The Auk I
. Ornithological Advances AmericanOrnithology.org

Volume 137, 2020, pp. 1-9
DOI: 10.1093/auk/ukz063

PERSEPCTIVE

Contrasting effects of the onset of spring on reproductive success of
Arctic-nesting geese

Bart A. Nolet,"?"® Kees H. T. Schreven,' Michiel P. Boom," and Thomas K. Lameris?

'Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands

2Department of Theoretical and Computational Ecology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam,
Amsterdam, The Netherlands

3Department of Coastal Systems and Utrecht University, Royal Netherlands Institute for Sea Research, Den Burg (Texel),

The Netherlands

*Corresponding author: b.nolet@nioo.knaw.nl

Submission Date: May 15, 2019; Editorial Acceptance Date: September 27, 2019; Published November 4, 2019

ABSTRACT

Breeding output of geese, measured as the proportion of juveniles in autumn or winter flocks, is lower in years with a late
onset of spring in some species, but higher in at least one other species. Here we argue that this is because the timing of
spring affects different stages of the reproductive cycle differently in different species. Because the effects on 2 different
stages are opposite, the combined effects can result in either a positive or a negative overall effect. These stages are the
pre-laying, laying, and nesting phase on the one hand; and the hatchling, fledgling, and juvenile phase on the other
hand. The first phase is predominantly positively affected by an early snowmelt, with higher breeding propensity, clutch
size, and nest success. The second phase in contrast is negatively affected by early snowmelt because of a mismatch with
a nutrient food peak, leading to slow gosling growth and reduced survival. We argue that recognition of this chain of
events is crucial when one wants to predict goose productivity and eventually goose population dynamics. In a rapidly
warming Arctic, the negative effects of a mismatch might become increasingly important.

Keywords: Arctic warming, breeding propensity, climate change, clutch size, fledgling survival, hatchling growth,
nest success, phenological mismatch, snowmelt

Effets contrastés du début du printemps sur le succés reproducteur d'oies nichant dans I’Arctique

RESUME

Lefficacité de la reproduction des oies, mesurée comme étant la proportion de juvéniles dans les troupeaux a I'automne
ou en hiver, est plus faible lors des années ayant un début de printemps tardif chez certaines espéces, mais est plus
élevée chez au moins une autre espéce. Nous arguons que cela est dd au fait que la chronologie du printemps affecte
différemment divers stades du cycle reproducteur chez différentes espéces. Puisque les effets sur deux différents
stades sont contraires, les effets combinés peuvent résulter en un effet global soit positif, soit négatif. Ces stades sont,
d’une part, la phase de pré-ponte, de ponte et de nidification, et d’autre part la phase d’éclosion, d'envol et juvénile.
La premiere phase est principalement affectée positivement par une fonte des neiges hative, avec une plus grande
propension a la reproduction, une plus grande taille de couvée et un meilleur succés de nidification. Par contraste,
la seconde phase est affectée négativement par une fonte des neiges hative, en raison d'un décalage avec le pic de
nourriture nutritive, ce qui ralentit la croissance des oisons et réduit la survie. Nous soutenons que la reconnaissance
de cette chaine d'événements est cruciale pour prédire la productivité des oies et éventuellement la dynamique des
populations d'oies. Les effets négatifs d'un décalage peuvent devenir de plus en plus importants dans un Arctique dont
le réchauffement est rapide.

Mots-clés: changements climatiques, croissance des oisillons, décalage phénologique, fonte des neiges, propension
a la reproduction, réchauffement de I'Arctique, succes de nidification, survie a I'envol, taille de couvée

INTRODUCTION the environment, which may change at different rates with

climate, and hence not all species respond to the same ex-
Plants and animals are responding to the rapid changes tent to the changing climate. Plants and primary consumers
in Climate, for instance by advancing spring events lil(e tend to react more strongly than secondary consumers,
sprouting and egg-laying (Parmesan and Yohe 2003). resulting in so-called mismatches between these trophic
Species react with specific sensitivities to various cues in  levels (Thackeray et al. 2010). A well-known example is the
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reproduction of insectivorous birds becoming mistimed
with the peak in insects (Visser et al. 1998, 2012). But
also the reproduction of primary consumers may become
mistimed, albeit more with a peak in nutritive quality of
food rather than a peak in food biomass (Nolet et al. 2005,
Doiron et al. 2015). Because cues vary over time as well as
space, such mistimed reproduction is most likely to occur
in long-distance migrants, in which adjustments in the
timing of reproduction are constrained by timing of migra-
tion (Both and Visser 2001, Knudsen et al. 2011).

