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Abstract

Accumulating evidence has shown that microRNAs (miRNAs) play crucial roles in different biological processes, and their
mutations and dysregulations have been proved to contribute to tumorigenesis. In silico identification of disease-associated
miRNAs is a cost-effective strategy to discover those most promising biomarkers for disease diagnosis and treatment. The
increasing available omics data sources provide unprecedented opportunities to decipher the underlying relationships
between miRNAs and diseases by computational models. However, most existing methods are biased towards a single
representation of miRNAs or diseases and are also not capable of discovering unobserved associations for new miRNAs or
diseases without association information. In this study, we present a novel computational method with adaptive
multi-source multi-view latent feature learning (M2LFL) to infer potential disease-associated miRNAs. First, we adopt
multiple data sources to obtain similarity profiles and capture different latent features according to the geometric
characteristic of miRNA and disease spaces. Then, the multi-modal latent features are projected to a common subspace to
discover unobserved miRNA-disease associations in both miRNA and disease views, and an adaptive joint graph
regularization term is developed to preserve the intrinsic manifold structures of multiple similarity profiles. Meanwhile, the
Lp,q-norms are imposed into the projection matrices to ensure the sparsity and improve interpretability. The experimental
results confirm the superior performance of our proposed method in screening reliable candidate disease miRNAs, which
suggests that M2LFL could be an efficient tool to discover diagnostic biomarkers for guiding laborious clinical trials.
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Introduction

MicroRNAs (miRNAs) are a group of short non-coding RNAs
that regulate gene expression at the post-transcriptional level,
which have been reported to be involved in tumorigenesis
and progression [1, 2]. Existing studies revealed that miRNAs
are important regulators and participate in different biological
processes or pathways, including cell growth, cell proliferation,
cellular apoptosis and metabolism [3–5]. The majority of well-
characterized miRNAs have indicated their significant roles in
many human complex diseases or tumors, such as lung neo-
plasms, laryngeal squamous cell carcinoma, colorectal cancer
and so on [6, 7]. For example, miR-367 is observed to promote
hepatocellular carcinoma cell proliferation and show aberrant
expressions in hepatocellular cancer patient tumor samples or
tissues than that in normal tissues [8]. Therefore, identifying
the underlying relationships between miRNAs and diseases
will undoubtedly facilitate the understanding of pathogenic
mechanisms and contribute to the development of personalized
treatment. In recent years, although some efforts have been
devoted to discover disease miRNAs by biological experiments,
the roles and activities related to miRNAs in human diseases are
still insufficiently understood. Thus, it is imperative to reveal
potential miRNA and disease relationships by computational
models.

With the rapid accumulation of genomic data, it creates huge
opportunities to construct high-efficiency and low-cost in silico
methods for help to study various biological problems, such
as complex biological network construction [9, 10], functional
module identification [11, 12], disease candidate molecule pri-
oritization [13–15] and DNA-protein binding site prediction [16,
17]. It is well known that the traditional biological experiment
methods usually time consuming, expensive, small scale and
susceptible to outside world. Therefore, computationally priori-
tizing the most possible disease miRNA candidates can help to
guide and accelerate those costly and tremendously laborious
clinical experiments. Considering miRNAs might be biomarkers
for tumor diagnosis and treatment, some computational models
have been developed to decipher those underlying miRNA-
disease associations [18]. The network- and machine learning-
based approaches are popular for prioritizing disease-associated
miRNAs, and many of them are based on the assumption that
functional similar miRNAs tend to be related to phenotypically
similar diseases [19]. By constructing miRNA-disease heteroge-
neous network, Luo et al. [20] developed a method called BRWH
to infer disease-related miRNA candidates by unbalanced bi-
random walk. Chen et al. [21] adopted the matrix decomposition
and heterogeneous graph inference to discover those missing
associations between miRNAs and diseases. Yu et al. [22] first
constructed a miRNA-disease heterogeneous network, and
then introduced a method of global linear neighborhoods for
scoring disease and miRNA pairs. Chen et al. [23] designed a
bipartite network projection model to infer associations based
on the known miRNA-disease network and the integrated
similarity of miRNAs and diseases. You et al. [24] proposed a
path-based model to uncover miRNA-disease associations in a
heterogeneous graph network through the fusing of multiple
biological data. Moreover, a series of other network-based
models have also been presented to infer disease candidate
miRNAs [25, 26]. However, the performance of this type of models
is unusually influenced by the quality of those constructed
networks.

In addition, many previous computational approaches
take advantage of machine learning algorithms and various

genomic data for prediction of disease miRNAs. For example,
Xiao et al. [27] introduced a graph regularized non-negative
matrix factorization method (GRNMF) for discovering the latent
associations between diseases and miRNAs. By integrating
heterogeneous omics data, Luo et al. [28] presented a model
named KRLSM to prioritize disease-related miRNAs through
Kronecker regularized least squares. Xiao et al. [29] proposed
a multi-view manifold regularized learning-based method
(MRSLA) to predict candidate disease miRNAs. Chen et al. [30]
developed a semi-supervised learning method to discover
candidate disease-associated mRNAs. Zhao et al. [31] introduced
an adaptive boosting-based method to predict associations
between miRNAs and diseases. Chen et al. [32] proposed a
computational framework with decision tree to predict miRNA-
disease associations, and the feature vectors were extracted
by utilizing ensemble learning and dimensionality reduction.
Chen et al. [33] introduced another method called RKNNMDA
to predict potential disease-related miRNAs based on k nearest
neighbor strategy. Li et al. [34] first calculated pairwise linear
neighborhood similarities for miRNAs and disease and they
developed a computational model for scoring miRNA and
disease pairs using label propagation. By fully exploiting
the statistical and graph theoretical profiles obtained from
similarity networks, Chen et al. [35] adopted a subspace learning
model with Laplacian regularization to uncover miRNA-disease
associations. Liang et al. [36] presented a model for screening
disease miRNAs based on data integration by using multi-label
learning. It is well known that deep learning shows superior
performance in many applications. Peng et al. [37] and Zeng
et al. [38] presented two learning-based frameworks to identify
potential disease-related miRNAs based on neural networks.
By combining multi-label learning with semi-supervised graph
convolutional networks, Pan et al. [39] proposed a method to infer
disease-associated miRNAs by fusing multiple data sources.
Li et al. [40] introduced a topology-based similarity measure
method with DeepWalk to reveal unobserved associations
between miRNAs and diseases. More recently, Chen et al. [41]
presented a novel computational model called NCMCMDA for
miRNA-disease association prediction based on neighborhood
constraint with matrix completion. Meanwhile, they also
developed some models with logistic regression [42], extreme
gradient boosting machine [43], label propagation [44] and
restricted Boltzmann machine [45], to discover those missing
associations between miRNAs and diseases. Overall, all these
abovementioned models have provided great insights into the
disease mechanisms at miRNA level as well as the detection of
potential prognostic biomarkers.

