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Abstract

The multivariate genomic selection (GS) models have not been adequately studied and their potential remains unclear. In
this study, we developed a highly efficient bivariate (2D) GS method and demonstrated its significant advantages over the
univariate (1D) rival methods using a rice dataset, where four traditional traits (i.e. yield, 1000-grain weight, grain number
and tiller number) as well as 1000 metabolomic traits were analyzed. The novelty of the method is the incorporation of the
HAT methodology in the 2D BLUP GS model such that the computational efficiency has been dramatically increased by
avoiding the conventional cross-validation. The results indicated that (1) the 2D BLUP-HAT GS analysis generally produces
higher predictabilities for two traits than those achieved by the analysis of individual traits using 1D GS model, and (2)
selected metabolites may be utilized as ancillary traits in the new 2D BLUP-HAT GS method to further boost the
predictability of traditional traits, especially for agronomically important traits with low 1D predictabilities.
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Introduction
The advent of cutting-edge technologies has made it feasible
to use genome-wide DNA markers to assist in gene discovery,
genetic dissection and trait prediction [1], facilitating the rapid
selection of superior genotypes and accelerating the breeding
cycle. Genomic selection (GS), which was first proposed by
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Meuwissen et al. [2], uses all of the DNA variants across the
entire genome to predict complex traits of interest. Advanced
methods have been developed for GS analyses, including BLUP
[3], LASSO [4, 5], BAYES [2, 6–8], etc., and numerous studies have
shown that BLUP-based methods generally outcompete other
methods when both prediction accuracy (predictability) and
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computational efficiency are considered [9, 10]. BLUP-HAT [11],
a variant of conventional BLUP methodology, further reduces
computational burden by avoiding the lengthy cross-validation
(CV) procedure, which is routinely used to evaluate the predictive
abilities for prediction methods. Due to the complexity of
modeling, only univariate (singe-trait or one-dimensional (1D))
GS models have been heavily investigated for these methods [12–
20]. However, these widely used 1D GS methods often have low
levels of predictability for traits of low heritability. A few studies
indicated that multi-trait GS models may increase genomic
prediction accuracy compared to the opponent univariate GS
models [21–27], but such potential and the trade-off between
improvement of predictability and increase in computational
burden need further investigation with sufficient data to justify
a wider application of multi-trait models in GS.

In this study, we proposed a novel bivariate (2-trait or two-
dimensional (2D)) BLUP-HAT GS method to increase trait pre-
dictability or accuracy of trait prediction for breeding programs.
Another desirable feature of the method is that the HAT method
[11] has been incorporated in a 2D BLUP model such that
the computational efficiency may be substantially increased.
We demonstrated that the new 2D BLUP-HAT GS method
outperformed 1D rival GS methods using a large rice dataset,
which consists of four traditional traits and 1000 metabolomic
traits. The results indicated that (1) the 2D GS analysis generally
produces higher predictability than the 1D GS analysis, and
(2) traits with low 1D-predictability may significantly benefit
from the 2D GS analysis when paired with a carefully selected
ancillary trait, for example, a metabolomic trait. The 2D
BLUP-HAT GS model may be extended to higher dimensional
multivariate models; however, the gain in trait predictability is
trivial whereas the increase in computational cost is substantial.
We concluded that if data allow, which is often the case, 2D
GS analysis should be considered to increase predictability
of traits.

