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Abstract

Various microbes have proved to be closely related to the pathogenesis of human diseases. While many computational
methods for predicting human microbe-disease associations (MDAs) have been developed, few systematic reviews on these
methods have been reported. In this study, we provide a comprehensive overview of the existing methods. Firstly, we
introduce the data used in existing MDA prediction methods. Secondly, we classify those methods into different categories
by their nature and describe their algorithms and strategies in detail. Next, experimental evaluations are conducted on
representative methods using different similarity data and calculation methods to compare their prediction performances.
Based on the principles of computational methods and experimental results, we discuss the advantages and disadvantages
of those methods and propose suggestions for the improvement of prediction performances. Considering the problems of
the MDA prediction at present stage, we discuss future work from three perspectives including data, methods and
formulations at the end.
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Introduction
Microbial communities, which are composed of bacteria,
archaea, fungi, viruses and protozoa [1], ubiquitously colonize
in the human body. Microorganisms are usually beneficial to
human beings. For instance, probiotics in guts are good for
fermenting undigested carbohydrates so as to manufacture
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nutrition which is needed by the human beings [2, 3]. They
also make great contributions to the maturity of the immune
system [4, 5]. In addition, microbial communities are essential
to guarantee that the homeostasis of extracellular fluid and
intracellular environment are stable [6]. Hydrogen peroxide and
lactic acid, the product of the vaginal Lactobacillus species,
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protect female vaginas from invasion of pathogens [7, 8]. The
microbiota is also able to activate the repair process of the
damaged physiological functions as well, such as fixing the
intestinal epithelium through the MyD88-dependent process [9].

A group of balanced microorganisms keep the human body
away from physiological disorders, while the unusual growth
or decline of microorganism population is possibly related to
the occurrence of disease. More clinical trials and advanced
sequencing technologies make it possible to study intricate
microbe-disease associations (MDAs) [10, 11]. For example,
infections of facial follicles are typically caused by the massive
reproduction of Staphylococcus aureus [12]. It is also known that
many regions inside the human body are suitable habitats for
various microorganisms, such as the oral cavity. Several studies
have implicated that changes in the composition of oral micro-
biota contribute to periodontitis [13, 14]. The gut microbiota
is greatly involved in host metabolic and immunomodulatory
activities, forming the most complex microecosystem in human
body. Abnormal host–gut microbiota interactions greatly affect
host physical health and possibly lead to diseases. For example,
the dysbiosis of gut microbiome is a prominent contributor to the
chronic inflammation in inflammatory bowel disease [15] and
hypertension [16] patients. The colonic mucosa is cumulatively
exposed to diet-induced microbial carcinogenic metabolites,
promoting colorectal cancer [17]. With regard to obesity that has
been proved to correlate with the gut microbiota, a strategy
for identifying the pathogenic agent in the gut microbiota
has been already proposed, combining with a spectrum of
microbiome-wide association studies [18].

As mentioned previously, studies on pathomicrobiology open
up promising perspectives. Some small-scale databases focusing
on genomic information of specific microbes have been estab-
lished [19, 20]. Other comprehensive microbial databases such as
SILVA [21], IMG/M [22], Pfam [23], M3D [24], MiST [25] and TCDB
[26], covering diverse branches of microbiology (e.g. genome,
metagenome, proteome, transcription and metabolism), have
also been created. Meanwhile, some researchers develop and
adopt computational methods to detect microbial influences on
human diseases. For example, Coelho et al. have proposed a com-
putational method to predict the impact of microbial proteins on
human biological events, which takes the relationship between
microbial and human proteins into consideration [27]. Another
famous instance related to the microbe project is the Human
Microbiome Project launched in 2007 [28].

Discovering MDAs would be truly useful in disease-related
areas (e.g. pathogenic genes and drugs) [29]. Taking drug repo-
sitioning as an example, type 2 diabetes shares a high sim-
ilarity with colorectal carcinoma based on their associations
with microbes, which infers that these two diseases could be
treated with the same drug. This hypothesis has been tested and
verified [30, 31]. Moreover, discoveries of MDAs provide plenty
of perspectives on disease mechanisms. Accurate prediction of
associations narrows down the MDA potential search space,
which reduces the time, effort and cost of wet labs’ projects.
Figure 1 depicts an entire process that includes data collec-
tion, computational prediction, clinical validation and pathology
inference.

However, there is no overarching survey so far regarding the
MDA prediction. Therefore, we try to comprehensively review
computational methods for the MDA prediction in this study. We
divide the computational methods into five categories [32, 33] as
shown in Table 1. The following itemized list briefly describes
their nature:

• Path-based methods: In heterogeneous networks, path-
based methods make the prediction by computing path-
based scores between microbe nodes and disease nodes.