Despite great efforts have been made to explore the
underlying miRNA and disease relationships, some limitations
still exist for those existing computational models. First, many
network-based methods strongly rely on the experimentally
verified miRNA-disease associations and cannot be applied for
new diseases or miRNAs that without any known association
information. In addition, the integration of multiple comple-
mentary data sources can usually improve performance, and
some previous methods often obtained different similarity
matrices for both miRNAs and diseases, but most of them
generally adopted a simple average or linear weighting strategy
to combine different miRNA similarity matrices and disease
similarity matrices, which may not be the best choice for model
learning. What is more, a number of methods only focus on
a single representation for disease or miRNA spaces. Existing
studies show that many real-world data are comprised of
different features and incorporating multiple representations
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or multi-modal features could often strengthen the prediction
ability.

In this work, we introduce a novel integrative framework
to discover potential disease-associated miRNAs with adaptive
multi-source multi-view latent feature learning (M2LFL), which
projected the multi-modal latent features into a common sub-
space for both miRNA and disease spaces. First, the framework
comprehensively estimates similarities for both miRNA–miRNA
pairs and disease–disease pairs and extracts multiple latent
features of miRNAs and diseases by fully exploiting multiple
biological data sources, including miRNA sequence informa-
tion, known miRNA-disease associations, gene ontology (GO),
miRNA target interactions and disease semantic information.
Then, inspired by [46, 47], we infer potential disease-related
miRNAs by a feature-based ensemble learning method. Addi-
tionally, we perform the learning task by incorporating adaptive
graph regularization and Lp,q-norm constrain to improve the
interpretability and performance. Finally, we use an alternating
iteration algorithm to solve the optimization problem of M2LFL,
and the results show that M2LFL achieves superior performance
compared with other state-of-the-art methods in discovering
candidate disease miRNAs.

The main contributions of this paper include as follows:

• We present a multi-source multi-view learning approach
to infer disease-associated miRNAs from both miRNA and
disease perspectives, which incorporates multiple similar-
ity profiles, multi-modal latent features as well as known
association information.

• By using manifold theory, an adaptive joint graph regular-
ization is introduced to efficiently integrate diverse similar-
ity profiles and preserve those manifold characteristics for
data spaces, which could automatically update the weights
and ensure that all graph Laplacian items contribute to the
learning task.

• To improve interpretability and alleviate the effects of the
inherent noise in both miRNA and disease feature spaces,
the Lp,q mixed-norms is imposed on the projection matrices
to select the most representative or discriminative sparse
features.

• The proposed method combines different representations
related to diseases and miRNAs, which could be used to
infer miRNA-disease associations for the scenarios involv-
ing new miRNAs or diseases.

The rest of this paper is organized as follows. In ‘Materials
and methods,’ multiple similarity profiles and features for miR-
NAs and diseases are introduced, and then the mathematical
formulation of M2LFL is presented. Finally, the experimental
results with additional analysis and the study’s conclusions are
given in ‘Results and discussion.’

Materials and methods

Human miRNA-disease associations

We downloaded the experimentally supported miRNA-disease
associations from HMDD v2.0 [48], which is a manually collected
database of observed human disease and miRNA associations,
and each entry includes detailed information on a miRNA-
disease association, including miRNA and disease names,
PubMed id of reference and a brief functional description.
Meanwhile, we also downloaded the disease descriptors from
the U.S. National Library of Medicine (MeSH) [49], in which
the semantic information of diseases can be explained by

directed acyclic graphs (DAGs), as shown in Figure 1, and the
disease semantic similarity can be estimated according to the
disease DAG hierarchical structures. Additionally, the miRNA
annotations are obtained from miRBase [50] to maintain the
consistency of data from different data sources. After filtering
out associations that their corresponding miRNA names or
disease names were absent in the MeSH descriptors or miRBase
records, we finally retained 6088 known associations involving
550 miRNAs and 328 diseases as the benchmark dataset for
model learning.

Multi-source similarity calculation and representation

In practice, various heterogeneous data sources often contain
different representation or complementary information [51–53].
In this section, we incorporate multiple biological omics data
(Table 1) to comprehensively estimate disease–disease similarity
and miRNA–miRNA similarity from different modalities and
present two types of disease similarity profiles and four types
of miRNA similarity profiles for M2LFL to lead to high accuracy.

Disease similarity profiles

Disease semantic similarity. As described in Zou et al. [54], the
MeSH disease descriptors have been widely adopted to esti-
mated disease semantic similarity based on their corresponding
DAG structures. Formally, a disease d can be denoted as DAGd = (d,
T(d), E(d)), where T(d) represents d itself and all its ancestor nodes,
E(d) is an edge set that contains all the direct links between par-
ent nodes and child nodes in DAGd. The semantic contribution
of disease t related to d was calculated as follows:

Cd(t) =
{

1 if t = d
max

{
0.5 ∗ Cd

(
t’
) |t’ ∈ children of t

}
, if t �= d

(1)

Then, the pairwise disease semantic similarity was defined
by:

SSd
(
di, dj

) =
∑

t∈T(di)∩T(dj)

(
Cdi

(t) + Cdj
(t)
)

SV
(
di
)+ SV

(
dj
) (2)

where SV(di) = ∑
t∈T(di )

Cdi
(t) denotes the semantic value of dis-

eases di. Obviously, according to the Equation (2), we can know
that two diseases sharing a greater overlap of their DAGs are
usually more similar.

Disease Gaussian interaction profile kernel similarity. It has been
shown that the Gaussian interaction profile (GIP) can be used to
capture the topological characteristics of interaction networks,
which was successfully adopted to estimate kernel similarity
for each pair of biomolecules or items in computational biology
[13, 55]. Let IP(di) and IP(dj) denote the binary interaction profile
vectors of diseases di and dj, which correspond to the i-th and
j-th rows in the adjacency matrix of known association network,
respectively, the GIP kernel similarity between diseases di and dj

was defined as follows:

GSd
(
di, dj

) = exp
(
−γd

∥∥IP (di
)− IP

(
dj
)∥∥2
)

(3)

where n denotes the number of human diseases, γd =
γ ’

d /( 1
n

∑n
i=1‖IP(di)‖2) controls the kernel bandwidth and γ d’ was

set to 1 as suggested in Xiao et al. [29].

MiRNA similarity profiles

MiRNA functional similarity. Based on the commonly accepted
assumption that miRNAs with similar functions are more likely
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Figure 1. The directed acyclic subgraphs structures of two diseases.

Table 1. The details of data sources used in M2LFL

Name Website Reference Description

HMDD http://www.cuilab.cn/hmdd [44] The experimentally supported miRNA-disease
associations

MeSH https://www.nlm.nih.gov/mesh [45] Disease descriptors
miRBase http://www.mirbase.org/ [46] miRNA sequences and annotation
Gene ontology annotations http://www.bioconductor.org/ — R package ‘org.Hs.eg.db’
mirTarBase http://mirtarbase.mbc.nctu.edu.tw [48] The experimentally validated miRNA-target gene

interactions
miRCancer http://mircancer.ecu.edu/ [53] MicroRNA cancer association database
dbDEMC http://www.picb.ac.cn/dbDEMC [54] Differentially expressed miRNAs in human cancers
miR2Disease http:// www.mir2disease.org/ [55] A manually curated database for miRNA deregulation

in human disease

to be associated with similar diseases and vice versa, we utilize
the most popular strategy, as illustrated in literature [54], to
quantify the functional similarity for miRNA–miRNA pairs mi

and mj as follows:

FSm
(
mi, mj

) =
∑

d∈T(mi)
ST
(
d, T

(
mj
))+∑d∈T(mj)

ST
(
d, T (mi)

)
| T (mi) | + | T

(
mj
) | (4)

where T(mi) and T(mj) represent the disease sets related to mi

and mj, respectively; | T(·) | is the cardinality of disease set, and
ST(d, T(mi)) = maxdx∈T(mi )(SSd(d, dx)).

