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Abstract
Themajority of human genes that encode proteins undergo alternative pre-mRNA splicing andmutations that affect
splicing are more prevalent than previously thought.The mechanism of pre-mRNA splicing is highly complex, requir-
ing multiple interactions between pre-mRNA, small nuclear ribonucleoproteins and splicing factor proteins.
Regulation of this process is even more complicated, relying on loosely defined cis-acting regulatory sequence elem-
ents, trans-acting protein factors and cellular responses to varying environmental conditions. Many different human
diseases can be caused by errors in RNA splicing or its regulation.Targeting aberrant RNA provides an opportunity
to correct faulty splicing and potentially treat numerous genetic disorders. Antisense oligonucleotide therapies
show particular promise in this area and, if coupled with improved delivery strategies, could open the door to a
multitude of novel personalized therapies.
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INTRODUCTION
Among the diverse repertoire of mechanisms by

which an organism can achieve gene regulation, dif-

ferential pre-mRNA splicing stands out as a particu-

larly powerful yet subtle mediator. RNA also

presents an attractive target for therapeutic interven-

tions. On an in vivo cellular basis mRNA is more

accessible than DNA and the presence within the

cell of multiple different RNA processing pathways

(e.g. splicing, nonsense-mediated decay, RNA inter-

ference, etc.), means that there is much scope for

influencing its control at different levels. Targeting

and manipulating RNA avoids many of the risks and

concerns associated with DNA-based gene therapy

such as random gene insertion. The dynamic nature

of RNA turnover also means that therapeutic inter-

ventions can be time limited, dose titrated and mod-

ified according to response, adding further levels of

control.

This review sets out to explain some of the ways

in which the complex process of pre-mRNA splicing

can lead to disease. It will also discuss a number of

the different approaches currently in development

that hope to rectify splicing where it goes wrong,

with the ultimate goal of therapeutic clinical

applications.

PRE-mRNA SPLICING
When a protein-coding gene is transcribed, the ini-

tial transcript (pre-mRNA) must undergo a series of

post-transcriptional processing events prior to its

translation. Aside from 50 capping and polyadenyla-

tion, the most significant modification is that of

intron removal and exon ligation through splicing.

The major effector of the splicing reaction is the

spliceosome, a complex of hundreds of interacting

proteins and small nuclear RNAs (snRNAs) includ-

ing the five small nuclear ribonucleoproteins

(snRNPs) U1, U2, U4, U5 and U6 [1]. In order

to perform accurate splicing, the spliceosome must

recognize exon/intron boundaries. At a basic level,

this occurs through the presence of consensus se-

quence elements at the 50- and 30-splice sites of in-

trons and through the presence of a branch point

sequence near to the 30-end of an intron (Figure 1).

The splicing reaction itself is mediated via a se-

quence of carefully controlled interactions between
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snRNPs, proteins and the pre-mRNA transcript

[2, 3]. U1 first binds via complementary base pairing

to the 50-splice site, while U2 binds the intron

branch point. A ‘triple’ snRNP complex consisting

of U4, U5 and U6 then moves in to associate with

the assembling spliceosome. U4 leaves the complex

allowing U6 to replace U1 at the 50-splice site. U6

then interacts with U2 to bring the branch point into

close proximity with the 50-splice site. At this point a

transesterification reaction cleaves the 50-end of the

intron from the upstream exon and attaches it to the

branch point, forming a loop-like lariat structure.

Further interactions mediated by U5 then bring the

30-end of the upstream exon and the 50-end of the

downstream exon into close proximity with each

other. This allows a second transesterification reac-

tion to cleave the remaining 30-end of the intron and

join the two exons together.

The splice site sequences that allow this reaction

to take place are sufficient to maintain the accuracy

of exon–exon junctions. However, splice sites are

only loose consensus sequences and on their own

they cannot provide the degree of control needed

for correct exon selection, particularly where alter-

native splicing is involved. In order to allow this,

exon recognition requires interactions between

trans-acting factors (proteins and ribonucleoproteins)

and cis-acting elements (pre-mRNA sequences).

Figure 1: The basic splicing process. (A) Exons are represented by boxes and introns by lines.The invariant GU and
AG nucleotide sequences of the 50 and 30 -splice sites are shown. Also shown is the branch point (A) and the
nearby polypyrimidine tract (YYYY). (B) The first transesterification reaction creates a lariat structure joined at
the branch point. The second transesterification reaction releases the lariat intron and ligates the exons together.
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ALTERNATIVE SPLICING
In alternative splicing, the cell can ‘choose’ different

combinations of exons to use in the final mRNA

transcript of a gene. This creates different splicing

isoforms of a single gene despite the original DNA

sequence being the same in each case. Most (75%) of

the exons that are alternatively spliced have been

shown to be protein coding [4]. In addition, the

majority of known alternative exons map to the sur-

face regions of protein structures, making them more

likely to affect protein function [5]. The process of

alternative splicing thus creates different protein iso-

forms which differ in their functional capacities.