• Random Walk methods: A walker randomly walks in the
transition probability network consisting of microbe and
disease nodes. These methods search for a potential associ-
ation by measuring the probability of a random walker that
has completed a path starting a node from a side of the
association and ending a node from another side.

• Bipartite local models (BLMs): BLMs compute the predic-
tion scores of MDAs from two perspectives: diseases and
microbes. Prediction scores of both sides are integrated,
which is regarded as final prediction score.

• Matrix factorization methods: An association matrix is fac-
torized into two low-dimensional matrices where one rep-
resents features of diseases while another represents fea-
tures of microbes. The product of two low-dimensional
matrices is the final predicted matrix.

• Other methods: Some methods could not be classified into
the above-mentioned categories, and thus these methods
are grouped into ‘other methods’.

In following sections, we firstly introduce types of data
including MDAs and other data for the similarity calculation.
Then similarity calculation methods for MDAs and other data
are presented. Next, we describe each prediction method with
its classification shown in Table 1. A simplified flowchart of
predicting MDAs is shown in Figure 2. After that, we evaluate
the methods by comparing prediction performances. Finally, we
make recommendations for future work of the MDA prediction.

Materials
Association and similarity data are usually the inputs of compu-
tational methods. There are two types of similarity data. One is
computed based on original MDAs, and the other is computed
based on other data. A description of all raw data used in the
MDA prediction is shown in Table 2.

MDA data

A publicly accessible database, Human Microbe-disease Asso-
ciation Database (HMDAD), provides major data for prediction
methods [29]. There are currently hundreds of microorganisms
and dozens of diseases sorted out from scraps of published
studies in HMDAD by Ma et al. [29]. If there exists a known
association between a microbe-disease pair, the corresponding
entity in the association matrix is equal to 1, otherwise 0. Fur-
thermore, known associations can be formatted into a bipartite
graph that is composed of microbe nodes, disease nodes and
edges (associations) connecting them.

Supplementary data for similarity calculation

For the disease similarity:

• Gene-based disease data: DisGeNET integrates the mas-
sive human gene-disease association (GDA) information
from expert-curated repositories [34]. MEDLINE (i.e. an
international comprehensive bibliographic database of
integrated biomedical information) stores quite a few GDAs
[35]. Diseases documented in both HMDAD and human
GDA databases were selected and used for the similarity
calculation methods [36].
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Figure 1. Three main procedures of exploring the relationship between microbes and diseases: (i) Differences between the diseased group and healthy group in

microbial populations are captured from metagenome samples based on sequencing technologies. Researchers normalize quantitative differences from reported cases

and curate the MDA dataset. (ii) High-confidence MDAs are derived by the computational prediction based on the MDA dataset, microbe-centric data and disease-centric

data. (iii) Biologists screen the candidates and seek biomedical interpretation.

• Symptom-based disease data: Human symptom-disease
associations have been collected to construct the human
symptoms-disease network (HSDN) by Zhou et al. from
PubMed [37, 38]. Meanwhile, they used term frequency-
inverse document frequency (TF-IDF) [39] to measure
the symptom-based disease similarity based on the co-
occurrence frequency between a disease and a symptom.
Based on these data, Chen et al. extracted those symptom-
based similarities of common diseases from HMDAD
[40].

• Semantics-based disease data: The National Library of
Medicine records Medical Subject Headings (MeSHs)
describe a given disease in hierarchical descriptor [41],
and thus the overlap among parental descriptors for a pair
of diseases could be used to measure how semantically
similar the pair is. In addition, Disease Ontology is an
intuitive scheme to encapsulate the structure of disease
and disease-related concepts using terminologies with
standards of MeSH, ICD and so on [42]. These efforts enable
a sequence of hierarchical descriptors to be viewed as a
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Table 1. Different methods to predict MDAs in each category

Category Method Description

Path-based methods KATZHMDA [40], PBHMDA [63], MDPH_HMDA
[40], BWNMHMDA [60],WMGHMDA [47]

Path-based methods generally take into
account numbers and weighted scores of
various types of paths between two nodes.

Random walk methods RWRH [51], BiRWHMDA [58], PRWHMDA [49],
NTSHMDA [65], BDSILP [53], BiRWMP [69],
BRWMDA [68], NBLPIHMDA [67], RWHMDA
[66]

Random walk methods construct graph-based
transition probability matrix for iterative
walking.

BLMs LRLSHMDA [72], NGRHMDA [70], Wang et al.
[36], NCPHMDA [71], KATZBNRA [57]

BLMs perform independent predictions from
both microbe and disease sides.