MiRNA sequence similarity. To measure miRNA sequence simi-
larity, we obtain their sequence information from miRBase [50]
and use the pairwiseAlignment function in R package Biostrings to
quantify similarities for any two miRNAs. The similarity values
are calculated according to the entire mature sequences with a
gap extension penalty of 2 and a gap opening penalty of 5. The
match and mismatch scores are set to 1 and −1 [36], respectively,
to obtain a substitution matrix for sequence alignment. Mean-
while, the sequence similarity score, Score(mi, mj), can be further
normalized to range [0,1] based on min–max normalization as

follows:

SCm
(
mi, mj

) = Score
(
mi, mj

)− SCmin

SCmax − SCmin
(5)

where SCmax and SCmin denote the maximum and minimum
similarity scores, respectively.

MiRNA semantic similarity. The aforementioned miRNA func-
tional similarities rely on those miRNA-related diseases, and
thus cannot be used for the novel miRNAs without any known
associations. Therefore, we also integrate miRNA targets and
those gene-related annotation items to measure miRNA seman-
tic similarity. The verified miRNA–target gene interaction infor-
mation are downloaded from mirTarBase [56], and GO anno-
tation information are acquired based on the R package ‘org.
Hs.eg.db.’ The semantic similarity score between two miRNAs
is calculated according to their related target-gene lists as well
as those GO annotations related to the two group genes. Here,
we use the clusterSim function in GOSemSim package to estimate
semantic similarity between two gene sets, and adopt best-match
average (BMA) method to combine semantic similarity values of
multiple GO terms [57]. Finally, the miRNA semantic similarity
matrix can be obtained and the corresponding similarity score
for mi and mj pair is denoted as SSm(mi, mj).
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MiRNA GIP kernel similarity. Similarly, the GIP kernel similarity
between miRNAs mi and mj also can be estimated as follows:

GSm
(
mi, mj

) = exp
(
−γm

∥∥IP (mi) − IP
(
mj
)∥∥2
)

γm = γ ’
m

/(
1
m

m∑
i=1

‖IP (mi)‖2

)
(6)

where IP(mi) and IP(mj) are the interaction profiles of mi and mj,
which correspond to the i-th and j-th columns in the adjacency
matrix of association network, respectively; m represents the
number of miRNAs, γ m’ was set to 1 as in previous studies.

Network-based multi-modal feature extraction

In this section, we mainly describe the multi-modal feature
extraction for miRNAs and diseases according to the known
association network and similarity networks. As we know, a
complex human disease is usually associated with many miR-
NAs, and a miRNA is also involved in many different diseases.
Here, we extract the first type of feature vectors from the known
miRNA-disease association network, which is represented by a

matrix X =

⎡
⎢⎢⎣

x11 . . . x1n

...
. . .

...
xm1 . . . xmn

⎤
⎥⎥⎦ and the entity xij = 1 if miRNA

mi was known to be associated with disease dj, otherwise xij =
0. Then, the feature vectors of miRNAs (or diseases) can be
obtained through the corresponding rows (or columns) in matrix
X, i.e. each row binary vector X(mi) = {xi1, xi2, . . . , xin} corresponds
to a miRNA while each column vector X(dj) = {x1j, x2j, . . . , xmj}T

represents a disease.
Additionally, the miRNA (or disease) similarity network

reflect the degree of closeness among different miRNAs
(or diseases), which also contain valuable information for
generating latent features. Considering the sparseness of
different similar networks, and if a sparse network is used
to capture latent features, it is not conducive to performance
improvement. Here, the GIP similarity networks in both miRNA
and disease spaces are relatively dense, we utilize them to
extract the other type of latent features for miRNAs and diseases.
Inspired by Lu et al. [58], the principal component analysis (PCA)
is used to capture low-dimensional features, and the singular
value decomposition (SVD) is adopted to perform the PCA. Since
the GIP kernel similarity matrices GSd and GSm are symmetric,
both of them can be expressed as the form of U

∑
UT, where U

is an unitary matrix and
∑

is an diagonal matrix with singular
values deposited on its diagonal. Let Fm(mi) = {fi1, fi2, . . . , fikm } and
Fd((di) = {f1i, f2i, . . . , fkdi}T be the low-dimensional latent feature
vectors for miRNA mi and disease di, respectively, we calculate
the dimensions kd and km of them based on the dominating
energy strategy [59] as follows:

kd = arg min
k

(∑k
i=1 (GSd)ii∑n
j=1 (GSd)jj

≥ σd

)
(7)

and

km = arg min
k

(∑k
i=1 (GSm)ii∑m
j=1 (GSm)jj

≥ σm

)
(8)

where σd and σm are the free parameters controlling kdand km,
respectively. Finally, we obtain two types of miRNA and disease
latent feature vectors to implement the learning task.

Adaptive M2LFL framework

Problem statement and notations

Suppose that we have m miRNAs and n diseases, which are
denoted by Tm = {m1, m2, . . . , mm} and Td = {d1, d2, . . . , dn}. As
aforementioned, the known miRNA-disease association network
is represented as X = {xij}m,n

i=1,j=1, and the entity is defined by

xij =
{

1 if miRNA mi is known associated with disease di
0 otherwise

(9)
Assuming that we have obtained N (or N′) types of similarity

profiles and M (or M′) types of latent features for miRNAs (or dis-
eases), and denote the similarity profiles and feature matrices as

S = {S(i)
m ∈ Rm×m}N

i=1 (or S’ = {S(i)
d ∈ Rn×n}N’

i=1) and F = {F(i)
m ∈ Rm×k(i)

m }M

i=1

(or F’ = {F(i)
d ∈ Rn×k(i)

d }
M’
i=1) for miRNAs (or diseases), respectively. In

this study, we obtain four and two types of similarity profiles for
miRNAs and diseases (i.e. N = 4 and N′ = 2), respectively, and the
number of feature matrices is two for both miRNA and disease
spaces (i.e. M = 2 and M′ = 2). Since the available experimentally
verified associations are still very limited, the main purpose of
this work is to discover the unobserved associations based on
the above information, and the predicted association matrix is
denoted by G ∈ Rm×n, which has the same dimensionality with
matrix X. The main notations and abbreviations are listed in
Table 2.

Mathematical formulation

In this study, we present a model named M2LFL to predict the
most possible disease-associated miRNAs. Many studies indi-
cate that implementing learning tasks by integrating different
views can help to improve performance [29, 46]. In addition,
it has also been shown that incorporating various features or
exploiting complementary information can usually contribute
to high-accuracy models [46, 60]. Therefore, we formulate the
model of M2LFL by utilizing multiple similarity profiles and
multi-modal latent features and perform the disease-associated
miRNA inferring task based on the views of miRNAs and
diseases.