Another variant of this is that different splice sites

may be selected by the spliceosome, resulting in

longer or shorter exons. Entire introns can also be

retained in this way through ‘exonization’. These

‘choices’ are made depending on the relative

‘strength’ of competing splice sites. How well a

splice site matches the consensus sequence will de-

termine how well spliceosome components can bind

to it and this influences whether or not it is used.

Splice site strength also depends on the presence of

nearby sequence elements known as splicing enhan-

cers and silencers. These cis-acting elements can be

located both in exons and/or in introns and exert

their effects by facilitating the binding of various

splicing factors, which in turn positively or nega-

tively regulate inclusion of a particular exon

(Figure 2). Positive factors bind to enhancers and

include a family of proteins rich in serine and argin-

ine (SR proteins). Negative factors bind to silencers

and include the family of heterogeneous nuclear

ribonucleoproteins (hnRNPs). This, however, is an

oversimplification. In some instances SR proteins are

known to repress splicing. In adenovirus infection,

the SR protein SF2/ASF binds an intronic repressor

element near the branchpoint of adenovirus

pre-mRNA [6]. This prevents U2 snRNP recruit-

ment and prevents use of the 30-splice site. Likewise,

hnRNPs can also act to stimulate rather than sup-

press splicing [7]. SR proteins and hnRNPs possess

protein- and RNA binding domains and

through these they bind with low specificity to regu-

latory sequences and to each other. The unique

arrangement of protein interactions a particular

pre-mRNA makes forms part of the so-called

‘splicing-code’ [8].

Enhancer and silencer sequences are much more

variable than splice site sequences and much remains

unknown about how changes to these sequences

affect splicing factor binding. Splicing factors are ex-

amples of trans-acting factors and their up- or down-

regulation within a cell provides a clear opportunity

for splicing regulation to be influenced by independ-

ent pathways and external factors. Indeed the vari-

ability of these sequences is indicative of the fact that

the individual RNA–protein interactions involved in

splicing factor binding are weak and of only low

affinity. While this makes enhancer and silencer

characterization more difficult, it is precisely

this property of low affinity binding of multiple

interacting factors that allows for fine regulation

and control [3].

Figure 2: Control elements regulating splicing. U1 and U2 snRNPs bind via complementary base pairing to loose
consensus sequences at the 5’ splice site and branch point respectively. U2AF (U2 auxillary factor) recognizes and
binds to the polypyrimidine tract and facilitates correct U2 binding. SR proteins bind to ESEs and increase splice
site use, while hnRNPs bind to ESSs and exert a negative effect on splice site use. Other splicing factor proteins
bind to intronic splicing enhancers (ISEs) and silencers (ISSs).
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ADDITIONAL FACTORS
GOVERNING SPLICING
Other factors including the rate of transcription and

epigenetic factors such as chromatin conformation

and histone modifications are known to play import-

ant roles in regulating splicing [9]. Much work is

ongoing to help define the precise mechanisms by

which such regulation occurs. It has been known for

some time that splicing is coupled to the transcrip-

tion process. RNA pol II recruits spliceosome com-

ponents via its C-terminal domain and this allows

cotranscriptional initiation, though not necessarily

completion, of splicing or at least the commitment

to use specific splice sites [10]. The rate of transcript

elongation can also affect the splicing process and

promoter structure influences the outcome of alter-

native splicing [11]. Chromatin structure appears im-

portant for correct spliceosome assembly and the

positioning of nucleosomes within genes has been

found to be non-random with particular enrichment

at intron–exon junctions, suggesting a role in exon

definition [12, 13]. Similarly, histone modifications

have been found to be non-randomly enriched at

exons, even taking into account relative nucleosome

overrepresentation [14].

In addition, pre-mRNA secondary structure can

influence selection of splice sites [15]. For example, a

stem–loop structure at the 50-splice site of exon 10 in

the gene for tau protein regulates usage of the exon.

Another example of this is alternative exon usage in

the fibronectin gene, where pre-mRNA secondary

structure affects the availability of an enhancer elem-

ent [16]. In this case, splicing of the EDA exon of

fibronectin is dependent upon the presence of an

exonic splicing enhancer (ESE) displayed within

the exposed part of an RNA stem–loop structure.

Disruption of this secondary structure prevents rec-

ognition of the exon.