Climate change is most rapid in the Arctic region
(Serreze and Francis 2006, Pithan and Mauritsen 2014, Box
etal. 2019). This can have large consequences for the many
birds that migrate long distances to the Arctic to ben-
efit from the short but productive growing season, while
enjoying reduced competition and predation (Sedinger
and Raveling 1986, McKinnon et al. 2010, Somveille et al.
2018). In Arctic-nesting geese, the precocial young grow
fast when they are able to feed on young, nitrogen-rich
plants (Lepage et al. 1998, Richman et al. 2015). In the
Arctic breeding areas, plant nitrogen concentration peaks
at the beginning of the growing season shortly after snow-
melt (van der Graaf et al. 2006, Doiron et al. 2013, Lameris
et al. 2018). Accounting for the increase in plant biomass,
the peak in nitrogen biomass in their food plants occurs
later than the peak in nitrogen concentration, and repro-
duction is well timed when hatching coincides with this
peak (van der Graaf et al. 2006, Lameris et al. 2017a).

In order to ensure well-timed reproduction, timing
of spring migration is crucial. Geese time their migra-
tory departure from the temperate zone in spring based
on cues including photoperiod and the green-up of veg-
etation (Shariatinajafabadi et al. 2014) or some correlated
measure like temperature sum (Duriez et al. 2009, van Wijk
et al. 2012). However, green-up or temperature sums are
not well correlated along the whole migration routes of
the geese, meaning that geese cannot predict the onset of
spring in the Arctic from their temperate wintering sites
(Tombre et al. 2008, Kolzsch et al. 2015). Since spring has
advanced more in the Arctic than in the temperate zone, at
least some goose species migrating to the Arctic now arrive
too late to benefit from optimal growth conditions, which
impacts their reproductive success (Clausen and Clausen
2013, Doiron et al. 2015, Lameris et al. 2017b).

Effects of climate change on the reproduction of Arctic
geese are of prime interest to predict future population
developments of these birds. How a (progressively) earlier
Arctic spring affects goose reproductive output has been
studied in various species, based on both short-term an-
nual variation and long-term warming trends. However,
the obtained results are paradoxical, in that most studies
show higher breeding output, measured as proportion
of juveniles in autumn or winter flocks, in years with an
early onset of spring (Alisauskas 2002, Trinder et al. 2009,
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Morrissette et al. 2010, Nolet et al. 2013, Jensen et al. 2014,
Cleasby et al. 2017), while one study found a higher repro-
ductive success in years with a late onset of spring (Clausen
and Clausen 2013). Here we argue this is because the timing
of spring affects different stages of the reproductive cycle
differently in different species. Because the effects on the 2
different stages are opposite, the combined effects can re-
sult in either a positive or a negative overall effect.

PRE-LAYING, LAYING, AND NESTING PHASE

Arctic-nesting geese are dependent on a short Arctic
summer for successful reproduction. They alleviate part
of this constraint by extra fueling during spring migration
(Kolzsch et al. 2016). In years that the geese have more
stores on spring staging grounds, they tend to return with
more young in autumn, both when measured at the popula-
tion level (Alisauskas 2002, Mainguy et al. 2002) and at the
individual level (Ebbinge and Spaans 1995, Klaassen et al.
2017, Dokter et al. 2018). In unusually early springs, geese
may leave stopovers prematurely or skip them altogether to
arrive in time but with little stores at the breeding grounds,
eventually yielding them little time savings before laying as
they compensate by foraging at the pre-breeding grounds
(Lameris et al. 2018). Only earlier departure in good con-
dition from wintering grounds would prevent this negative
effect of early springs on the first reproductive stage.