Matrix factorization methods CMFHMDA [80], GRNMFHMDA [59], NMFMDA
[56], KBMF [84], MDLPHMDA [82], mHMDA
[86]

Matrix factorization methods optimize two
latent informative matrices, whose
multiplication approximates the association
matrix with different constraint terms.

Other methods ABHMDA [87], BMCMDA [88], MCHMDA [89] These methods mainly include ensemble
learning and matrix completion.

Figure 2. A typical working pattern of computational MDA prediction methods.

directed acyclic graph (DAG) where a descriptor corresponds
to a node as in Figure 3. The disease similarity can be
measured based on two DAGs [43].

For the microbe similarity:

• Protein family-based microbe data: The STRING database
consists of a considerable variety of protein–protein
interactions, the presence/absence of clusters of orthol-
ogous groups (COGs) in species, relationships among
COGs (e.g. neighborhood, fusion, co-occurrence and co-
expression) and so on, currently involving more than 5000

organisms [44]. Each COG holds a group of proteins (i.e.
a protein family) having common ancestry and related
function (be orthologous across at least three lineages),
which is useful for studying evolutionarily interspecific
relationships. Based on the STRING database, Kamneva
defined the microbe-microbe functional association index
[45]. It is measured by the scale of edges (defined based
on the neighborhood score between two COGs) which are
distributed in the transboundary network of functionally
linked protein families of a microbe-microbe pair. Moreover,
although microbes used for the quantification of functional
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Table 2. A description of all data used in the MDA prediction

Data Source Original form Size/coverage in HMDAD Similarity process

MDA data [29] HMDAD contains evidence of

the perturbation of

microorganism populations

associated with diseases

from PubMed (http://www.

cuilab.cn/hmdad).

483 deregulatory

(increase/decrease) evidence

of 292 microbes associated

with 39 diseases from

published studies

292 microbes mainly at genus

and species level, 39

diseases

They are simplified as 450

de-duplicated known MDAs

and then used for GIP kernel,

Cosine and Spearman

correlation similarity

calculation.

Gene-based disease data

[34, 35]

DisGeNET contains GDAs from

UNIPROT, CGI, ClinGen,

Genomics England, CTD

(human subset), PsyGeNET,

Orphanet and those

obtained by text mining

MEDLINE abstracts (https://

www.disgenet.org).

628 685 GDAs, covering GDA

scores, diseases specificity

index for genes, PMID

evidence and so on, between

17 549 genes and 24 166

diseases

37 mapped diseases, 1850

genes, 2715 GDAs

Neighbor-based similarity

method uses GDA scores to

calculate supplementary

similarities among a subset

of diseases.

Symptom-based disease data

[37, 38]

HSDN integrates large-scale

medical bibliographic

records of disease–symptom

relationships from PubMed

(https://www.nature.com/a

rticles/ncomms5212).

Counts and TF-IDF weighted

values of co-occurrence

between 322 symptoms and

4442 diseases, including

147 978 connections

22 mapped diseases, 269

symptoms, 1858

symptom-disease

connections

TF-IDFs of co-occurrence

between one disease and all

symptoms serve to calculate

the symptom-based disease

similarity.

Semantics-based disease data

[41, 42]

The National Library of

Medicine contains MeSH

trees to define diseases

hierarchically (https://me

shb.nlm.nih.gov/search).

Systematically organized

disease categories

represented by hierarchy

trees

33 mapped diseases Two disease trees consisting of

hierarchical descriptors are

used for calculating their

DAG-based semantic

similarity.

Protein family-based microbe

data [44]

STRING database contains

protein–protein interactions

and protein-related

knowledge from many data

sources (https://string-db.o

rg).

11 362 951 Species-COG

mappings and gene

neighbor scores between

62 816 502 pairs of COGs

1391 mapped microbes at

species level, gene neighbor

scores of 932 370 pairs of

COGs

The gene neighbor score

defines whether an edge

between two COGs exists or

not. The ratio of edges

across two microorganisms

to those within either

measures their microbe

functional similarity and is

averaged for genus level.

association index are at the species level, Fan et al. picked
up those species-level microorganisms affiliated to the
genus-level microorganisms in HMDAD [46]. Then, they
averaged those functional association indexes as the
microbe functional similarity at the genus level. Long
et al. additionally provided a simple example to show how
microbe functional similarity is calculated [47].