Methods
Suppose Ps is a n × 1 vector for the phenotypic values for
trait s, where s = 1 or 2, and n is the number of indi-
viduals in the sample. We use Equation (1) to describe two
phenotypes

P =
[

P1

P2

]
=

[
X 0
0 X

] [
β1

β2

]
+

[
ξ1

ξ2

]
+

[
ε1

ε2

]
, (1)

where X is a n × q design matrix for the fixed effects, βs is a
q × 1 vector for the fixed effect for trait s, ξs is a n × 1 vector
for the polygenic effect for trait s with a normal distribution
N

(
0, Kσ 2

As

)
and K is the kinship matrix calculated using genomic

data [11], and εs is a n × 1 vector representing the residual
errors for trait s with a normal distribution N

(
0, σ 2

s

)
. Let U =[ X 0

0 X

]
, β =

[ β1

β2

]
and ξ =

[ ξ1

ξ2

]
, then the expectation of the

model is

E(P) =
[

X 0
0 X

] [
β1

β2

]
= Uβ. (2)

Let G =
[ σ 2

A1
σA12

σA12 σ 2
A2

]
and R =

[ σ 2
1 σ12

σ12 σ 2
2

]
, then the bivariate

phenotypic variance is

Var(P) = V = G ⊗ K + R ⊗ In, (3)

where In is identity matrix of size n and ⊗ denotes Kronecker
product. The variance components, θ = {

σ 2
A1

, σA12 , σ 2
A2

, σ 2
1 , σ12, σ 2

2

}
,

can be estimated using the restricted maximum likelihood
(REML) method of which the log likelihood function is
defined as

L (θ) = − 1
2

ln |V| − 1
2

ln
∣∣UTV−1U

∣∣ − 1
2

(
P − Uβ̂

)T
V−1

(
P − Uβ̂

)
, (4)

where β̂ = (
UTV−1U

)−1(
UTV−1P

)
. The Hendersons mixed

model equation becomes

[
UT(R ⊗ In)

−1U UT(R ⊗ In)
−1I2n

I2n(R ⊗ In)
−1U I2n(R ⊗ In)

−1I2n + (G ⊗ K)
−1

] [
β

ξ

]

=
[

UT(R ⊗ In)
−1P

I2n(R ⊗ In)
−1P

]
. (5)

The BLUE and BLUP of the fixed effects and polygenic effect are
obtained via

[
β̂

ξ̂

]
=

[
UT

(
R−1 ⊗ In

)
U UT

(
R−1 ⊗ In

)(
R−1 ⊗ In

)
U R−1 ⊗ In + G−1 ⊗ K−1

]−1

×
[

UT
(
R−1 ⊗ In

)
P(

R−1 ⊗ In
)

P

]
. (6)

The variance–covariance matrix of the BLUE and BLUP is

Var

[
β̂

ξ̂

]
=

[
UT

(
R−1 ⊗ In

)
U UT

(
R−1 ⊗ In

)(
R−1 ⊗ In

)
U R−1 ⊗ In + G−1 ⊗ K−1

]−1

. (7)

Prediction of genetic value

Let PA be the phenotypic values of two traits for a individuals
that have been used for developing the bivariate GS model and
let PB be the phenotypic values of two traits for b individuals for
which the prediction will be made. We rewrite the model (1) as

[
PA

PB

]
=

[
UAβ

UBβ

]
+

[
ξA

ξB

]
+

[
εA

εB

]
. (8)

The variance–covariance matrix is also partitioned similarly as

Var

[
PA

PB

]
=

[
VAA VAB

VBA VBB

]
=

[
GAA GAB

GBA GBB

]
+

[
RAA 0

0 RBB

]
, (9)

where GAA = G ⊗ KAA and RAA = R ⊗ Ia, then VAA = GAA +
RAA. Other submatrices are similarly defined. To predict the
trait values or genetic values in the test sample, we use the
conditional expectation of pB given pA (also called BLUP), which is
expressed as

P̂B = E (PB|PA)

= UBβ̂ + GBAV−1
AA(PA − UAβ̂)

= UBβ̂ + (G ⊗ KBA) (G ⊗ KAA + R ⊗ Ia)
−1(PA − UAβ̂)

(10)

Let ξB = pB − UBβ̂ and ξ̂B = p̂B − UBβ̂ be the observed poly-
genic effect and the predicted polygenic effect, respectively, with
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fixed effects being removed. We define ξB =
[