Small nucleolar RNAs (snoRNAs) have also been

found to regulate splice site selection. For example,

the snoRNA HBII-52 regulates alternative splicing

of the serotonin receptor by binding to an alternative

exon [17]. Interestingly, this same snoRNA,

HBII-52, is not expressed in Prader-WIlli syndrome

(PWS) and this is thought to contribute to the dis-

ease. A child with a microdeletion encompassing

HBII-438A, the HBII-85 cluster and a portion of

the HBII-52 snoRNA cluster exhibited features of

PWS [18]. Although small nucleolar ribonucleopro-

teins (snoRNPs) exist in the nucleolus and splicing

occurs in the nucleoplasm, evidence suggests that

snoRNPs are transported though the nucleoplasm

as they are being assembled, allowing an opportunity

for them to influence splicing [19]. This may occur

through interactions between snoRNP associated

proteins and splicing factors such as hPrp31 [20].

Alternative splicing is frequently regulated in re-

sponse to external stimuli [21]. Signal transduction

pathways can lead to phosphorylation of trans-acting

factors such as SR proteins. Targeted phosphoryl-

ation of RS-domains (characteristic arginine/serine

rich domains at the C-terminal end of SR proteins)

can affect a protein’s ability to bind to and interact

with its usual protein partners [22]. Splicing factors

can also be dephosphorylated by phosphatases and

phosphatase modulation affects alternative exon

usage [23].

PSEUDOEXONS
The same nucleotide sequence can, under different

conditions, be defined as an exon or an intron

[24, 25]. Attempts to design exons using current

knowledge have yielded unexpected results and

have proved the underlying complexity of the spli-

ceosome’s functions [26]. In silico analysis reveals the

abundant presence of sequences lying within the in-

tronic domains of many genes that look like exons

and have both 50 and 30 consensus splice sites, yet are

not used as such [27]. These sequences are known as

pseudoexons. The exclusion of these pseudoexons is

thought to be mediated through intrinsic sequence

defects, splicing silencers and inhibitory RNA sec-

ondary structures [28–30]. Looking at the splicing

process more globally, rather than on an individual

gene basis, will help to clarify what makes an exon an

exon and what differentiates pseudoexons, allowing

a fuller understanding of how the splicing machinery

distinguishes between them.

THE SCOPEOF SPLICING IN
DISEASE
Over 90% of human protein-coding genes are alter-

natively spliced [31]. However, since in fact every

intron-containing gene requires splicing, any muta-

tion affecting a canonical splice site in such a gene

can lead to gene dysfunction and potentially to dis-

ease. Such splice site mutations are a common find-

ing in clinical diagnostic laboratories and it is

estimated that they may account for some 10% of

all pathogenic mutations [32]. However, this does

154 Douglas and Wood
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/10/3/151/202951 by guest on 20 April 2024



not include mutations affecting splicing enhancers,

silencers or trans-acting factors. Many such mutations

will have been overlooked historically, either be-

cause they appear to be silent synonymous changes

with no effect on amino acid sequence, or else be-

cause of their apparently innocent intronic location.

Ever increasing numbers of these mutations are now

being identified in patients with genetic disease and

according to some estimates up to 50% of all

pathogenic mutations may affect splicing in some

way [33].

Familial dysautonomiaça splice site
mutation
Familial dysautonomia (FD) is a rare recessively in-

herited disorder affecting both the autonomic ner-

vous system and somatic sensory neurones. It is

caused by mutations in IKBKAP, which encodes a

transcription factor component of the elongation

complex known as IKAP. In nearly all cases

(99.5%) of FD the pathogenic mutation is found to

be an intronic T>C substitution at position 6 of

intron 20 [34]. This disrupts binding of U1 to the

50-splice site of exon 20, causing exon skipping and

resulting in a frameshift and premature termination

codon. IKBKAP appears to promote expression of

genes involved in oligodendrocyte formation and so

this could explain the demyelinating phenotype

observed in FD [35].

Spinal muscular atrophy and
medium-chain acyl-CoA dehydrogenase
deficiencyçdisrupted regulatory
elements
Spinal muscular atrophy (SMA) is the second most

common recessive disorder in humans and is the

most common inherited cause of infant mortality.

It is caused by mutations in the SMN1 gene which

encodes the survival motor neurone (SMN) protein

[36]. SMN is required for snRNP synthesis and its

loss of function leads to degeneration of motor neur-

ones particularly evident in the spinal cord. In

humans there has been a gene duplication event of

SMN1 that has given rise to an almost identical

gene called SMN2. However, SMN2 contains a

silent C>T substitution in the sixth nucleotide of

exon 7. This causes skipping of exon 7 and ineffect-

ive protein production, with the result that SMN2 is

unable to compensate for the loss of function of

SMN1 [37]. The SMN2 mutation both destroys an

ESE by abolishing a binding site for the SR protein

SF2/ASF and also creates an exonic splicing silencer

(ESS) by allowing a binding site for hnRNPA1

[38, 39].

