the 
mean interval (Table 1), which indicates that 
this interval is suffi  cient to ensure indepen-
dence. The data confi rm that puffi  ns (2) lower 
their overall activity rates and (3) switch from 
close approaches and landings to approaches 
when eagles were present (n = 955 activity 
observations, χ2 = 22.9, df = 3, P < 0.001; Table 
2). Departure activities were unaff ected by the 
presence of eagles.

D���������

We found that puffi  ns modifi ed their repeated 
fl y-in behavior in three ways to reduce danger. 
(1) They synchronized activity to dilute the dan-
ger. Apparent synchrony of activity was a� rib-
utable to two factors: sudden bursts, or waves, 
of activity a� er danger had passed (the eagles 
had le� ), and synchrony of activity during 
dangerous times (when eagles were present). 
They avoided eagles by (2) reducing activity 
rates; and (3) when eagles were present, they 
switched to lower-risk activities. The number of 
activities that took place when eagles were pres-
ent was signifi cantly lower than that expected 
if there was no eff ect of eagles. This eff ect was 
stronger for more dangerous activities, such 
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F��. 1. Observed percentage (histogram) and best-fit gamma (solid line) and exponential (dashed 
line) distributions of fly-in and departure event intervals for (A) when eagles are present (n = 173), 
(B) when eagles have recently left (n = 650), and (C) when eagles are absent from the area for the 
observation period (n = 2,847). Events are more clustered when eagles are present (A) than when 
they have recently left (B) or are absent (C).
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as close approaches to the slope and landings, 
than it was for less dangerous activities, such as 
farther approaches to the slope and departures 
from the slope.

The higher activity rates and bursts of activity 
that occurred when predators were not present 
resulted in more birds circling, and thus larger 
group sizes, during these low-risk periods. This 
refl ects temporal avoidance of predators by 
puffi  ns but can make it diffi  cult to distinguish 
synchrony of arrival times from a “group size” 
eff ect. Our GOF tests and subsequent ĉ adjust-
ments facilitated statistical partitioning of the 
eff ects of group size and arrival synchrony by 
identifying the degree to which birds tend to 
group together on arrival. The larger group 
size during low-risk periods results in a con-
servative test of our hypothesis of increased 
synchrony during high-risk periods when 
compared with low-risk periods, because more 
birds being engaged in this activity would tend 
to bias our data toward a decrease in the length 
of inter-event intervals.

A puffi  n is most vulnerable to a� ack on 
close approaches to, and landings on, the slope 
because a puffi  n over water has an available 
escape route if an a� ack occurs (Lima 1993). 
By switching to an approach over water when 
eagles are present, puffi  ns retain an escape 
route and are able to continue their activity at 
a safe distance from potential danger. Also, puf-
fi ns can evaluate danger levels by circling over 
water before a� empting to land on the slope. 
Departing birds have the advantage of being 
able to assess danger from the burrow entrance 
before taking off  into dangerous airspace and, 
furthermore, are fl ying directly to safety upon 
departure, and so may not need to alter this 
activity when eagles are present.

Mitigation of danger by synchronization of 
arrival times dilutes the risk of predation for 
the individual and may also “confuse” the 
predator, reducing the probability of an a� ack 
(Pitcher and Parrish 1993). Synchronization of 
activities has previously been demonstrated 

in seabirds. Murres (Uria spp.; Daan and 
Tinbergen 1979) and Atlantic Puffi  ns (F. arctica; 
Stempniewicz and Iliszko 2002) synchronize 
timing of fl edging, both within the fl edging 
period and within the day, to dilute predation 
risk. Adult Atlantic Puffi  n appear to synchro-
nize landings during food delivery to avoid 
kleptoparasitism (Rice 1987).

Raptor predators occasionally capture puf-
fi ns (Gaston and Jones 1998, Pia�  and Kitaysky 
2002). A� acks on and captures of puffi  ns by 
both eagles and falcons have been observed 
on Triangle Island (B. Addison pers. obs., M. 
Hipfner and J. Dale pers. comm.). This danger, 
however small, appears to alter their behav-
ior. Despite the dangers of repeated-approach 
behavior, as evidenced by the arrival–departure 
synchronization adjustment by puffi  ns, the birds 
continue to invest in it rather than abandoning 
the behavior in favor of safety on the water when 
predators are nearby. Investment in repeated-
approach behavior is puzzling, because it does 
not appear to have a purpose, but the pay-off  for 
this behavior may be undetectable to the casual 
observer. For example, if the behavior is nest-
site prospecting, as it appears to be, this invest-
ment may have a future pay-off  that is not easily 
measured. Predation and kleptoparasitism may 
be major factors in the evolution of life history 
and behavior of puffi  ns. The nonlethal eff ects of 
predators deserve continued consideration.
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T�
	� 2. Number (row percentage) of repeated approach activities observed when eagles were 
either present or absent. When eagles were present, puffi  ns decreased their overall activity rates 
and decreased their close approach and landing activities in favor of safer approach activities.

Eagles Approaches Close approaches Landings Departures Total

Absent 85 (10%) 420 (48%) 126 (14%) 241 (28%) 872
Present 24 (29%)   27 (33%)     9 (11%)   23 (28%)   83
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