ξB1

ξB2

]
, with ξB1

being the observed polygenic effect for trait 1 and ξB2 for trait

2, respectively. We also define ξ̂B =
[

ξ̂B1

ξ̂B2

]
as the predicted

polygenic effect two traits. The predictabilities for traits 1 and
2 are defined as the squared correlations between the observed
polygenic effect and the predicted polygenic effect

r2
ξB1 ξ̂B1

=
Cov2

(
ξB1 , ξ̂B1

)
Var

(
ξB1

)
Var

(
ξ̂B1

) and r2
ξB2

ξ̂B2
=

Cov2
(
ξB2 , ξ̂B2

)
Var

(
ξB2

)
Var

(
ξ̂B2

) , (11)

respectively.

2D BLUP-HAT method

Following the original 1D BLUP-HAT method described by Xu [11],
we developed the 2D BLUP-HAT as indicated below. Let HR =
�̂A ⊗ KV−1 be the hat matrix [11], then the predicted polygenic
effect can be expressed using a linear function of the observed
polygenic effect involving the hat matrix, i.e.

ξ̂ =
[

ξ̂1

ξ̂2

]
=

[
σ 2

A1
σA12

σA12 σ 2
A2

]
⊗ KV−1ξ = �̂A ⊗ KV−1ξ = HRξ . (12)

Let y =
[ y1

y2

]
= P be the observed predicted phenotypic values

for two traits; thus, ŷ =
[ ŷ1

ŷ2

]
= P̂ = Uβ̂ + ξ̂ becomes their

predicted phenotypic values. Let ê = y − ŷ be the residuals,

with êi =
[ ê(i)

ê(
n+i

) ]
as the residuals of two traits for individual i,

where ê(i) is the ith element of the residual vector. The predicted
residual for individual i becomes

ẽi =
[ ∼

e(i)
∼
e(n+i)

]
=

(
I2 −

[
h(i)(i) h(i)(n+i)

h(n+i)(i) h(n+i)(n+i)

])
êi, (13)

where h(r)(s) represents the single entry on the rth row and the
sth column of the hat matrix HR. The total sum of squares of two
traits in the bivariate genomicselection is defined as:

SS1 =
n∑

i=1

(
y1i − y1

)2 and SS2 =
n∑

i=1

(
y2i − y2

)2 (14)

respectively, where y1 =
∑n

i=1 y1i
n and y2 =

∑n
i=1 y2i

n . The predicted
sum of squares for two traits in the bivariate genomic selection
is

PRESS1 =
n∑

i=1

∼
e

2

(i) and PRESS2 =
n∑

i=1

∼
e

2

(n+i) (15)

(
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(
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)−1
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(
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(
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(
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)−1
V’
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)−1
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(
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(
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)−1
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12

)−1

V’
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(
V’

22

)−1
(

V’
11 − V’

12

(
V’

22

)−1
V’

12

)−1

⎤
⎥⎥⎦ (19)

respectively. The predictabilities of the 2D BLUP-HAT version for
two traits in the bivariate genomic selection analysis are

r2
1 = 1 − PRESS1

SS1
and r2

2 = 1 − PRESS2

SS2
(16)

respectively. In the study, we use the 2D BLUP-HAT method in
place of the 2D BLUP with a 10-fold cross-validation (BLUP-CV)
to increase the computational efficiency of the model.

Optimization for REML estimation

The eigen decomposition for the kinship matrix is K = Q�QT,
where Q denotes the eigenvectors (an n × n matrix) and � =
diag

(
δ1, . . . , δn

)
denotes the eigenvalues (a diagonal matrix). The

bivariate phenotypic variance matrix var
[ P1

P2

]
= V can be writ-

ten as

V =
[

Kσ 2
A1

+ Inσ
2
1 KσA12 + Inσ12

KσA12 + Inσ12 Kσ 2
A2

+ Inσ
2
2

]

=
[

Q�QTσ 2
A1

+ QQT
σ 2

1 Q�QTσA12 + QQT
σ12

Q�QTσA12 + QQT
σ12 Q�QTσ 2

A2
+ QQT

σ 2
2

]

=
[

Q 0
0 Q

] [
�σ 2

A1
+ Inσ

2
1 �σA12 + Inσ12

�σA12 + Inσ12 �σ 2
A2

+ Inσ
2
2

] [
QT 0
0 QT

]
.