Similarity calculation methods
Based on the microbe and disease data mentioned in Section
‘Materials’, many similarity calculation methods have been
designed and adopted for MDA prediction. We summarize these
similarity calculation methods that are tailored to the MDA
prediction with the mechanistic explanations. We then divide
them into two categories: one is aiming at calculating both
microbe and disease similarity based on MDAs and the other
is based on the supplementary data.

Calculating similarity based on MDAs

These methods take the MDA matrix A as the input, inter-
microbe matrix Sm and inter-disease similarity matrix Sd as
output. The processes of deriving the two similarity matrices are
similar. Therefore, we only present disease similarity here as an
example.

Gaussian interaction profile kernel similarity: So far, the
Gaussian interaction profile (GIP) kernel has been widely used in
the MDA prediction. The GIP kernel similarity between disease di

and disease dj, Sd(di, dj), is computed as follows:

Sd
(
di, dj

) = exp
(
−γ

∥∥A
(
di

) − A
(
dj

)∥∥2
)

γ = γ ′

1
nd

nd∑
k=1

‖A(dk)‖2

, (1)

where A(di) denotes the interaction profile of disease di (i.e. the
ith row of the association matrix A), ‖ · ‖ denotes the L2 norm, nd

denotes the number of involved diseases, γ is a parameter which
controls the kernel bandwidth for the normalization and γ ’ is an
adjustable parameter [48].

Cosine similarity: The cosine similarity calculates cosine of
the angle between two interaction profiles in Euclidean space. A
few studies acquired the microbe and disease similarity matrix
by taking this method [29, 49]. The cosine similarity between
disease di and disease dj is computed as follows:

Sd
(
di, dj

) = cos
(
A

(
di

)
, A

(
dj

)) = A
(
di

) · A
(
dj

)∥∥A
(
di

)∥∥ × ∥∥A
(
dj

)∥∥ . (2)

The result is then projected into [0, 1] by the min–max nor-
malization.

Spearman correlation similarity: Sequences of locations or
time points of pairwise microbes are used to calculate Spearman
correlation coefficients as similarity scores [50]. This method
has been employed by Shen and Zhang et al. [51–53] with some
adaptation, where each interaction profile serves as a variable
sequence to assess the monotonous correlation with others.
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Figure 3. Two types of semantic DAG of liver cirrhosis.

The Spearman correlation coefficient of a pair of diseases is
computed as follows:

Sd
(
di, dj

) =
∑nm

k=1

(
RA(di ,mk) − RA(di)

) (
RA(dj ,mk) − RA(dj)

)
√∑nm

k=1

(
RA(di ,mk) − RA(di)

)2
√∑nm

k=1

(
RA(dj ,mk) − RA(dj)

)2
,

(3)
where nm denotes the number of involved microbes. RA(di ,mk )

denotes the rank of the kth observation in the interaction profile
of disease di. RA(di ) denotes the averaged rank of each obser-
vation in the interaction profile of disease di. For those obser-
vations whose values are equal, they may have ranks in con-
secutive number. For this specific instance, we average their
ranks so they have a common rank in the sorted interaction
profile. The result is then projected into [0, 1] by the min–max
normalization.

Neighbor-based similarity for MDAs: Wang et al. adopted a
neighbor-based approach to calculate disease similarity consid-
ering the shared neighborhood information on the MDA adja-
cency matrix [36]. D(di) is defined as the degree of disease node
di, namely the number of microbes associated with disease di. Let
A(di, mj) with the value of {0, 1} represent whether disease di asso-
ciates with microbe mj. The neighbor-based disease similarity
Sd(di, dj) is computed as follows:

Sd
(
di, dj

) = exp

(
1

D
(
di

)λ
D

(
dj

)1−λ
·

nm∑
k=1

A
(
di, mk

) · A
(
dj, mk

)
D (mk)

)
, (4)

where
nm∑
k=1

A(di, mk)A(dj, mk) is the number of shared neighbors by

diseases di and dj, and λ denotes a weighted parameter.

Calculating similarity based on supplementary data

There are two similarity calculation methods publicly reported
in the MDA studies based on other data, which are gene-based
disease data (GDAs) and semantics-based disease data (the dis-
ease hierarchical descriptors represented by a DAG).