Bringing nutrient stores to the breeding grounds enables
geese to produce eggs soon after arrival and well before
the feeding conditions are optimal (Perrins 1970, Ryder
1970, Ankney 1984, Drent et al. 2003, Van der Jeugd et al.
2009). Geese use a mixture of so-called capital and income
strategies, with eggs being partly produced from body
stores and partly from local resources (Budeau et al. 1991,
Gauthier et al. 2003, Schmutz et al. 2006, Hahn et al. 2011,
Klaassen et al. 2017). Whether more or less capital is being
used depends on the species’ body size and migration dis-
tance (Hobson et al. 2011) and their foraging ecology (i.e.
being grubbers or grazers) (Sharp et al. 2013), but also on
the spring food conditions (Klaassen et al. 2017, Hupp
et al. 2018, Lameris et al. 2018).

A further part of the body stores is needed to fuel in-
cubation, when the females cannot feed long enough
to maintain body weight (Ankney and Maclnnes 1978,
Budeau et al. 1991, Spaans et al. 2007, Eichhorn et al. 2010).
In their decision regarding when to commence nesting,
the birds face a tradeoff between current and future re-
productive success (Daan et al. 1990), and geese with too
low pre-laying body condition are therefore expected to
refrain from breeding (Drent et al. 2003). Body stores are
especially important in late springs, when only geese with
ample body stores have prospects of successfully raising
offspring, resulting in a lower breeding propensity when
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snowmelt is late (Reed et al. 2004, Dickey et al. 2008,
Anderson et al. 2014; Figure 1).

Birds face another tradeoff between the seasonal in-
crease in potential clutch size and the seasonal decline in
egg value because of a lower recruitment of later-hatched
young (Drent and Daan 1980, Lepage et al. 2000). This
tradeoff can explain the general seasonal decline in clutch
size, as nicely illustrated by a condition-dependent model
(Rowe et al. 1994). This model also predicts that in a late
season, with egg value declining, a slower build-up of body
condition due to snow cover will lead to smaller clutches
and laying at relatively high snow cover. Indeed, in years
when snow melts late, Arctic-nesting geese start nesting
at some later date (Prop and De Vries 1993, Cooke et al.
1995, Madsen et al. 2007), but relative to snowmelt, they
commence nesting at a higher snow cover (Barry 1962,
Lindberg et al. 1997, Béty et al. 2003). Greater Snow Geese
(Anser caerulescens atlanticus), for instance, commence
egg-laying after snow melt in early springs, and at a later
date but before snow melt in late springs (Gauthier et al.
2013). Like in other bird species (Murphy 1986, Perrins and
McCleery 1989), clutch size in geese is generally smaller in
late springs (Barry 1962, Raveling 1978, Madsen et al. 2007,
Ross et al. 2017). While this can be viewed as the optimal
decision in late springs, a mechanistic explanation is that
for geese, being partly income breeders, poorer feeding
conditions in the Arctic in late springs can only support
smaller clutches (van Oudenhove et al. 2014; Figure 1).
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Laying a smaller clutch may compensate for the lower
pre-laying condition of the female, explaining equal body
weights at the start of incubation irrespective of spring
being early or late (Ankney and Maclnnes 1978, Spaans
et al. 2007, Sénéchal et al. 2011). Commencing nesting
at a higher snow cover in late springs may however force
incubating females to engage in longer nest recesses in
search for food (Eichholz and Sedinger 1999), exposing the
nests to egg predation (Samelius and Alisauskas 2001, Béty
et al. 2002); egg predation may also increase indirectly by
an extended incubation period (Aldrich and Raveling 1993,
Tombre and Erikstad 1996). As a result, nest success (i.e.
the proportion of nests with at least one egg surviving) is
typically lower in late springs (Madsen et al. 2007; Figure
1). However, females do not only need to feed but also
drink during nest recesses, which may complicate matters.
Early snowmelt may lead to unusually dry conditions in
mesic tundra habitats, forcing incubating females to move
over greater distances to drink and thus engage in longer
rather than shorter nest recesses, thereby increasing nest
predation (Lecomte et al. 2009).