(17)

We define vP =
[ QT 0

0 QT

][ P1

P2

]
and

vU =
[ QT 0

0 QT

][ X 0
0 X

]
, then the REML function (Equation 4)

can be written as

L’ (θ) = − 1
2

ln
∣∣∣V’

∣∣∣ − 1
2

ln
∣∣∣∣vT

U

(
V’

)−1
vU

∣∣∣∣
− 1

2
(vP − vUβ)T

(
V’

)−1
(vP − vUβ) (18)

where V’ =
[ V’

11 V’
12

V’
12 V’

22

]
=

[ �σ 2
A1

+ Inσ
2
1 �σA12 + Inσ12

�σA12 + Inσ12 �σ 2
A2

+ Inσ
2
2

]
.

The six-variance components are estimated by maximizing the
new REML function (Equation 18), in which a novel approach

is used for a rapid calculation of
∣∣V’∣∣ and

(
V’)−1

to boost the

computational efficiency. Let
(
V’

)−1
=

[ W’
11 W’

12

W’
12 W’

22

]
, such that

[ V’
11 V’

12

V’
12 V’

22

][ W’
11 W’

12

W’
12 W’

22

]
=

[ In 0
0 In

]
and eq. (19) as shown at

bottom of this page. Note that V’
11, V’

12 and V’
22 are all diagonal

matrices and their inverse matrices can be derived without
difficulty. For the calculation of

∣∣V’∣∣, we simply multiply the

ith row of V’ by − V’
12

[
i,i
]

V’
11

[
i,i
] and add these values to the jth row of V’,

where i ≤ n and j = i + n. This change does not affect the result
of

∣∣V’∣∣ but makes the calculation much simpler, i.e.
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∣∣∣∣∣ V′
11 V′

12

V′
12 V′

22

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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· · · 0
. . .

...
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. . .

0 · · ·

. . . 0
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. . .
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. . .
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...

. . .
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. . .
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. . .
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. . .
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. . . 0
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0
. . .

· · · 0
. . .

...
...

. . .

0 · · ·

. . . 0
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0
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0
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(
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)
×· · ·×

(
V′

22 [n, n] − V′
12 [n, n] × V′

12 [n, n]
V′

11 [n, n]

)
(20)

Rice data
The population used in this study consists of 1619 bins inferred
from approximately 270 000 SNPs of the rice genome and
210 F9 recombinant inbred lines (RILs) derived by single-seed
descendent from a cross between ‘Zhenshan 97’ and ‘Minghui
63’, which are the parents of ‘Shanyou 63’—an elite rice hybrid
that has been widely cultivated in the last three decades in
China. We analyzed four traits: yield (YIELD), 1000-grain weight
(KGW), grain number per plant (GRAIN) and tiller number per
plant (TILLER). Each trait was measured from four replicated
experiments (1997 and 1998 from one location, 1998 and 1999
from another location). In each replicated experiment, eight
plants were sampled from each line and the average trait value
was calculated and used as the phenotypic value for this line
in this experiment. We also analyzed 1000 metabolomic traits,
including 683 metabolites measured from flag leaves and 317
metabolites measured from germinated seeds. Two biological
replicates were sampled for flag leaves in 2009, while each
biological replicate was sampled in 2009 and 2010, respectively,
for germinated seeds. Metabolomic data for both tissueshad
been log2-transformed to satisfy the normality assumption.
The average of two replicates for each metabolite was used for
analysis.