Neighbor-based similarity for gene-based disease data: A
neighbor-based similarity calculation method using gene-based
disease data was designed by Wang et al. [36]. The score of a
GDA, G(di, gj) ∈ [0, 1], comes from human GDA database [34, 35]. It
represents whether disease di associates with gene gj. If G(di, gj)
is greater than 0, disease di associates with gene gj, otherwise di

does not associate with gj. The neighbor-based disease similarity
Sd(di, dj) is computed as follows:

Sd
(
di, dj

) = N
(
di, dj

)S(di ,dj)/N(di ,dj), (5)

where S(di, dj) denotes
∑
k

min(G(di, gk), G(dj, gk)) and N(di, dj) means

the number of common genes associated with both diseases di

and dj.
DAG-based semantic similarity: In this method, each node in

a DAG can obtain a score through the contribution of its ancestor
nodes and itself. Specifically, the complete descriptor for a kind
of disease at the bottom of a DAG is contributed by its parent
descriptors [43, 53]. For disease di, DAGi consists of a set of nodes
Vi and a set of edges Ei. The contribution of an ancestor node a to
the tip node t that represents the complete descriptor for disease
di is recursively computed as follows:

Ci(a) =
{

1, if a = t
max

{
λ · Ci (a′) |a′ ∈ children of a

}
, if a �= t

, (6)
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where λ ∈ (0, 1) is a decay factor. The score of disease di sums up
all ancestor nodes’ contributions. Then, the DAG-based seman-
tic similarity between diseases di and dj could be calculated
by aggregating all contributions of common ancestor nodes as
follows:

Sd
(
di, dj

) =
∑

a∈Vi∩Vj

(
Ci (α) + Cj (α)

)
∑

a∈Vi
Ci (α) + ∑

a∈Vj
Cj (α)

. (7)

Similarity adjustment

Based on the above similarity calculation methods, several
strategies have been proposed to improve their results.
According to the analysis of [54], the similarity value of a pair of
diseases below a threshold tends to reflect a weak relationship,
while the similarity value greater than a threshold indicates
a strong relationship. The logistic function, which serves as an
activation function to address this issue, has firstly been applied
to GDAs [55] and then introduced to MDAs [40, 56–58].

Another approach to adjust the similarity distribution uses
the topological structure of similarity networks. There is a decay
multiplier imposed on the value of similarity between a pair of
diseases or microbes when they do not mutually belong to the
k-nearest neighbors of each other [56, 59, 60].

Methods
In this section, we give detailed description of some state-of-the-
art prediction methods in Table 1. All methods in the following
subsections take three types of data as input including an associ-
ation matrix A ∈ R

nd×nm , a microbe similarity matrix Sm ∈ R
nm×nm

and a disease similarity matrix Sd ∈ R
nd×nd .

Path-based methods

Path-based methods make use of the path information among
three kinds of networks. These methods generally measure the
weight of a potential path as the score of an unknown associa-
tion by considering indirect paths across networks.

KATZ measure

Chen et al. employed the KATZ centrality measure [61] to predict
MDAs via KATZHMDA [40]. The GIP kernel is used for the similar-
ity calculation, and the logistic function is applied to adjust the
similarity distribution. In addition, the symptom-based disease
similarity is integrated into the GIP kernel disease similarity.
The final prediction matrix F is obtained from the power of
heterogeneous adjacency matrix A∗ which consists of A, Sm and
Sd as follows:

A∗ =
[

A Sd

Sm AT

]
(8)

F =
∑
l≥1

β lA∗l, (9)

where β is a decay factor used to dampen the contribution of the
longer paths (the higher power of A∗). When β is less than the
reciprocal of the absolute value of the largest eigenvalue of A∗, F
can be reformed as (I − βA∗)−1 − I [61, 62], where I is the identity
matrix. Considering the sparsity of data in HMDAD database,
Chen et al. set l as 2 to avoid the disturbance of long lengths [40].
It is the theoretical key that the power of an adjacency matrix
indicates the length of paths that connect two nodes [61].

Weighted Path

The weighted path carried one step further by taking all edges
of each path into consideration in PBHMDA [63]. By this method,
microbe similarity and disease similarity are calculated by the
GIP kernel. Given a disease di and a microbe mj, an indirect path
consisting of a sequence of edges (known associations) between
them, pk, is scored as follows:

S
(
pk

) =
⎛
⎝len(pk)∏

e=1

we
(
pk

)⎞⎠
a×len(pk)

, (10)

where we(pk) represents the weight of edge e in path pk. All paths’
scores between disease di and microbe mj are aggregated, and the
final prediction score is computed as follows:

F
(
di, mj

) =
numij∑
k=1

S
(
pk

)
, (11)

where numij denotes the number of paths between disease di

and microbe mj. However, searching for indirect paths consumes
a lot of resources. It was improved by BWNMHMDA where Li
et al. placed more relational constraints into building paths to
highlight key paths and restrict weak paths in a fine scale [60].