As aforementioned, due to the insufficient experimentally
validated miRNA-disease associations, the corresponding adja-
cency matrix X is sparse and those values in the interaction pro-
files IP(mi) and IP(di) for novel miRNAs or diseases are all zeros.
Therefore, inspired by the successful application of weighted K
nearest known neighbors (WKNKN) in the previous study [27], we
perform a pre-processing procedure with WKNKN to add more
interaction information to infer the initial probability values for
these interacting or non-interacting pairs. For each miRNA mi

or disease di, the interaction profile is updated according to the
weighted average of its neighbors’ profile information, and the
WKNKN is formulated as follows:

Xm
(
mj, :

) = 1
Qm

K∑
i=1

w(m)
i X (mi)

Xd
(
:, dj
) = 1

Qd

K∑
i=1

w(d)
i X

(
di
)

(10)

where m1 (or d1) to mK (or dk) denote the K nearest known
neighbors of mj (or dj) in the kernel similarity network;
Qm = ∑K

i=1GSm(mi, mj) and Qd = ∑K
i=1GSd(di, dj) are the normaliza-

tion terms; w(m)
i and w(d)

i represent the weight coefficients. As sug-
gested in Xiao et al. [27], here we also set K to 5 in both miRNA and
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Table 2. The main notations and abbreviations

Notation Definition

m Number of miRNAs
n Number of diseases
X ∈ Rm×n Known miRNA-disease association matrix
SSd ∈ Rn×n, GSd ∈ Rn×n Two types of disease similarity profiles
FSm ∈ Rm×m, SCm ∈ Rm×m,SSm ∈ Rm×m, GSm ∈ Rm×m Four types of miRNA similarity profiles

S(i)
m ∈ Rm×m(or S(i)

d ∈ Rn×n) The i-th miRNA (or disease) similarity profile

F(i)
m ∈ Rm×k(i)

m (or F(i)
d ∈ Rn×k(i)

d ) The i-th miRNA (or disease) feature matrix

k(i)
m (or k(i)

d ) Dimension of the i-th feature matrix

H(i)
m ∈ Rn×k(i)

m (or H(i)
d ∈ Rm×k(i)

d ) The projection matrix of the i-th miRNA (or disease) feature
α(i),λ, μ and η Weight coefficient and regularization parameters
Gm ∈ Rm×n(or Gd ∈ Rn×m) The common latent interaction matrix in miRNA (or disease) view
G ∈ Rm×n The predicted miRNA-disease association matrix

disease spaces. Finally, the entities in matrix X can be updated
by taking the average of the updated interaction likelihood
profiles.

In the miRNA perspective, to combine different features of
miRNAs and projected those corresponding feature matrices

{F(i)
m}M

i=1 into a common latent interaction subspace, we adopt

a linear transformation to achieve this goal by using F(i)
m(H(i)

m)
T
,

where H(i)
m ∈ Rn×k(i)

m is the projection matrix of the i-th miRNA
feature matrix, i = 1, 2, . . . , M. Then, the common latent inter-
action matrix Gm ∈ Rm×n of miRNA view can be approximated by

F(i)
m(H(i)

m)
T
, which can be written as ‖F(i)

m(H(i)
m)

T − Gm‖
2

F,i = 1, 2, . . . , M,
where ‖ · ‖F is the Frobenius norm. Meanwhile, the matrix Gm is
also encouraged to approximate to the original observed associ-
ation matrix X, and thus we can mathematically formulate the
following objective function:

min
Gm ,H(i)

m

M∑
i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm

∥∥∥∥
2

F
+ λ‖Gm − X‖2

F

s.t.H(i)
m ≥ 0 (11)

where λ ≥ 0 is a regularization parameter.
It has been shown that the intrinsic characteristics of differ-

ent data spaces usually provide complementary or underlying
correlated information and the graph regularization can be used
to preserve the local structures of data spaces [27]. Here, to
keep the geometric structures for the miRNA similarity profiles

{S(i)
m}N

i=1 and maintain the similarity or correlation relationships
of miRNAs, a non-negative weight vector α = [α(1), α(2), . . . , α(N)] is
introduced, and we define a novel joint graph regularization as
follows:

N∑
i=1

α(i)tr
(
Gm

T
(
D(i)

m − S(i)
m

)
Gm

)
= tr

(
Gm

T

(
N∑

i=1

α(i)L(i)
m

)
Gm

)

s.t.
N∑

i=1

α(i) = 1, α(i) ∈ [0, 1] (12)

where L(i)
m = D(i)

m − S(i)
m is the graph Laplacian matrix of the i-th

miRNA similarity profile, and (D(v)
m )ii = ∑m

j=1(S(v)
m )ij is a diagonal

matrix; the weight vector α is used to control the contributions
of different similarity profiles.

To efficiently integrate multi-modal latent features and
diverse similarity profiles of miRNA view, we can reformulated
the objective function by combining the function in Equation

(11) and the regularization term of Equation (12) as follows:

min
Gm ,H(i)

m ,α(i)

M∑
i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm

∥∥∥∥
2

F
+ λ‖Gm − X‖2

F

+ μtr

(
Gm

T

(
N∑

i=1

α(i)L(i)
m

)
Gm

)

s.t.H(i)
m ≥ 0,

N∑
i=1

α(i) = 1, α(i) ∈ [0, 1] (13)

where μ is a parameter that control graph regularization term of
miRNA space.

For the above objective function of Equation (13), the solu-
tion of α is α(i) = 1 when tr(Gm

TL(i)
mGm) is the minimum one

over the N items, and other entries in the weight vector α =
{α(1), α(2), . . . , α(N)} are all zeros. To conquer this limitation and
ensure that all graph Laplacian items could contribute effec-
tively for the maintaining of graph local structures, we adopt a
self-adaptive parameter adjustment strategy to guarantee that
each similarity profile contributes to the learning task and trans-
form the third term in Equation (13) into a non-linear program-
ming problem by enforcing parameter μ > 1 as the exponent of
α(i). Then, Equation (13) becomes:

min
Gm ,H(i)

m ,α(i)

M∑
i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm

∥∥∥∥
2

F
+ λ‖Gm − X‖2

F

+ tr

(
Gm

T

(
N∑

i=1

(
α(i)
)μ

L(i)
m

)
Gm

)

s.t.H(i)
m ≥ 0,

N∑
i=1

α(i) = 1, α(i) ∈ [0, 1] (14)

In addition, the elements of projection matrix H(i)
m ∈ Rn×k(i)

m

in Equation (13) describe the weights of miRNA features. To
alleviate the influence of inherent noise in miRNA space and
improve the interpretability for the prediction results, we also
impose the Lp,q mixed-norm on the projection matrices. The
Lp,q mixed-norm could help to obtain the most representative
and discriminative sparse features [47], and the definition of Lp,q

norm is as follows:

∥∥∥H(i)
m

∥∥∥
p,q

=

⎛
⎜⎜⎝

n∑
x=1

⎛
⎜⎝ k(i)

m∑
y=1

(
H(i)

m

)p

xy

⎞
⎟⎠

q
p
⎞
⎟⎟⎠

1
q

(15)
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Here, as done in Qiu et al. [47], we utilize L1,2-norm to regularize
the sparsity of the projection matrix H(i)

m . Finally, the objective
function of M2LFL is mathematically formulated as follows:

min
Gm ,H(i)

m ,α(i)

M∑
i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm

∥∥∥∥
2

F
+ λ‖Gm − X‖2

F

+ tr

(
Gm

T

(
N∑

i=1

(
α(i)
)μ

L(i)
m

)
Gm

)
+ η

M∑
i=1

∥∥∥H(i)
m

∥∥∥2

1,2

s.t.H(i)
m ≥ 0,

N∑
i=1

α(i) = 1, α(i) ∈ [0, 1] (16)

where η is a regularization coefficient to control the sparse
constraint for H(i)

m , i = 1, 2, . . . , M. The first term is the subspace
regression term, which was used to combine different features of
miRNAs (or diseases) and projected those corresponding feature

matrices {F(i)
m}M

i=1 into a common latent interaction subspace.
The second term makes the predicted association matrix Gm

approximate to the original observed association matrix X. The
third term is a joint graph Laplacian regularization, which could
fully exploit complementation information in different similar-
ity profiles to boost the performance. The detailed optimization
procedures of the above objective function are provided in the
following section.