A very similar mechanism to this occurs is

medium-chain acyl-CoA dehydrogenase (MCAD)

deficiency. MCAD is required for the degradation

of medium chain length fatty acids and MCAD de-

ficiency is the most common defect of mitochondrial

b-oxidation. Medium chain acylcarnitines accumu-

late in the urine and this can be detected diagnostic-

ally. One particular missense mutation in exon 5 of

MCAD (c.362C>T) causes exon skipping and deg-

radation by nonsense-mediated decay [40]. Exon

skipping occurs because of disruption of a splicing

enhancer that is nearly identical to the enhancer in

exon 7 of SMN2.

Hutchinson^Gilford progeria
syndromeçactivation of a cryptic
splice site
Hutchinson–Gilford progeria syndrome (HGPS) is a

genetic disorder characterized by features of prema-

ture ageing. There is postnatal growth retardation,

premature atherosclerosis, bone dysplasia and a dis-

tinctive facial appearance with micrognathia, alope-

cia, narrow nasal bridge and pointed nasal tip [41].

HGPS is caused by mutations in the lamin A/C gene

(LMNA). LMNA codes for two proteins, lamin A

and C, dependent on alternative splicing of the tran-

script. Lamins A and C are members of the nuclear

lamin family of structural proteins that form inter-

mediate filaments and constitute the nuclear lamina,

a meshwork structure which supports the inner nu-

clear membrane in eukaryotic cells [42]. HGPS is

most commonly caused by a recurrent mutation in

exon 11 (c.1824C>T) [43]. This point mutation

does not alter the coding amino acid sequence

(p.Gly608Gly) but instead activates a cryptic splice

site 5 nt upstream. The single base change turns the

sequence GGTGGGC into GGTGGGT and this

altered sequence is recognized as a splice donor

site. The effect of the mutation is production of

a truncated protein that lacks the last 50 amino

acid residues encoded by exon 11. This means

the mutant protein, known as ‘progerin’, is missing

an 18 amino acid C-terminal domain needed for

a number of post-translational modifications such as

farnesylation.
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Menkes diseaseçsplicing as a modifier
of disease
Disease severity can be influenced by alterations in

splicing. One example is Menkes disease, an

X-linked disorder of copper metabolism caused by

mutations in ATP7A [44]. This encodes an ATPase

that transports copper across intestinal mucosa into

blood. A significant proportion of ATP7A mutations

involve the conserved dinucleotide sequences at

50 and 30 splice sites. Mutations at these sites severely

disrupt normal splicing and the result is the severe

phenotype of Menkes disease, which includes severe

neurological impairment, kinked brittle hair, dys-

morphic features, failure to thrive and death usually

occurs before the age of 3 years. However, mutations

affecting the less well-conserved more degenerate

sequences surrounding the invariant dinucleotides

tend only to partially abrogate normal splicing. The

result of these ‘weaker’ mutations is a clinically

distinct and milder condition known as occipital

horn syndrome [45]. This is a disorder of the extra-

cellular matrix leading to skeletal and cutaneous

manifestations.

Altered splice isoform ratios
Disrupting the relative abundance of alternatively

spliced RNA isoforms can lead to disease.

Frontotemporal dementia and Parkinsonism linked

to chromosome 17 (FTDP-17) arises when muta-

tions occur in the gene MAPT. This gene encodes

tau protein, which is needed for microtubule assem-

bly and stability. Mutations within regulatory elem-

ents of MAPT exon 10 that promote its inclusion,

increase the ratio of a tau isoform containing four

microtubule-binding sites (4R) relative to the three

(3R) site isoform. This causes disease by precipitating

tau aggregation [46]. Alzheimer’s disease also in-

volves tau aggregations in the brain but investigation

of 4R to 3R ratios has not shown a consistent pattern

related to this disease. However, other splicing fac-

tors influencing exon 10 splicing such as clk2 and

tra2-beta1 have themselves been found to have

altered splicing patterns in Alzheimer’s, suggesting

that disordered splicing may indeed be playing a

role in this disease [47].

Myotonic dystrophyçsplicing factor
sequestration
Myotonic dystrophy (DM) is an autosomal dominant

condition characterized by progressive myopathy,

delayed relaxation of muscle contractions

(myotonia), cardiac conduction defects, cataracts

and a characteristic myopathic facies with frontal

balding. Two forms of DM occur, known as

type 1 (DM1) and type 2 (DM2). DM1 is due to a

CTG expansion in the 30 untranslated region of the

DMPK gene [48]. DM2 is clinically milder and is

caused by a CCTG expansion in intron 1 of the

ZNF9 gene [49]. DM is an example of a disease

where microsatellite expansions cause RNA gain of

function. When these expansions are transcribed, the

RNA contains many CUG or CCUG repeats and

these have a high affinity for the splicing factor

MBNL1. Depletion of MBNL1 from the nucleo-

plasm causes a functional loss of this protein [50].