HeteSim measure

HeteSim is a framework searching for all possible paths consist-
ing of a sequence of staggered nodes and relationships between
them [64]. The definition of the HeteSim score can be recur-
sively decomposed into multiple HeteSim scores of a shorter
subsequence of the complete relationship chain. A generalized
formula for calculating the HeteSim score is given as follows:

HeteSim
(
s, d|R1

◦R2
◦ · · · ◦Rl

) = 1
|OD(s|R1)‖ID(d|Rl)| ×∑

s′∈OD(s|R1)

∑
d′∈ID(d|Rl)

HeteSim
(
s′, d′|R2

◦R3
◦ · · · ◦Rl−1

) , (12)

where R denotes a kind of relation. OD(s|R1) represents the set
of nodes that the source node s can reach based on the relation
R1, and ID(d|Rl) represents the set of nodes that can reach the
destination node d over the relation Rl.

The relationships of a microbe-disease path were simplified
in MDPH_HMDA based on path-based HeteSim scores by Fan
et al. [46]. They chose two types of paths with the length of 3:
microbe-disease-disease paths and microbe-microbe-disease
paths. Microbe similarities could be served as microbe–microbe
relationships, while disease similarities could be served as
disease–disease relationships. Moreover, six types of customized
paths called meta-graphs were defined in WMGHMDA [47].
These meta-graphs are composed of different combinations
of adjacency matrices. Both MDPH_HMDA and WMGHMDA take
the GIP kernel similarity and integrate them with the symptom-
based disease similarity and the microbe functional similarity,
respectively, to ensure more informative homogeneous paths.

Random walk methods

The random walk methods predict an unknown association by
measuring the probability that the walker arrives the final node
(one end of the association) from the seed node (the other end
of the association). There are several subcategories based on
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the random walk, such as the random walk on a heterogeneous
network, the bi-random walk and the graph inference.

Random walk on a heterogeneous network

The Random Walk with Restart on the Heterogeneous network
(RWRH) [51] generally needs to construct a transition matrix
simulating a heterogeneous network on which the walker starts
a random walk

M =
[

Mmm Mmd

Mdm Mdd

]
, (13)

where Mmm and Mdd are normalized microbe and disease simi-
larity matrices calculated by the Spearman correlation, respec-
tively. Mdm and Mmd are association matrices and its transpose,
respectively. Although different weights are assigned to the two
types of matrices, the composite transition matrix is normalized
so that the sum of each row is 1. By the method of NTSHMDA [65],
Mdm and Mmd are modified to integrate inter-microbe similarity
and inter-disease similarity.

To predict MDAs simultaneously, the initial probability vector
of every node could be integrated into an initial probability
matrix. At step t + 1, the probability matrix is computed as
follows:

Pt+1 = (1 − γ ) MPt + γ P0, (14)

where γ is the restart probability. Due to the need of adjusting
complex parameters, Particle Swarm Optimization was intro-
duced into the random walk on a heterogeneous network to
obtain the globally best parameters by the method of PRWHMDA
[49]. In addition, Niu et al. reconstructed an unweighted hyper-
graph for the random walk [66]. They proposed a new concept of
hyperedge which assigns the walker a tough rule to restrict its
movable region.

Bi-random walk

BiRWHMDA [58] is a method where the initial walker starts to bi-
walk randomly from two seed nodes on the microbe similarity
network and the disease similarity network, respectively. After
each separate iteration, both probability matrices get weighted
and summed. For example, the iterative formula of a random
walk on a disease network is given as follows:

Pt+1
d = (1 − γ ) MdPt + γ A, (15)

where Md is the transition matrix transformed from the Lapla-
cian normalized disease similarity matrix. In addition, the ran-
dom walk on the microbe network results in Pm in the same
way. After finite iterations, their weighted sum P tends to reach
convergence and results in another format in BDSILP [53]. Mean-
while, Zhang et al. firstly introduced disease hierarchical descrip-
tors into BDSILP for similarity calculation. The convergent proba-
bility matrix Pd that only walks on the disease similarity network
is expressed as follows:

Pd = lim
t→∞

Pt+1
d = η(I − (1 − η) Md)

−1A. (16)

Similarly, probability matrix Pm that walks on the microbe
similarity network will finally converge in this way. In NBLPIH-
MDA [67], the iterative formula to calculate Pt+1 is rewritten
so that restarting the initial state, P0, is replaced by restarting
the previous state, Pt. When Pt+1 converges, P0, P1 . . . Pt+1

average the final probabilities rather than Pt+1. Yan et al. made
an improvement by proposing BRWMDA that combines the simi-
larity network fusion (SNF) process with the bi-random walk [68].
The SNF method performs an effective integration of the GIP
kernel similarity and the symptom-based disease similarity by
using the k-nearest neighbor and the iterative fusion operation.