Optimization

To solve the optimization problem in Equation (16), we present
an efficient alternating strategy to obtain the optimal solution
by updating Gm, H(i)

m and α(i) iteratively. The solution processes are
shown as follows:

Fix H(i)
m and α(i), and solve for Gm. The optimization problem

reduces to the following sub-problem for Mm:

min
Gm

M∑
i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm

∥∥∥∥
2

F
+ λ‖Gm − X‖2

F

+ tr

(
Gm

T

(
N∑

i=1

(
α(i)
)μ

L(i)
m

)
Gm

)
(17)

By setting the derivative of Equation (17) respected to Gm to zero.
Then, the updating rule for Gm can be obtained as:

Gm =
(

N∑
i=1

(
α(i)
)μ

L(i)
m + (M + λ) I

)−1 (
λX +

M∑
i=1

F(i)
m

(
H(i)

m

)T
)

(18)

Fix Gm and α(i), and solve for H(i)
m. Accordingly, when Gm and

α(i)are fixed, the sub-problem of the objective function in Equa-
tion (16) can be rewritten as:

min
H(i)

m

M∑
i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm

∥∥∥∥
2

F
+ η

M∑
i=1

∥∥∥H(i)
m

∥∥∥2

1,2

s.t.H(i)
m ≥ 0 (19)

To optimize Equation (19), we introduce the Lagrange mul-
tiplier ϕ(i)for the constraint of H(i)

m , and thus the sub-problem is
formulated as:

f
(
H(i)

m , ϕ(i)
)

=
M∑

i=1

∥∥∥∥F(i)
m

(
H(i)

m

)T − Gm
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2

F
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∥∥∥H(i)
m
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1,2

− tr

(
ϕ(i)

M∑
i=1

H(i)
m

)
(20)

Then, the partial derivative of f (H(i)
m , ϕ(i)) with respect to G(t)

m is:

∂f
(
H(i)

m , ϕ(i)
)

∂H(i)
m

= 2H(i)
m

(
F(i)

m

)T
F(i)

m − 2Gm
TF(i)

m + 2ηH(i)
meeT − ϕ(i) (21)

When employing the KKT condition (ϕ(i))jk(H(i)
m)jk = 0, and

setting the derivative to zero, we have:

(
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m

)
jk

=
(
H(i)

m

)
jk

	

(
Gm

TF(i)
m

)
jk(

H(i)
m

((
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m

)T
F(i)

m + ηeeT

))
jk

(22)

where 	 denotes the Hadamard product; e ∈ {1}k(i)
m×1 is a vector

and k(i)
m represents the number of features in feature matrix F(i)

m .
To ensure that all elements of H(i)

mare non-negative, the updating
rule for H(i)

m can be rewritten as:

(
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)
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TF(i)
m
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ij

(23)

where the matrices with negative and positive symbols are
defined as A−

jk = (|Ajk| − Ajk)/2 and A+
jk = (|Ajk| + Ajk)/2.

Fix Gm and H(i)
m, and solve for α(i). By fixing Gm and H(i)

m , the
objective function in Equation (16) can be simplified as:

min
α(i)

tr

(
Gm

T

(
N∑

i=1

(
α(i)
)μ

L(i)
m

)
Gm

)

s.t.
N∑

i=1

α(i) = 1, α(i) ∈ [0, 1] (24)

Similarly, the Lagrange function of Equation (24) is:

f
(
α(i), ξ

)
= tr

(
Gm

T

(
N∑

i=1

(
α(i)
)μ

L(i)
m

)
Gm

)
− ξ

(
N∑

i=1

α(i) − 1

)
(25)

where ξ is the Lagrange multiplier for the constraint of
N∑

i=1
α(i) = 1.

By setting the derivative with respect to α(i) and ξ to 0, we have:

⎧⎪⎨
⎪⎩

μ
(
α(i)
)μ−1

tr
(
Gm

TL(i)
mGm

)
− ξ = 0

N∑
i=1

α(i) − 1 = 0
(26)

Then, the updating rule for α(i)is obtained as follows:

α(i) =
⎛
⎜⎝ N∑

i=1

⎛
⎝ 1

tr
(
Gm

TL(i)
mGm

)
⎞
⎠

1
μ−1
⎞
⎟⎠

−1⎛
⎝ 1

tr
(
Gm

TL(i)
mGm

)
⎞
⎠

1
μ−1

(27)

Thus, we can update Gm, H(i)
m and α(i) by using the rules of

Equations (18), (23) and (27) alternately until convergence. Since
the model formulation and optimization procedures in both
miRNA and disease spaces are similar, as shown in Figure 2,
the objective function of disease perspective also can be formu-
lated and solved based on the known association information

XT ∈ Rn×m, disease features F’ = {F(i)
d ∈ Rn×k(i)

d }
M’
i=1 as well as disease

similarity profiles S’ = {S(i)
d ∈ Rn×n}N’

i=1. Finally, considering that
the proposed method already contains several parameters that
need to be tuned, for simplicity, we combine the predicted results
of both miRNA and disease views with an average weighting
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Figure 2. The workflow of M2LFL for inferring potential disease-associated miRNAs.

strategy as G = (Gm + (Gd)T)/2 to prioritize disease-associated
miRNAs, and the values of the entities in matrix G stand for
the pairwise correlation scores between miRNAs and diseases.
Algorithm 1 summarizes the procedure of M2LFL to infer candi-
date disease miRNAs.