In DM1, another protein called CUGBP1 becomes

upregulated because of hyperphosphorylation and

stabilization mediated by protein kinase C [51].

This action is induced by RNA containing CUG

repeats. MBNL1 depletion and CUGBP1 upregula-

tion together cause widespread disruption of alterna-

tive splicing. This directly leads to many of the

clinical features seen in DM, including myotonia,

where aberrant splicing of the muscle-specific chlor-

ide channel gene CLNC1 causes impaired chloride

conductance in muscle [52].

Mutations of the splicing machinery
Mutations in genes encoding fundamental compo-

nents of the splicing machinery are relatively rare,

presumably because the effects are incompatible

with life. However, a few such mutations are seen

in several diseases. In SMA, the SMN protein is

involved in snRNP assembly and a deficiency of

functional SMN protein results in multiple splicing

defects across many tissues [53]. Motor neurones

appear to be particularly affected, giving rise to the

classic phenotypic picture of SMA. Autosomal dom-

inant retinitis pigmentosa can also be caused by mu-

tations in splicing factors PRPF31/U4-61k and

PRP8 [54–56].

TDP43 (TAR DNA binding protein 43 kDa) is a

member of the heterogeneous nuclear ribonucleo-

protein (hnRNP) family and contains two RNA

binding domains, one of which binds to UG repeats.

It has been found to bind to a 12 UG repeat in the

CFTR gene, causing exon 9 skipping resulting in

cystic fibrosis [57]. It has also been implicated in

neurodegenerative disorders such as ALS and fronto-

temporal dementia, where it has been found in ubi-

quinated protein aggregates forming cytoplasmic

inclusions [58, 59]. Interestingly TDP43 mutations
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have been found in both sporadic and familial forms

of ALS [60, 61]. Sequestration and depletion of this

splicing factor from the nucleus could be contribut-

ing to splicing abnormalities and neurodegeneration.

Splicing and cancer
Alternative splice variants, which may be tumour

specific, can significantly influence cellular processes

in cancer, including proliferation, motility and drug

response [62]. However, the degree to which aber-

rant splicing is involved in carcinogenesis and how

much is just a reflection of the generally disordered

cell processes present in tumours, remains largely

uncertain.

Notwithstanding this, splicing mutations can

affect tumour suppressor genes and oncogenes just

as they can affect any other type of gene. KLF6 is

one such tumour suppressor gene that inhibits cell

growth through various mechanisms including acti-

vation of p21, a cyclin-dependent kinase inhibitor

[63]. A variant splice isoform of KLF6 is formed by

use of an alternative 50-splice site in exon 2. This

isoform (KLF6–SV1) antagonizes KLF6 and acts in

a dominant negative fashion, promoting cell prolif-

eration [64]. A single nucleotide polymorphism

(SNP) near the exon 2 intron/exon boundary leads

to upregulation of the KLF6–SV1 isoform because of

binding of SRp40, an SR protein [65]. This particu-

lar SNP has been associated with prostate cancer and

studies have shown that overexpression of KLF6–

SV1 accelerates prostate cancer progression [66].

Another example is CDKN2A, a gene that en-

codes two separate tumour suppressor proteins

p14ARF and p16INK4a through the use of alternate

reading frames. Loss of these proteins is associated

with increased risk of melanoma. A particular muta-

tion in the intron 1 splice acceptor site that leads to

skipping of exon 2 in both p14ARF and p16INK4a

has been seen in a family with melanomas and

neurofibromas [67].

Oncogenes are also subject to mis-splicing. The

receptor tyrosine kinase KIT is a proto-oncogene

that can be activated by gain-of-function mutations

resulting in aberrant splicing. Such mutations are

found in gastrointestinal stromal tumours (GISTs).

Deletions of the 30-splice site of intron 10 activate

a new 30-splice site within exon 11. The deleted

portion is critical to KIT inhibition and so the

mutant aberrantly spliced KIT kinase remains consti-

tutively active [68].

The upregulation of particular splice isoforms in

preference to others has been implicated in several

cancers. The apoptotic regulator Bcl-X is one ex-

ample where two isoforms have opposing effects

on apoptosis [69]. Bcl-XS is pro-apoptotic while

Bcl-XL is anti-apoptotic. This difference in function

depends on use of an alternative 50-splice site in the

first coding exon.