Early snowmelt may also be associated with increased
incubation success (being defined here as the product
of nest success, egg survival, and hatching success; see
Rockwell et al. 1993) through direct positive temperature
effects on eggs. At least in one study hatching success (but
not egg survival) was related to spring temperature (van
Oudenhove et al. 2014).
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FIGURE 1. Chain of effects eventually leading to population productivity as measured as the proportion of juveniles in autumn or
winter flocks. For clarity, only bottom-up effects are considered. The vegetation phenology on migratory staging sites may or may not
be correlated to the vegetation phenology on the breeding site, but in any case determines arrival date on the breeding site, which
in turn determines body condition of the female upon arrival. The date of snowmelt on the breeding site is likely to be correlated
with the peak date of food quality, and hence to the potential mismatch. The food quality affects the body condition of the female
and the chicks, and thereby the fitness components (note the arrow that runs from Body Condition Female to Breeding Propensity).
The population productivity is the product of breeding propensity, clutch size, incubation success, hatchling survival, and fledgling
survival, where incubation success in turn is the product of nest success, egg survival of successful nests, and hatching success of
surviving eggs. Because the date of snowmelt and the mismatch predominantly affect different stages in the breeding cycle, their
combined outcome may result in negative or positive relationships between breeding site phenology and population productivity.
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HATCHLING, FLEDGLING, AND JUVENILE PHASE

As mentioned above, goose reproduction is well timed
when hatching coincides with the peak in nitrogen bio-
mass (van der Graaf et al. 2006). Early-hatched goslings
grow faster than those hatching late (Cooch et al. 1991,
Sedinger and Flint 1991, Lindholm et al. 1994, Lepage
et al. 1999) because the latter ones already suffer from
declining protein concentrations in their food plants
(Richman et al. 2015). With climate warming, the timing
of hatch becomes increasingly mismatched with the
peak in food quality (Doiron et al. 2015). This causes
the hatchlings to grow slower (Brook et al. 2015, Ross
et al. 2018) and to have a lower chance of survival up
to fledging (Lindholm et al. 1994, Lameris et al. 2018,
Ross et al. 2018). This slower growth increases the length
of the period in which goslings are vulnerable to size-
dependent predation (Ricklefs and Starck 1998, Samelius
and Alisauskas 1999, Dmitriew 2011). In general, smaller
goslings in poor condition are expected to be most vul-
nerable (Williams et al. 1993). Slow-growing goslings
also experience increased thermoregulatory costs due to
their smaller size, which might contribute to lower sur-
vival (Lindholm et al. 1994, Fortin et al. 2000, Gauthier
et al. 2006; Figure 1).

Because slower-growing goslings reach a smaller final
body size, the slow growth has knock-on fitness effects
later in life (Ankney and Maclnnes 1978, Black and
Owen 1987, Afton and Paulus 1992, Choudhury et al.
1996, Poisbleau et al. 2006). What is most relevant here
is that juveniles small for their age experience reduced
post-fledging survival (Loonen et al. 1999, Slattery and
Alisauskas 2002, Brook et al. 2015), aggravating the nega-
tive effects of a mismatch (Figure 1). Goose departure from
the breeding grounds is found to be related to the first
frost spell (Xu and Si 2019), and when goslings have not
fledged by then they are left behind (Barry 1962). Arctic
warming may lead to longer summer seasons, providing
more time to grow, which may partly offset any negative
effects of a mismatch earlier in the season. However, it is
unclear whether goslings can really profit from a longer
season, because gosling mortality can be high even in the
presence of abundant food if the nutritive quality is not
sufficient to meet their needs for growth and maintenance
(Richman et al. 2015).

COMBINED EFFECTS

Negative effects of a late snowmelt predominantly occur
in the pre-laying, laying, and nesting phase. Through the
combined effects of lower breeding propensity, somewhat
smaller clutch sizes, and lower nest success, reproduc-
tive success of Arctic-nesting geese at hatching tends to
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be lower in late springs than early springs (Madsen et al.
2007, Dickey et al. 2008). In contrast, positive, potentially
compensatory effects occur during the hatchling, fledg-
ling, and juvenile phase by a better match with nitrogen
biomass after a late spring, as suggested by Clausen and
Clausen (2013). This better match ensures a better growth,
with knock-on effects on subsequent fledgling and juve-
nile survival. Because the annual reproductive success is
the product of breeding propensity, clutch size, nest suc-
cess, and gosling survival, a late spring may both lower and
enhance reproductive success. Conversely, an early onset
of spring may have primarily beneficial effects in the pre-
laying, laying, and nesting phase, but deleterious effects
during the hatchling, fledgling, and juvenile phase through
an increase of a mismatch (Figure 1).