Simulated data
We adopted a series of simulated datasets (supporting material
File S1) from a previous study where multivariate GS models
were investigated [22]. In the default simulation scenario, a total
of 20 SNPs were randomly selected as QTL, the effects of which
on two phenotypic traits were sampled from a standard bivariate
normal distribution with a correlation of 0.5. The true breeding

value for an individual was the sum of these QTL effects for each
trait. Random noise generated from a normal distribution was
added to achieve the heritability of 0.1 for trait 1 and heritability
of 0.5 for trait 2. The covariance of errors between two traits
was set to be zero. For each of other simulation scenarios, a
single simulation parameter was perturbed at a time from the
default scenario. The perturbed parameters included heritability
for each trait (0.1, 0.5 and 0.8), genetic correlation between traits
(0.1, 0.3, 0.5, 0.7 and 0.9) and number of QTL (20 and 200).
Each simulation scenario was repeated 24 times to calculate
predictabilities for each comparison between 1D GS and 2D GS
analyses.

Results
We first leveraged the ‘big data’ of 1000 metabolomic traits
[28] to conduct GS analysis using the genotypic data of 1619
genetic bins [29]. For each metabolomic trait, the 1D predictabil-
ity and a total of 999 2D predictabilities (paired with each of the
other metabolomic traits) were calculated using the 1D and 2D
BLUP-HAT methods, respectively. Then these predictability val-
ues were transformed to generate a heat map (Figure 1). Prior to
the data transformation, the jth row of the heat map represents
the 1000 predictabilities calculated for the jth metabolomic trait,
where j = 1, . . . , 1000. Note that the diagonal entry in the heat
map, i.e. element [j, j], represents the 1D predictability calculated
for the jth metabolomic trait using the 1D BLUP-HAT method;
while the element [j, k], an off-diagonal entry in the heat map,
denotes the 2D predictability of the jth metabolomic trait when
it is analyzed with the kth metabolomic trait using the 2D BLUP-
HAT method. The 1000 metabolomic traits (or the 1000 rows in
the heat map) have been sorted based on the 1D predictabilities
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by descending order, i.e. metabolomic traits of higher 1D pre-
dictabilities are placed on the top of the heat map and vice versa.
Then, the 1000 values in each row (one 1D predictability +999 2D
predictabilities for each metabolomic trait) were transformed to
their ranks followed by a division by 1000, yielding standardized
rank ratio values ranging from 0 to 1 (yellow to blue color scale in
the final heat map) to represent the relative low/high predictabil-
ities for that metabolomic trait. Hierarchical clustering on the
columns of the heat map disclosed the ‘principle’ metabolites
(denoted by the vertical blue stripes in Supplementary Figure
S1) that generally boosted predictabilities of other metabolomic
traits when they were paired with these principle metabolites.
When paired with a traditional trait (YIELD, KGW, GRAIN or
TILLER), some of these principle metabolites (marked by the
red vertical bars above the heat map in Supplementary Figure
S1) significantly improved the predictabilities of the traditional
trait in the 2D GS analysis as compared to the 2D GS analysis
where the subject traditional trait was paired with any other
traditional trait. These ‘celebrity’ metabolites identified in the
2D GS analysis warrant further investigation to disclose their
biological roles that substantially contribute to the increase in
the predictabilities of traditional traits in rice.