Graph inference

The graph inference adopts the bi-random walk in a similar
way. In terms of graph inference, Shen et al. proposed a method,
BiRWMP, that each iteration involves two similarity matrices
simultaneously [69]. The method is expressed by the following
equation:

Pt+1 = (1 − γ ) SdPtSm + γ P0. (17)

Note that both Sd and Sm need to be normalized.

Bipartite local models

BLMs work independently on the basis of both sides of a
microbe-disease pair and can be combined to yield a definitive
prediction result.

Collaborative filtering

The collaborative filtering is commonly used in recommender
system, and it considers the solution from both user and item
perspectives. As to the prediction method NGRHMDA, the col-
laborative filtering works in view of both sides of the predicted
associations in the same way [70]. For instance, the equation
from the perspective of the disease is given as follows:

Fd
(
di, mj

) =

nd∑
k=1

Sd
(
di, dk

)
A

(
dk, mj

)
nd

, (18)

where Sd is computed via the GIP kernel integrated with the
symptom-based disease similarity. In a similar way, the predic-
tion scores from the perspective of microbe Fm could be obtained.
Given disease di and microbe mj, their prediction score is the
average of two results above. Then, NGRHMDA imposes the two-
step network diffusion on the pre-processed association matrix
for better prediction performance. In addition, Xie et al. pro-
posed a bipartite network recommendation model integrating
collaborative filtering with the KATZ measure [57].

Network consistency projection

Zou et al. proposed a method that utilized the network consis-
tency projection called NCPHMDA [71]. It calculates the length
of similarity vector projections on the vectors of the association
matrix as the prediction score. Similarly, the network consis-
tency projection works from both perspectives of microbes and
diseases. For example, a given pair of a microbe and a disease is
scored by the microbe space projection as follows:

Fm
(
di, mj

) = A
(
di

) × Sm
(
mj

)∥∥A
(
di

)∥∥ , (19)

where Sm(mj) represents similarities between microbe mj and
other microbes computed by the GIP kernel, and A(di) means the
interaction profile of disease di.
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Laplacian regularized least squares

The Laplacian regularized least squares for the MDA prediction
(LRLSHMDA) [72] constructs two objective functions and mini-
mizes them with the graph Laplacian regularization terms from
the microbe side and the disease side, respectively. The first step
is to normalize the GIP kernel similarity Sd and Sm for generating
graph Laplacians Ld and Lm [73]. Then, the objective functions
from both sides could be given as follows:

minFm

∥∥AT − Fm

∥∥2
F + ηm

∥∥FT
mLmFm

∥∥2
F

minFd
‖A − Fd‖2

F + ηd

∥∥FdLdFT
d

∥∥2
F

, (20)

where ‖ · ‖F represents the Frobenius norm. To obtain an
appropriate observation of Fm ∈ R

nm×nd and Fd ∈ R
nd×nm ,

the graph Laplacian regularization term with the Frobenius
norm ‖FT

mLmFm‖2
F exhibits a difference from the normal graph

Laplacian regularization term Tr
(
FT

mLmFm
)
, where Tr(FT

mLmFm) =
1
2

nd∑
k=1

nm∑
i,j=1

((Fm(i, k) − Fm(j, k))2 · Sm(i, j)) [74], and Fm is smoothed on

the manifolds of each disease’s association data. By contrast,
LRLSHMDA minimizes the graph Laplacian regularization
terms and smoothed Fm and Fd on the manifold of the whole
association data. Finally, the predicted matrix aggregated Fm and
Fd with the adjustable weights.

Inference on bipartite networks

Wang et al. proposed a novel microbe-disease prediction
approach regarding bipartite networks where the information
on GDAs was firstly introduced for the neighbor-based similarity
calculation [36]. To build inference from a bipartite network,
several kinds of kernel matrices are computed with the microbe
and disease similarity based on multi-source association data.
As for diseases, the potential prediction associations scored
by the product of a low-dimensional projection matrix and
kernel matrices are transformed from the multi-source disease
similarity. An analogous process is implemented with regard
to microbes. Finally, the inference on the bipartite network is
gathered as the predicted outcome.

Matrix factorization methods

Matrix factorization methods are based on the idea that the
input matrix decomposes into two low-dimensional matrices,
and the product of the two low-dimensional matrices is approx-
imately equal to the input matrix [75, 76]. Two low-dimensional
matrices W ∈ R

nd×k and H ∈ R
nm×k are trained to meet that

WHT ≈ A. Referring to [77], columns of W and H contain fea-
ture information of diseases and microbes, respectively, and the
unknown associations in matrix A could be completed by the
multiplication of two feature vectors.