Results and discussion

Experiment settings

In this study, we perform 5-fold cross validation (5CV) to com-
prehensively investigate the effectiveness of M2LFL for inferring
potential disease-associated miRNAs. In each fold, all of the

known miRNA-disease associations in the benchmark dataset
are randomly divided into five equal size subsets, four of them
are used for model training and the remaining subset is adopted
for testing. These known associations in the testing subset are
regarded as positive samples, and those unobserved ones with-
out experimental validation are regarded as negative samples.
As aforementioned, we have collected 6088 known associations
between 550 miRNAs and 328 diseases from HMDD v2.0, and
the ratio between observed associations and unobserved asso-
ciations is about 1–30. Since the positive samples are much less
than negative samples, as done in many imbalanced data classes
[29], the area under the precision-recall curve (AUPR) is used as
the primary metric, which could punish false positive more in
performance evaluation. Meanwhile, the area under ROC curve
(AUC) is also adopted to estimiate the global performance of
different computational models in screening disease-associated
miRNAs. The precision-recall and receiver operating characteris-
tic (ROC) curves can be drawn based on the precisions and recalls
as well as the true positive rates (TPRs) and false positive rates
(FPRs) with various thresholds, respectively. The precision and
recall are defined as follows:

Precision = TP
TP + FP

Recall = TP
TP + FN

(28)

while the TPR and FPR can be represented as follows:

TPR = TP
TP + FN

FPR = FP
TN + FP

(29)

where TP, TN, FP and FN denote true positive, true negative,
false positive and false negative, respectively. In addition, sev-
eral common metrics, including precision, sensitivity, accuracy,
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Table 3. Results of paired t-test on the AUPRs and AUCs between M2LFL and other methods

M2LFL versus IMCMDA GRNMF MKRMDA BRWH MRSLA

P-value
AUPR 1.3957e-26 3.4240e-27 1.0766e-27 2.2908e-32 7.6507e-29
AUC 1.1798e-24 1.8652e-19 5.0465e-23 8.2798e-29 7.3957e-23

specificity and F1-measure, are also adopted to make a compar-
ison for measuring the performance.

Performance evaluation

In order to systematically evaluate the performance of M2LFL,
we compare the proposed method with other state-of-the-art
computational models, including IMCMDA [61], GRNMF [27],
MKRMDA [62], BRWH [20] and MRSLA [29]. Specifically, IMCMDA
is an inductive matrix completion-based method for discovering
disease miRNAs [61]. GRNMF prioritizes disease-associated
miRNAs with graph regularized non-negative matrix factor-
ization [27], and MKRMDA is a multiple kernel learning-based
method for predicting potential miRNA-disease associations
[62]. BRWH is a method for disease miRNA prediction by
using unbalanced bi-random walk [20], and MRSLA prioritizes
candidate disease miRNAs based on multi-view manifold
regularized learning [29]. The comparison bewteen M2LFL and
other compared methods is carried out based on the benchmark
dataset by 5CV. We perform 20 runs of 5CV for each model and
obtain the averaging results for a convincing evaluation. Those
miRNA and disease similarities or features that depend on the
known miRNA-disease association information are reacquired
in each iteration of cross validation. To make a fair comparison,
we set the parameters of these existing state-of-the-art methods
to their optimal values that were recommended by their authors.
Moreover, since some compared methods utilize earlier versions
of databases for prediction, here we replace these data sources
with the same version datasets used in M2LFL, which can help
to improve the performance for the compared methods.

As shown in Figures 3 and 4, the overall performance of
M2LFL is superior to other compared methods according to the
PR and ROC curves. The average AUPR values of M2LFL, IMCMDA,
GRNMF, MKRMDA, BRWH and MRSLA are 0.590, 0.230, 0.279,
0.247, 0.035 and 0.156, respectively. M2LFL achieves the best
performance, and it outperforms IMCMDA by 36%, GRNMF by
31.1%, MKRMDA by 34.3%, BRWH by 58.9% and MRSLA by 43.4%
in terms of AUPR under 5CV. The AUC of M2LFL is 0.969, as shown
in Figure 4, which makes 6.8, 3.8, 7.8, 15 and 6.1% improvements
compared with other methods (IMCMDA: 0.901, GRNMF: 0.931,
MKRMDA: 0.891, BRWH: 0.819 and MRSLA: 0.908), respectively. In
particular, we also perform a statistical analysis of paired t-tests
to evaluate the difference between M2LFL and other methods.
We implement 20 independent runs of 5CV for all computational
methods, and then measure the significance difference by using
the function t-test (X, Y) in the Matlab software. As shown in
Table 3, the paired t-test results show that the proposed method
achieves significantly (P < 0.05) better performance over these
compared methods in terms of AUPR and AUC.

In addition, as shown in Table 4, the comparison of several
other common metrics (i.e. precision, sensitivity, accuracy, speci-
ficity and F1-measure) further demonstrates the superior perfor-
mance of M2LFL in prioritizing candidate disease miRNAs. To be
more specific, M2LFL obtains the highest precision of 0.663, and
its precision value is 37.9, 34.2, 35.9, 66.2 and 47.6% better than
IMCMDA, GRNMF, MKRMDA, BRWH and MRSLA, respectively.

Figure 3. Comparison of M2LFL and other models in terms of PR curves under

5CV.

Figure 4. Comparison of M2LFL and other models in terms of ROC curves under

5CV.

Meanwhile, M2LFL also produces the best performance in terms
of sensitivity and reaches the value of 0.499, which outperforms
IMCMDA by 17.6%, GRNMF by 15.0%, MKRMDA by 18.4%, BRWH by
27.1% and MRSLA by 22.7%. In particular, the proposed method
obtains a significant improvement of F1-score, and the F1-scores
of M2LFL, IMCMDA, GRNMF, MKRMDA, BRWH and MRSLA are
0.568, 0.302, 0.334, 0.309, 0.057 and 0.220, respectively. In addi-
tion, M2LFL is also consistently better than the other compared
methods in terms of accuracy and specificity, and the values of
M2LFL are 0.995 and 0.998, while the corresponding values of
the second best models (GRNMF and MKRMDA) are 0.990 and
0.995, respectively. These results confirm the effectiveness and
robustness of the proposed method, which suggest that M2LFL
could infer disease-associated miRNAs with a higher confidence
than other computational models.
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Table 4. Performance of different metrics of different methods

Method AUPR AUC Precision Sensitivity Accuracy Specificity F1

M2LFL 0.590 0.969 0.663 0.499 0.995 0.998 0.568
IMCMDA 0.230 0.901 0.284 0.326 0.987 0.993 0.302
GRNMF 0.279 0.931 0.321 0.349 0.990 0.995 0.334
MKRMDA 0.247 0.891 0.304 0.315 0.990 0.995 0.309
BRWH 0.035 0.819 0.033 0.228 0.948 0.953 0.058
MRSLA 0.156 0.908 0.187 0.272 0.987 0.992 0.220

Figure 5. Comparison of precisions for M2LFL and other models under various

top k cutoffs.

The precision within top-k ranking list means reliability of
discovered disease miRNA candidates. As shown in Figure 5, the
results also show that M2LFL consistently outperforms MCMDA,
GRNMF, MKRMDA, BRWH and MRSLA in terms of precision from
top 10 to top 50. M2LFL produces the highest precision under
different top k cutoffs and obtains 74.7% in top 10, 57.7% in top
20, 48.2% in top 30, 41.6% in top 40 and 36.5% in top 50. MKRMDA
achieves the second highest precisions, while BRWH performs
the worse precisions at various top k rankings. This may be due
to the sparseness of the known association network and BRWH
is a network-based method. The precision values of the former
are 52.5, 38.4, 30.8, 25.9 and 22.5% in top 10 to top 50, respectively,
and the corresponding precisions of the latter are 21.3% in top
10, 17.3% in top 20, 15.5% in top 30, 13.9% in top 40 and 12.9%
in top 50. All the above comparison results demonstrate that
M2LFL exhibits superior prediction performance compared with
the other methods in screening the reliable candidate miRNAs
for diseases, suggesting that the prediction accuracy can be
improved by fully capturing the multi-modal miRNA and disease
latent features.