In addition to cis-acting mutations, specific alter-

ations in trans-acting factors such as splicing factor

expression have also been found in cancer. SR pro-

teins are, for example, frequently upregulated in tu-

mours. SF2/ASF, an archetypal splicing factor, is

known to regulate alternative splicing of the Ron
oncogene and this modulates cell motility, which is

related to metastatic formation [70]. Overexpression

of SF2/ASF can generate tumours in vivo and in this

way it can be thought of as a proto-oncogene [71].

THERAPEUTICAPPROACHES
Small molecule modulators of splicing
Factors governing alternative splicing are modulated

in response to various cell signalling pathways.

Post-translational modification of splicing factors is

one such mechanism. SR protein phosphorylation

alters the protein’s ability to enhance exon recogni-

tion [72]. Inhibition of specific protein kinases could

be a means of modulating SR protein-mediated spli-

cing events. Such an inhibitor could take the form of

a small molecule [73]. However, targeting such fun-

damental processes is likely to result in widespread

off-target effects. Blanket inhibition of SR protein

phosphorylation would probably cause far-reaching

global changes in splicing profiles. In addition, intra-

cellular signalling pathways involving kinases and

phosphorylases often have multiple and diverse ef-

fects, many of which remain unknown. Inhibition of

specific enzymes could, therefore, have effects on

entirely different cellular mechanisms other than

splicing.

DM presents a potential target for small molecule

therapy. Since the pathogenesis of this disorder is

thought to involve RNA gain of function through

sequestration of splicing factors such as MBNL1 and

CUGBP1, an agent that antagonizes this process

could potentially be used therapeutically. Screening

of small molecule libraries has shown that the drug

pentamidine is able to block MBNL1 binding the

CUG repeats present in DM1 [74].
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Antisense oligonucelotides
A more target-specific approach to splicing modula-

tion can be achieved through the use of antisense

oligonucleotides (AONs). Short oligonucleotides

(ONs) can be synthesized that are complementary

to a particular RNA sequence transcribed from a

specific gene. The sequence specificity of ONs

means that only the RNA sequence of interest will

be targeted. By designing AONs that bind to splice

sites or to enhancer or silencer elements within the

transcript, the splicing mechanism can be manipu-

lated in a precise and reproducible way (Figure 3).

Blocking splice sites and/or regulatory sequences

prevents snRNPs and splicing factors such as SR

proteins and hnRNPs from binding to the RNA

transcript. This allows directed exon skipping or in-

clusion depending on the sequence blocked [75].

The most advanced use of this technology in

terms of therapeutic development has been for

Duchenne muscular dystrophy (DMD). This is an

X-linked disorder of muscle characterized by pro-

gressive muscle weakness in childhood, cardiomyop-

athy and death in early adulthood [76]. The

molecular defect is due to out-of-frame mutations

affecting the dystrophin gene, leading to absence of

functional dystrophin protein. Normal dystrophin

consists of two terminal functional domains joined

by a central repetitive, non-essential rod domain.

The majority of causative mutations occur in the

central rod domain. The functionality of dystrophin

can be restored by restoration of the RNA reading

frame [77]. This can be achieved by selective exon

skipping within the section of RNA transcript

encoding the rod domain. Since the beginnings

and ends of exons are not defined by reading frame

or codon position and since exon lengths do not

adhere to being in multiples of three nucleotides,

different exon–exon junctions within a given gene

can lie at different positions within a codon: i.e. after

positions 1, 2 or 3. Thus, by using a targeted AON

to inhibit the inclusion of a specific exon during the

splicing process, the reading frame of mutated frame-

shifted pre-mRNAs can be restored. In the case of

dystrophin, although the resulting mRNA is intern-

ally shortened, the functionally important terminal

domains are retained. Clinical trials using AONs

have been carried out in human patients with

DMD with promising results confirming restoration

of dystrophin expression after local intramuscular in-

jection [78, 79]. The challenge now is to develop an

effective method to deliver ONs systemically.

In order to achieve lasting effect, AONs need to

be able to resist degradation by endogenous nucle-

ases, particularly RNase H. A number of different

ON chemistries have been developed to address

this problem. In all cases, this entails making modi-

fications to the molecular structure of the sugar–

phosphate backbone found in naturally occurring

Figure 3: The principle of exon skipping using AONs. (A) In the top figure, consecutive exons are spliced together
through recognition of consecutive 50 - and 30 -splice sites. (B) In the bottom panel, an AON hybridizes to the
30 -splice site of the first intron, preventing its recognition by the splicing machinery. Instead, the next available
30 -splice site (in the following intron) is used, resulting in exclusion of the intervening exon. AONs may be targeted
to other regulatory sequences such as ESEs, ESSs, ISEs or ISSs in order to achieve the desired effect.
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nucleic acids while maintaining the molecule’s ability

to perform Watson–Crick base pairing with native

RNA. The most common examples currently in use

include 20-O-methyl phosphorothioates, locked nu-

cleic acids (LNAs), peptide nucleic acids (PNAs)

and phosphorodiamidate morpholinos (PMOs)

(Figure 4).