Two color bars (1 and 2) on the left of the heat map in
Figure 1 show the advantages of 2D over 1D GS methods. Bar 1
denotes the rank ratio values for the predictabilities calculated
using 1D BLUP-HAT (diagonal entries extracted from the heat
map) for 1000 sorted metabolomic traits. The majority entries
in bar 1 are either green or yellow, suggesting that the maximum
predictability (denoted by blue in each row) for any metabolomic
trait was achieved by the 2D GS analysis rather than the 1D GS
analysis. Moreover, bar 1 shows a top-down decrease (from green
to yellow) in the rank ratio values, indicating that the advantage
of the 2D GS analysis over the 1D GS analysis becomes more
apparent in metabolomic traits with low 1D predictabilities.
Compared to the 1D predictabilities for the 1000 metabolites,
the average gain in predictabilities (measured in percentage)
achieved by the 2D GS method is presented in bar 2 (from
grey to dark grey, indicating a range of 0–5000%, respectively).
Bar 2 shows a top-down increase with horizontal lines (left of
bar 2) marking insignificant differences between 2D and 1D
predictabilities based on a one-sample t-test with significance
level of 0.05. The results of this comparison suggested that
(1) 1D predictabilities for most metabolomic traits have been
significantly improved by 2D GS analysis, and (2) 2D GS analy-
sis is inclined to benefit the traits with low 1D-predictabilities
more than the traits with high 1D predictabilities. Although
predictability values for two metabolomic traits (labelled by red
within bar 2) appeared to be lower in 2D GS analysis when
compared to 1D GS analysis, the differences were not statistically
significant. Note that 128 metabolomic traits at the bottom of
bar 1 are labelled with white because 1D BLUP-HAT GS method
failed to estimate non-negative predictability values for them.
These results for the 128 metabolites shown in bar 1 are in
agreement with the results of the conventional 1D BLUP (bar 3)
and 1D LASSO (bar 4) through 10-fold cross-validation, where
purple/white in these two color bars represent positive/negative
correlations between the observed metabolomic trait values and
the predicted metabolomic trait values. These non-positive 1D
predictabilities may be due to the indirect or intricate connec-
tions between the genomic data and the trait data for single
metabolites, which cannot be picked up by 1D GS analysis but
may be remedied by 2D GS analysis. For example, predictabilities
for more than 100 metabolomic traits that failed in any 1D meth-
ods can be successfully estimated when they are paired with

other metabolomic traits in 2D BLUP-HAT GS analysis, implying
one major advantage of 2D GS analysis over 1D GS analysis.

We also compared the 2D predictabilities with the 1D pre-
dictabilities in the analysis of four traditional traits, i.e. YIELD,
KGW, GRAIN and TILLER. Three 2D predictabilities were calcu-
lated for each trait when this trait was paired with the other
three traits, respectively. These results are shown in Supple-
mentary Table S1. Figure 2 shows that the average of 2D pre-
dictabilities (indicated by the blue dashed line) is higher than
the 1D predictability (indicated by the black dashed line) for
every trait, demonstrating again the advantage of 2D GS analysis
over 1D GS analysis. This was also supported by the results of
the analysis in which each of these four traditional traits was
paired with each of the 1000 metabolomic traits using the 2D
GS setting (Figure 2). Similarly, YIELD, which had the lowest 1D
predictability among four traditional traits, appeared to benefit
most from the 2D GS analysis. The predictabilities of the four
traditional traits may be further boosted by certain metabolites
(denoted by red dots above the blue dashed lines) than by pairing
with other traditional traits in 2D GS setting, suggesting that
potential metabolites may be identified as ancillary traits to
increase agronomically important traits through 2D GS analysis.
In Figure 2, for example, the greatest 2D predictability achieved
for YIELD through a booster metabolite was 0.235, which had
been increased by 18% when compared to 0.199, the 1D pre-
dictability for YIELD. Common metabolites have been found
to augment predictabilities for any two traits (red triangles)
or any three traits (red squares), which indicates the potential
biological connections between these traits and these pivotal
metabolites and provides guidance for further investigation into
the underlying genetic architectures or biochemical pathways
of agronomic crops. On the other hand, the metabolomic traits
also benefited from the 2D GS when compared with 1D GS
(Supplementary Figure S2), indicating a ‘win-win’ mutual gain
from a multivariate analysis.

Finally, we tested our hypothesis that 2D GS outperforms
1D GS by analyzing a series of in silico datasets generated by a
previous study [22]. The 2D predictabilities were always greater
than the 1D predictabilities for the two traits in all combinations
of the predefined simulation parameters (Supplementary Table
S2). The results of simulation analysis also demonstrated that
the low-heritability traits benefit from 2D GS more than the high-
heritability traits, and this was true when genetic correlation
increased between traits.