Parameter analysis

In the experiment, the influences of parameters on the per-
formance are estimated by 5CV. As shown in Equation (16),
there are three regularization coefficients (i.e. λ, μ and η) are
introduced in the objective function to balance the contributions
of different terms. Here, the optimal parameter combination is
determined from the following values: {10−4, 10−3, 10−2, 10−1,
101, 102} for λ, {2−2, 2−1, 21, 22, 23, 24} for μ and {10−4, 10−3,
10−2, 10−1, 101, 102} for η. We analyze all the combinations
with a grid-search strategy and choose the most suitable hyper-
parameters for predicting candidate disease miRNAs. Here, we
fix the value of one parameter and analyze the effects of the

remaining two parameters on the prediction performance. As
shown in Figure 6, we fix parameter λ and found that a greater
value of μ is more likely to obtain better performance, M2LFL
reaches the lowest AUPR when μ = 2−2 and produces better result
as the value of μ increases from 2−2 to 22. Meanwhile, the AUPR
of M2LFL improves as parameter η decreases to 10−3. M2LFL is
inclined to use a large value for μ and a small value for η. In
addition, when analyzing the influence of parameter λ on the
performance, we found that a larger value of the parameter λ

tends to produce better results for M2LFL, and the performance
increases slightly after reaching a peak. After implementing
a series of experiments, M2LFL achieves the best AUPR when
λ = 102, μ = 22 and η = 10−3. Moreover, to extract the dimensions
of the latent features for miRNAs and diseases, we determine
the parameter values of δm and δd in Equations (7) and (8) from
the range of {0.1, 0.2, 0.3, . . . , 0.9}. As shown in Figure 7, the best
AUPR of M2LFL is reached when δm = 0.7 and δd = 0.7. Finally,
we set λ = 102, μ = 22, η = 10−3, δm = 0.7 and δd = 0.7 for M2LFL to
discover disease-associated miRNAs in the following studies.

As aforementioned, we adopt a self-adaptive parameter
learning strategy to ensure that all graph Laplacian items or
similarity profiles could contribute to the disease-related miRNA
prediction task. To investigate the effectiveness of the self-
adaptive learning on performance, we perform an experiment

to set the contribution values {α(i)}N
i=1 and {α’(i)}N’

i=1 in both miRNA
and disease spaces as mentioned in Algorithm 1 to fixed values
instead of automatically updating the weights. Here, we carried
out the experiment with several representative settings for

{α(i)}N
i=1 and {α’(i)}N’

i=1, and the results (Table 5) show that the AUPR
of M2LFL with an adaptive parameter learning strategy is higher
than that of in other fixed weight scenarios under 5CV, which
suggest the effectiveness of the self-adaptive learning for M2LFL
in predicting disease-associated miRNAs.

Case studies: hepatocellular carcinoma and renal cell
carcinoma

We also perform case studies for several pupular human dis-
eases to illustrate the ability of M2LFL in discovering disease-
related miRNAs. We measure the performance of M2LFL by
observing the number of experimentally validated candidate
miRNAs for these diseases in various top-ranked predictions.
Here, the known associations related to each disease in HMDD
v2.0 are used for training the model, and all miRNAs are sorted in
descending order according to their predicted probability scores,
which suggest that how likely they would correlate with the
test diseases. For all diseases, the percentages of successfully
retrieved miRNA-disease associations at different top k cutoffs
are given in Figure 8. It can be observed that M2LFL recovers
high rates of known associations in different top k thresholds.
For example, among all of the 6088 known associations, M2LFL
correctly retrieved 31.3% (1904/6088) and 56.7% (3450/6088) in
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Figure 6. The influence of parameters μ and η on the performance of M2LFL under 5-fold cross validation.

Figure 7. The influence of parameters δm and δd on the performance of M2LFL under 5-fold cross validation.

Table 5. Performance of M2LFL with different fixed values of α(i) and α’(i)

Number of scenario Experimental settings AUPR AUC

miRNA space Disease space

Scenario 1 α(1) = α(2) = α(3) = α(4) = 0.25 α’(1) = α’(2) = 0.5 0.576 0.968

Scenario 2 α(1) = α(2) = α(3) = α(4) = 0.25 α’(1) = 0, α’(2) = 1 0.540 0.963

Scenario 3 α(1) = α(2) = α(3) = α(4) = 0.25 α’(1) = 1, α’(2) = 0 0.566 0.967

Scenario 4 α(1) = 1, α(2) = α(3) = α(4) = 0 α’(1) = 1, α’(2) = 0 0.482 0.955

Scenario 5 α(1) = α(2) = 0.5, α(3) = α(4) = 0 α’(1) = α’(2) = 0.5 0.524 0.961

Scenario 6 α(1) = α(2) = α(3) = 0, α(4) = 1 α’(1) = α’(2) = 0.5 0.506 0.958

top 10 and top 30, respectively. In addition, after excluding
those observed miRNAs associated with specific diseases in the
ranking lists, we further validate the top 20 predicted miRNA
candidates for two representative diseases (hepatocellular carci-
noma and renal cell carcinoma) by manually mining literatures
and other public experimentally supported databases, namely,
miRCancer [63], dbDEMC [64] and miR2Disease [65].

Hepatocellular carcinoma is one of the most common cancer
and lead to a large number of deaths every year. Accumulating

evidence has been reported to indicate that miRNAs play an
important role in the development of hepatocellular cancer
[48]. With the implementation of M2LFL, all candidate miRNAs
related to hepatocellular carcinoma are prioritized according to
their scores. The top 20 miRNAs predicted by M2LFL are listed in
Table 6. We can see that 18 of top 20 predicted miRNAs are con-
firmed to be related to the disease by experimentally supported
databases and recently published literatures. For example,
hsa-mir-367 [8] and hsa-mir-452 [66] promote hepatocellular
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Figure 8. Percentage of ture known associations identified by M2LFL with various

ranking cutoffs.

cancer cell proliferation, and existing evidence indicates that
they have great potential as new promising biomarkers for
disease diagnosis. In addition, some other miRNAs including
hsa-mir-143, hsa-mir-133a-1 and hsa-mir-193b have also been
proved to be significantly downregulated [63], while hsa-mir-9-2,
hsa-mir-367 and hsa-mir-429 are confirmed to be upregulated
in hepatocellular cancer cell.

Renal cell carcinoma is a cancer that starts in the lining
of very small tubes (tubules) in the kidney. Here, we also per-
form case studies involving renal cell carcinoma to estimate
the prediction performance of M2LFL. Table 7 provides the top
20 predicted candidates of this cancer, and we can observe
that most of the candidates are validated based on different
evidences. For example, hsa-mir-20a, hsa-mir-125b-1, hsa-mir-
222 and hsa-mir-31 within top 5 are validated to be involved
in renal cell carcinoma by dbDEMC. Meanwhile, researchers

also reported that miRNAs hsa-mir-17, hsa-mir-221 and hsa-mir-
125b-1 show higher expression levels in renal cell patient tumor
tissues compared with those of in normal controls [67, 68]. Exist-
ing evidence also show that some predicted miRNA candidates
(e.g. hsa-mir-183, hsa-mir-221, hsa-mir-29b-1 and hsa-mir-29a)
with high rankings may promote cell proliferation in renal cell
carcinoma and function as new promising biomarkers for its
diagnosis. In conclusion, the case studies further validate the
capability of M2LFL in screening disease miRNA candidates with
high confidence.