AONs can be designed to block cryptic splice sites

and prevent pseudoexon inclusion. AONs targeting

activated cryptic splice sites have been used to restore

normal splicing in b-thalassaemia (b-globin) and cys-

tic fibrosis (CFTR) [80–82]. In both examples, 20-O-

methyl phosphorothioate AONs were used. Another

related AON chemistry, 20-O-(2-methoxyethyl)

phosphorothioate AON, has been used to upregulate

exon 7 inclusion in SMN2 and this rescues the

phenotype in a transgenic mouse model of SMA

[83]. The same approach has been tested in primates

[84]. In b-thalassaemia, splicing defects have also

been corrected by engineering U7 snRNA to

target aberrant splice sites [85]. Other notable con-

ditions involving pseudoexon inclusion and for

which AON therapeutic approaches are being inves-

tigated include congenital disorders of glycosylation

(PMM2) [86] and afibrinogenaemia (FGB) [87].

AONs are also being developed to treat DM [88].

By designing ONs that bind to CUG repeats in

DM1, the expanded region is prevented from bind-

ing to and sequestering proteins such as MBNL1.

This disrupts the toxic gain-of-function mechanism

thought to account for pathogenesis in DM1.

Bifunctional ONs
Bifunctional ONs are a variant on the theme of

AONs. They contain an antisense-targeting domain

at one end and an effector domain at the other which

contains binding sites for known splicing factors [89].

Bifunctional ONs have been used to facilitate the

inclusion of SMN2 exon 7 by acting as an ESE.

Chimeric effectors have also been designed which

again contain an antisense domain but also have a

peptide effector domain such as RS repeats that

mimic the effects of SR proteins [90].

Trans-splicing
The majority of naturally occurring splicing occurs

between exons of a single pre-mRNA. Occasionally

splicing can take place between two separate

pre-mRNA transcripts, which may be from different

genes. This process is known as trans-splicing and

offers a potential route for the ‘correction’ of aber-

rant RNAs [91]. Trans-splicing is mediated by the

spliceosome and specific pre-mRNAs can be tar-

geted by designing sequence-specific pre-trans-spli-

cing molecules (PTMs). PTMs are ONs that

consist of a binding domain complementary to part

of the target intronic sequence, a splicing domain

incorporating the required splicing sequence elem-

ents and a coding domain that carries the exon(s) to

be trans-spliced (Figure 5). The complementarity be-

tween the PTM binding domain and the intronic

Figure 4: Chemical structures of commonly used
AONs. (A) 2’-O-methyl phosphorothioates. This chem-
istry resembles RNA but has a methyl group at the
2’-O position and has a phosphorothioate rather than
a phosphate group linking the ribose molecules.
(B) LNAs.This closely resembles RNA but incorporates
an extra carbon linker between the 2’-O and the 4’
carbon. (C) PMOs. The ribose molecules are replaced
by morpholine ring moieties and the phosphodiester
bonds are replaced by phosphorodiamidate linkers.
(D) PNAs.The entire sugar^phosphate backbone struc-
ture has been replaced by a repeating aminoethylglycine
backbone and acetyl linkers carry the bases.
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sequence of interest enables targeting of specific

pre-mRNAs. Typically the binding domain includes

the branchpoint region of the native pre-mRNA and

this has the effect of preventing the usual splicing

reaction from taking place. By designing strong

splice sites in the PTM, the spliceosome can be

‘tricked’ into using the PTM splice site in preference

over that of the endogenous transcript. By using this

principle and different conformations of PTM

design, it is theoretically possible to effectively repro-

gramme the 50- or 30-ends of an mRNA, or even to

selectively replace a single internal exon. Such

approaches have been used in models of cystic fibro-

sis, haemophilia A and SMA [92–94].

Figure 5: Trans-splicing. (A) Example of a pre-trans-splicing molecule (PTM). (B) The binding domain of the PTM
hybridizes to its target pre-mRNA. Strong splice sites within the PTM encourage preferential trans-splicing to gener-
ate a ‘reprogrammed’ mRNA.
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CHALLENGES
Delivery
The traditional concept of gene therapy entailed

restoring the function of a defective gene by intro-

ducing the correct DNA sequence of a particular

gene into the relevant cells. With the advent of

RNAi and antisense technologies, the emphasis of

gene therapy has increasingly moved towards modu-

lation of RNA rather than DNA. However, irre-

spective of approach, the primary difficulty that still

arises is one of delivery.