Discussion
It is common to include a number of related traits in a breed-
ing program selection plan. But these traits are often analyzed
separately in the GS analysis using univariate models because
multivariate GS models are complex and usually inefficient in
computation, which explains why multivariate GS models have
been rarely used and understudied. The hypothesized benefits
of using multivariate GS analysis over univariate models need to
be tested using sufficient data. In this study, we leveraged a large
dataset, which consists of 4 traditional traits, 1000 metabolomic
traits, as well as simulated datasets for three genetic scenarios
to demonstrate the advantage of 2D GS analysis over 1D GS anal-
ysis. The results showed that (1) the predictabilities for any two
traditional traits obtained from 2D analysis were always higher
than those achieved by analyzing these two traits separately
with 1D analysis. (2) The same conclusion was made when the
same comparisons between 2D and 1D analyses were performed
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Figure 1. Heat map of rank ratios for the 1000 metabolomic traits in 2D GS versus 1D GS. Color bar 1 denotes the rank ratio values for the predictabilities calculated using

1D BLUP-HAT (diagonal entries extracted from the heat map) for 1000 sorted metabolomic traits. Color bar 2 represents the increase in predictability when the average

of 2D predictabilities was compared with 1D predictability by one-sample t-test. The horizontal lines on the left of color bar 2 mark the tests with non-significant

results. Color bars 3 and 4 represent the results from conventional 1D BLUP and 1D LASSO, respectively, with purple/white representing positive/negative correlations

between the observed trait values and the predicted trait values (see Results for detailed descriptions of figure legends).

using the 1000 metabolomic traits. (3) In the 2D analysis, selected
metabolites increased the predictability of any paired traditional
trait more than any other traditional trait.

As the end products of regulation at the genomic, tran-
scriptomic and proteomic levels, metabolites serve as the most
feasible and direct correlative measure of cellular phenotypes.
The rapid development of high-throughput metabolite profiling

technologies enable an accurate identification and relative
quantification of a large number of metabolites, which has
advanced our understanding of the genetic flow from DNA
to agronomic traits of interest [30, 31]. A comparison of
trait-prediction models using various omics datasets in rice
showed that the predictabilities of YIELD and GRAIN based
on metabolomic data were generally higher than those based
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Figure 2. The 2D BLUP-HAT GS analysis of each traditional trait paired with each of 1000 metabolomic traits. In each panel, the x-axis indicates the predictability

values of the 1000 metabolites estimated in 1D BLUP-HAT GS, and the y-axis indicates the 2D predictability value of the traditional trait when it is analyzed with each

of the 1000 metabolites. In each plot, the black dashed line represents the predictability of the traditional trait estimated by 1D BLUP-HAT GS and the blue dashed line

represents the average of three 2D predictabilities when this trait was paired with each of 3 other traits at a time. The triangle and square dots in each plot indicate

the metabolites that can boost predictabilities for two and three traditional traits, respectively, in 2D BLUP-HAT GS analysis.

on genomic data [9, 10]. This might be due to the fact that, as
downstream products, constituents of the metabolome may
represent an integral effect of genetic processes at multiple
levels and their interactions, which is more correlative to the
agronomic traits of interest than the upstream DNA variants
are. On the other hand, the predictabilities based on metabolites
were lower than those based on genomic data for KGW
and TILLER, which suggested that these two traits may be
primarily determined by genetic factors at the DNA level. This
argument has been supported by the observation that more elite
metabolites have been identified for YIELD and GRAIN than
for KGW and TILLER. As a result, a multivariate GS analysis
including relevant metabolites leverages additional information

to boost predictability for the traditional traits of interest, which
are also included in the multivariate model.