The exact relationships with date of snowmelt depend
on how hatch dates are correlated with date of snow-
melt, and how date of snowmelt is correlated with date
of peak nitrogen biomass (Lameris et al. 2018). Because
these correlations differ between sites, and because of the
differing life histories of different species, the resulting ef-
fect of date of snowmelt on population productivity may
differ between species. Light-bellied Brent Geese (Branta
bernicla hrota) that showed a higher breeding productivity
with a later snowmelt may be exceptionally vulnerable to a
mismatch. They are long-distance migrants with a virtual
nonstop migration that does not allow for adjustments in
timing along the way (Clausen and Clausen 2013), while
breeding in an area where climate is rapidly warming
(Ferland et al. 2011). Importantly, perhaps to prevent high
thermoregulatory costs due to their small body size (Hupp
et al. 2018), they are the last goose species to arrive on the
breeding grounds (Clausen and Clausen 2013). While in ge-
neral small bird species have less scope for capital breeding
than larger ones (Meijer and Drent 1999), the interval be-
tween arrival and laying can be of overriding importance
and, based on the short interval, they are expected, like
Dark-bellied Brent Geese (Branta bernicla bernicla), to
be largely capital breeders investing stores into their eggs
(Klaassen et al. 2006). While they may have some leeway to
adjust to earlier springs by using even more capital stores
for egg production when spring starts early, like the closely
related Black Brant (Branta bernicla nigricans; Hupp et al.
2018), the options to prevent a mismatch seem to be lim-
ited; other (larger) goose species may have more options
to start laying earlier in earlier years, because they simply
arrive earlier (Hupp et al. 2018).

There are indications that the same processes as
outlined above for geese are also relevant for other Arctic
migrant bird groups, such as shorebirds. However, the
shorebirds’ smaller body size and largely insectivorous
diet create some important differences. Being smaller
than geese, shorebirds, for instance, are more at risk of
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starvation when snowmelt is late and they have to sur-
vive on body stores (Morrison et al. 2007). They also
differ from geese in that they are income breeders,
forming their eggs from exogenous resources (Klaassen
et al. 2001, Morrison and Hobson 2004, Hobson and Jehl
2010). For shorebirds in general, late springs are associ-
ated with reduced breeding success, due to higher risk of
nest predation as well as lower possibilities for re-laying
(Meltofte et al. 2008). With regard to the mismatch,
shorebird chicks, for instance, are dependent on a peak in
arthropod abundance, which has shifted forward in time
in recent years (Tulp and Schekkerman 2008, Reneerkens
et al. 2016). Some species have responded by advancing
laying dates, whereas others have not, suggesting there
are migratory constraints to an advancement (McKinnon
et al. 2012, Liebezeit et al. 2014, Reneerkens et al. 2016)
In Red Knots (Calidris canutus canutus) body size of
juveniles is positively related to date of snow melt in
the Arctic, suggesting that their body size at fledging is
smaller following a mismatch in early springs, resulting
in a lower subsequent survival (van Gils et al. 2016). In
general, however, evidence for a phenological mismatch
for shorebirds is rare, perhaps because arthropod abun-
dance, more than plant growth, is strongly affected by
weather conditions following snowmelt (McKinnon et al.
2012, Reneerkens et al. 2016, Leung et al. 2018, Corkery
et al. 2019, Saalfeld et al. 2019). While only a few studies
investigated the connection between proportion of
juveniles and climatic conditions in the breeding grounds
and none of these included onset of spring, most of these
studies found a higher proportion of juveniles following
warm breeding seasons (Schekkerman et al. 1998, Beale
et al. 2006, Aharon-Rotman et al. 2015).

While the positive effects of an early spring have been
dominant in the historical past, the negative effects of an
early spring may soon become more important due to the
rapid climate warming in the Arctic. In any case, recogni-
tion of the chain of events (Figure 1) is crucial when we want
to be able to predict the effects of Arctic warming on goose
productivity and eventually goose population dynamics.
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