A number of different delivery vectors, both viral

and non-viral, are potentially available as means of

transport for ON-based splice-correction therapies

[95]. Viral vectors including retroviruses, adeno-

viruses and adeno-associated viruses have long been

used in laboratory settings but their inherent risks and

immunogenicity has limited their clinical application

[96]. Although modifications can be made to reduce

the immunogenicity of viruses, it is perhaps worth

considering that evolution of the complex adaptive

immune system of higher organisms was likely

driven for the most part by the need to prevent

viral infection and propagation. It is perhaps there-

fore no surprise that the therapeutic use of viral

vector gene therapy has so far proved elusive and

problematic. Another widely studied approach has

been the use of liposome vectors. Complexing nu-

cleic acids with cationic lipid particles can facilitate

effective cellular uptake in vitro. However, efficiency

of in vivo uptake remains generally poor [97].

One particularly intriguing and promising avenue

of research involves the use of cell-penetrating pep-

tides (CPPs) to deliver conjugated ON cargoes. Such

peptides include B-peptide and derivatives of

Penetratin, a Drosophila protein rich in arginine resi-

dues. The exact mechanism by which CPPs enter

cells is not fully elucidated [98]. However, ongoing

studies involving peptide-conjugated AONs for the

treatment of DMD are producing extremely promis-

ing results. These studies show that conjugation to

CPPs dramatically increases ON uptake systemically

in both skeletal muscle and heart [99, 100].

Personalized medicine
Mutations found in clinical practice, including those

affecting splicing, are largely ‘private’ mutations,

so-called because they are only found in a single

individual or in a single kindred. Designing bespoke

sequence specific therapies for such situations is per-

sonalized medicine in the truest sense of the term.

However, if each new ON sequence designed is

classed as a novel therapeutic agent, it will be unfeas-

ible to subject each new agent to all the rigorous

drug development tests and trials used in current

pharmaceutical practice. When the cohort of treat-

able patients consists of a single individual, there can

be no prospect of a clinical trial. This issue is one of

the major challenges facing personalized medicine

and it must be resolved if we are to derive the full

benefit promised by ON-based therapies.

Predicting splicing
A growing number of in silico software programs are

available to help predict the effects of mutations on

splicing. While these can provide useful information

regarding mutations close to canonical splice sites,

their accuracy regarding more subtle sequence

changes in poorly conserved elements such as spli-

cing enhancers and silencers is much more variable.

In the clinical diagnostic setting, such predictions re-

garding unknown variants are generally not yet reli-

able enough to allow clinical decisions to be based

upon them. In such cases, there is still a reliance on

functional RNA studies to help elucidate the pres-

ence of aberrant splicing. However, even this ap-

proach has limitations, since the studies are almost

always done in blood and there can be no guarantee

that the pattern of splicing in leucocytes will neces-

sarily reflect that in other tissues.

Predicting the effects that a particular sequence

will have on splicing is currently one of the greatest

challenges in molecular genetics. As we have seen,

the answer is likely to be complex, since variations in

trans-acting factors can alter the splice isoform pattern

and different cell types are likely to splice genes dif-

ferently in response to both intra- and extracellular

conditions. Novel methods of global RNA analysis

such as exon-junction microarrays and deep sequen-

cing, together with detailed cataloguing of the targets

of RNA binding proteins will lead to a fuller under-

standing of the complex regulatory networks that

govern splicing and shed light on the effects of indi-

vidual mutations on global patterns of splicing [101].

CONCLUSIONS
The examples cited in this review are far from com-

prehensive. However, they do serve to illustrate

some of the many and varied ways in which splicing

contributes to disease. RNA splicing is one of the

fundamental processes of cell biology. The more that
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is learnt about it, the more can be appreciated about

its multilayered complexity and its relevance in terms

of health and disease. Furthermore, by unpicking the

mechanisms by which cells choose how to splice their

RNA, a fuller picture is gradually emerging of how

external factors of the cellular environment interact

with internal genetic factors. This understanding

brings with it too increasing opportunities to manipu-

late the splicing mechanism and to correct it when it

causes disease. By advancement in areas such as ON

delivery, splicing prediction and the understanding of

splicing in disease pathogenesis, the scientific and

medical communities are equipping themselves

with much of the knowledge and tools needed for

the next rapidly approaching frontier of biomedical

science, that of personalized genetic medicine.

Key Points

� Pre-mRNA splicing is a highly complex process regulated by
cis-acting sequence elements and trans-acting splicing factors.

� Aberrantpre-mRNA splicing is a frequentcause of humangenet-
ic disease.

� Therapeutic strategies to treat splicing diseases include small
moleculemodifiers of splicing, trans-splicing and AONs.

� Currentchallenges in this field include effective delivery systems,
accurate splicing prediction and the development of persona-
lizedmutation-specific therapies.
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