Our results indicated that traits with relatively low 1D GS
predictabilities, such as YIELD in rice, can substantially benefit
from 2D GS analysis. For a low GS-predictability trait, as the
name would suggest, its variability can be partially explained
by genomic data likely due to the weak or indirect connec-
tions between this trait and DNA variants. Rather, incorporating
another ancillary trait (for example, a selected metabolomic
trait), which captures information beyond genomic data, may
substantially contribute to the prediction of the target trait
in 2D GS setting. The new 2D GS method can help identify
‘elite’ metabolites, which can increase the predictabilities for
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multiple traditional traits such that key biological networks
involving genomic loci, metabolites and traits will be discovered.
In breeding programs, these elite metabolites may be utilized as
candidate ancillary tools for a precision selection, particularly
useful to the traits with low 1D GS predictabilities.

We have developed a computationally efficient 2D BLUP-HAT
GS methodology to facilitate a wider application of this novel
methodology in research and practical breeding. We adopted the
HAT method for the 2D BLUP GS method to directly calculate
the ‘predicted sum of squares’ for each trait rather than using
the lengthy cross-validation. As a result, the computational effi-
ciency has been substantially increased, which makes bivariate
(2D) or higher dimensional GS analysis feasible. A previous study
on GS demonstrated that the trait predictabilities calculated
using HAT method is very close to those calculated using leave-
one-out cross-validation [11], and the closeness between two
approaches depends on the size of the training sample. Our
proposed 2D GS HAT model can be easily expanded to higher
dimensional models to analyze more than two traits; however,
the possible gain in trait predictability, which is likely to be
miniature, may be compromised by a major increase in compu-
tational burden.

Previous studies claimed that the prediction accuracy for
a low-heritability trait may be significantly increased in mul-
tivariate GS analysis if other correlated high-heritability traits
were also used [21, 23, 25, 27, 32]. Our results, which were based
on the analysis of a large number of traits, indicated that this
is not always the case because metabolites with either higher
heritability or higher correlation with a traditional trait, or both,
were not consistently effective in boosting the predictability of
that trait in the 2D GS analysis (Supplementary Figure S3).

It has been noticed that negative predictability values were
incurred for a small number of metabolites, even when the new
2D BLUP-HAT method has been used. This may be explained by
the following two reasons. (1) The current model is based on
simple linear regression, which may not be able to capture the
genetic effects due to the interactions of higher order. (2) The
current parameter estimation algorithm implemented in R may
not be optimal. To break through these limitations will be our
goal for developing the next version of the 2D BLUP-HAT method.

Genome-wide association studies (GWAS) aim to identify
genomic loci that are associated with traits of interest.
Significant loci identified by GWAS may be used as fixed effects
to help increase the trait predictability in GS. For example,
He et al. [33] indicated that the combined quantitative trait
nucleotides (QTNs) identified from single-locus and multi-
locus GWAS approaches (including mrMLM [34]) improved the
accuracy in GS analysis. Similar to GS, multivariate GWAS
has advantages over univariate GWAS for the same reason
that a joint analysis of multiple traits considers covariance
between these traits and therefore provides more information
for statistical inferences [35–37]. Nevertheless, multivariate
analysis includes more parameters and substantially increases
the computational burden when compared with univariate
analysis. Thus, there is a strong impetus to develop efficient
algorithms for multivariate GS as well as for multivariate GWAS.

Key Points
• We leveraged ‘big’ multi-scale rice data to demon-

strate that the bivariate genomic selection (GS) anal-
ysis generally produces higher predictabilities for two

traits than those achieved by the analysis of individual
traits using the univariate GS models.

• Selected metabolites may be utilized as ancillary traits
in the new bi-variate GS analysis for precision selec-
tion, especially for agronomically important traits
with low predictabilities in univariate GS analysis,
such as yield in rice.

• These elite metabolites identified using the new
methodology will help uncover key biological net-
works involving genomic loci, metabolites and traits,
advancing our knowledge of trait-associated genetics.
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