Inferring novel disease-associated miRNAs

After evaluating the performance of M2LFL with 5CV and case
studies, we further verify the practical application of this compu-
tational model for discovering novel disease-associated miRNAs.
In general, it is also effective to conduct validation by using
different versions of the same database to confirm those actual
potential of the discovery. Specifically, as done in previous stud-
ies [27], we train M2LFL by using all the observed associations
in the older version database (i.e. HMDD v2.0) and validate
the predicted disease miRNA candidates by the latest version
of HMDD. As aforementioned, HMDD v2.0 is adopted as the
benchmark dataset and 6088 known associations between 328
diseases and 550 miRNAs are retained. Currently, HMDD v3.2
was released, which contains 35 547 miRNA-disease association
entries involving 893 diseases and 1206 miRNAs. Then, we collect
those recently added associations that were not in the bench-
mark dataset to validate the prediction results. As expected, we
found that most of potential disease miRNAs predicted by M2LFL
within the top rankings are directly confirmed by the latest
version dataset. As shown in Figure 9, it displays the percentages

Table 6. The top 20 candidate miRNAs identified by M2LFL for hepatocellular carcinoma

Ranking miRNA Evidence Ranking miRNA Evidence

1 hsa-mir-143 dbDEMC, miR2Disease, miRCancer 11 hsa-mir-27b dbDEMC, miRCancer
2 hsa-mir-34b miRCancer 12 hsa-mir-429 miRCancer
3 hsa-mir-9-1 Unconfirmed 13 hsa-mir-452 miRCancer
4 hsa-mir-9-3 Unconfirmed 14 hsa-mir-193b miRCancer
5 hsa-mir-23b miR2Disease, miRCancer 15 hsa-mir-215 miRCancer
6 hsa-mir-9-2 miR2Disease 16 hsa-mir-137 miRCancer
7 hsa-mir-133a-1 miRCancer 17 hsa-mir-204 PMID:23282077
8 hsa-mir-133a-2 miRCancer 18 hsa-mir-132 miRCancer
9 hsa-mir-135b PMID:26429530 19 hsa-mir-26b dbDEMC, miR2Disease, miRCancer
10 hsa-mir-367 miRCancer 20 hsa-mir-149 miRCancer

Table 7. The top 20 candidate miRNAs identified by M2LFL for renal cell carcinoma

Ranking miRNA Evidence Ranking miRNA Evidence

1 hsa-mir-17 PMID:25011053 11 hsa-mir-29a dbDEMC
2 hsa-mir-20a dbDEMC 12 hsa-mir-29b-1 dbDEMC
3 hsa-mir-125b-1 miRCancer 13 hsa-mir-19b-1 PMID:20964835
4 hsa-mir-222 dbDEMC 14 hsa-mir-25 dbDEMC
5 hsa-mir-31 dbDEMC 15 hsa-mir-182 dbDEMC, miRCancer
6 hsa-mir-183 dbDEMC, miRCancer 16 hsa-mir-1-1 Unconfirmed
7 hsa-mir-221 miRCancer 17 hsa-mir-96 miRCancer
8 hsa-mir-18a dbDEMC 18 hsa-mir-181a-1 dbDEMC
9 hsa-mir-15a dbDEMC, miRCancer 19 hsa-mir-106a dbDEMC, miRCancer
10 hsa-mir-125b-2 miRCancer 20 hsa-mir-181b-1 Unconfirmed
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Figure 9. Percentage of candidate miRNAs vadidated by HMDD v3.2 for different ranking thresholds.

Table 8. The top 20 candidate miRNAs identified by M2LFL for breast neoplasms

Ranking miRNA Evidence Ranking miRNA Evidence

1 hsa-mir-142 HMDD v3.2 11 hsa-mir-15b HMDD v3.2
2 hsa-mir-150 HMDD v3.2 12 hsa-mir-186 Unconfirmed
3 hsa-mir-106a HMDD v3.2 13 hsa-mir-185 HMDD v3.2
4 hsa-mir-138-1 Unconfirmed 14 hsa-mir-196b HMDD v3.2
5 hsa-mir-99a HMDD v3.2 15 hsa-mir-98 HMDD v3.2
6 hsa-mir-138-2 Unconfirmed 16 hsa-mir-212 HMDD v3.2
7 hsa-mir-130a HMDD v3.2 17 hsa-mir-542 HMDD v3.2
8 hsa-mir-19b-2 Unconfirmed 18 hsa-mir-372 HMDD v3.2
9 hsa-mir-378a HMDD v3.2 19 hsa-mir-92b HMDD v3.2
10 hsa-mir-192 HMDD v3.2 20 hsa-mir-30e HMDD v3.2

of predicted miRNAs validated by HMDD v3.2 for several diseases
under different ranking thresholds, and the results show that
M2LFL can effectively discover novel disease-associated miR-
NAs. For example, as shown in Table 8, 16 miRNAs in top 20
are proved to be involved in breast neoplasms by HMDD v3.2.
The above observations imply that M2LFL has potential to be a
promising computational tool to discover prognostic miRNAs for
guiding laborious clinical trials, which could help to explore the
pathogenesis of diseases at the level of miRNAs.

Conclusions

In this study, we have systematically studied the problem of
discovering unobserved associations between miRNAs and dis-
eases, and presented a method of M2LFL to prioritize candidate
disease miRNAs. M2LFL fully integrates multiple complementary
data sources with different representations and captures latent
features from miRNA and disease spaces, and then aims to
identify those most promising disease-associated miRNAs for
further biological investigation. An adaptive M2LFL framework
is formulated to obtain those miRNA candidates for specific
diseases by utilizing the known miRNA-disease associations,
multiple similarity profiles and multi-modal latent features of
miRNAs and diseases. In addition, to capture different manifold
characteristics and structure information of data spaces, the
adaptive joint graph regularization and mixed-norm constraint
terms are incorporated into this model to contribute to the
learning task. The results indicate that M2LFL achieves compara-
ble performance under different metrics and can be effectively
adopted to discover disease-related miRNAs. The case studies
further confirm the promising capability of M2LFL in discovering
the reliable candidate miRNAs for human diseases, which is
helpful to guide laborious clinical biological experiments.

However, M2LFL still has some limitations that require fur-
ther research. First, the similarity measurement and feature
extraction strategies in miRNA and disease spaces might not
be optimal, and many other data can offer beneficial feature
representations. Second, it is challenge and time consuming to
determine the optimal parameters in different circumstances.
On the other hand, with the rapid development of sequencing
technology, more and more data sources are available, and how
to integrate different biological data sources more reasonably
deserves further study. What is more, combining linear and non-
linear features and learning more data-consistent representa-
tions may provide a way to boost the performance.

Key Points
• In silico identification of promising diagnostic

biomarkers is critical for precision medicine.
• Large and diverse biomedical data create unprece-

dented opportunities to decipher biological problems.
• An integrative framework is developed to infer dis-

ease miRNAs with adaptive multi-source multi-view
learning.

• Experimental validations demonstrated its effective-
ness in prioritizing disease-associated miRNAs.
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