Graph regularized non-negative matrix factorization

The graph regularized non-negative matrix factorization (NMF)
uses the graph Laplacian regularization which forms the data
space as a submanifold and implements the matrix factorization
on the manifold [74]. The graph regularization makes full use of
geometric structure of microbe and disease similarity networks
by their scattered nearest neighbors [59]. Meanwhile, Tikhonov
regularization has been also introduced for the prevention of
overfitting [78]. The optimization function proposed in NMFMDA

[56] is expressed as follows:

minW,H

∥∥∥A − WHT
∥∥∥2

F
+ λl

(
‖W‖2

F + ‖H‖2
F

)
+

λdTr
(
WTLdW

) + λmTr
(
HTLmH

)
,

s.t.W ≥ 0, H ≥ 0

, (21)

where λl, λd and λm are adjustable regularization coefficients, and
Tr(·) is the trace of a matrix. ‖ · ‖F means the Frobenius norm
of a matrix. Ld and Lm are Laplacian matrices of the GIP kernel
similarity matrices Sd and Sm, respectively.

In addition, He et al. presented an improved method,
namely GRNMFHMDA [59], that incorporates Weighted K
Nearest Known Neighbors (WKNKN) [79]. By WKNKN, a binary
association matrix turns into a non-zero matrix that takes the
pre-estimation of potential associations.

Collaborative matrix factorization

The collaborative matrix factorization aims to update the two
decomposed matrices W and H with three approximate equali-
ties that WHT ≈ A, WWT ≈ Sd and HHT ≈ Sm. In CMFHMDA [80],
the optimization problem is designed as follows:

minW,H

∥∥∥A − WHT
∥∥∥2

F
+ λl

(
‖W‖2

F + ‖H‖2
F

)
+

λd

∥∥∥Sd − WWT
∥∥∥2

F
+ λm

∥∥∥Sm − HHT
∥∥∥2

F

, (22)

where ‖ · ‖F represents the Frobenius norm, and the second term
in the formula is Tikhonov regularization term that could avoid
over-fitting problem. The GIP kernel is taken for the similarity
calculation.

Updating rules of W and H could be obtained by taking partial
derivatives of the objective function with respect to W and H.
Moreover, it is common that W and H are initialized randomly,
but the reasonable initialization can accelerate convergence. For
example, the singular value decomposition of A could be used in
initializing W and H [80].

Sparse learning method

Qu et al. adopted the sparse learning method (SLM) [81] in
MDLPHMDA [82]. In order to reduce noises in association matrix
A, they used the SLM to find a low-rank matrix X and a sparse
matrix E and reshape A in the format as

A = AX + E. (23)

Subsequently, the optimization function contributes to the
update of X and E as

minX,E‖X‖∗ + α‖E‖2,1 s.t. A = AX + E, (24)

where ‖ · ‖∗ denotes the nuclear norm that equals the sum of
all singular values of a matrix, and ‖ · ‖2,1 denotes the sparse

norm (i.e. ‖E‖2,1 =
nm∑
j=1

√
nd∑
i=1

E(i, j)2). α is an adjustable parameter

to balance the contributions of X and E. After the optimiza-
tion problem, equation (24) is transformed into an augmented
Lagrange function, the inexact augmented Lagrange multipli-
ers algorithm could be implemented to solve the augmented
Lagrange function [83]. With X and E converged, the new adja-
cency matrix A∗ could eliminate noises by a linear combination
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of A and X without E (i.e. A∗ = AX). With MDLPHMDA, further
label propagation is imposed on the new adjacency matrix A∗ to
get a better prediction performance.

Kernelized Bayesian matrix factorization

The kernelized Bayesian matrix factorization (KBMF) [84] has
been used in previous studies [85]. To solve the complex com-
putation of posterior distribution, the variational approxima-
tion is applied to infer the distribution of the low-dimensional
subspace for approximating the complicated distribution. Espe-
cially, low-dimensional projection matrices Pm and Pd, where
the projection parameters correspond to the priors λm and λd,
respectively, are constructed. Then, kernel matrices Sm and Sd are
projected into a uniform low-dimensional space by projection
matrices, and potential associations could be searched among
the low-dimensional space containing informative representa-
tions of microbes and diseases. Additionally, Wu et al. mod-
ified Tikhonov regularization terms in the NMF optimization
function [86].

Other methods

Besides methods mentioned above, there are still some methods
that do not belong to any of the categories. Hence, we discuss
these methods and put them in this subsection.

Ensemble learning with adaptive boosting

The ensemble learning with adaptive boosting was adopted from
the prediction method ABHMDA [87]. The decision trees are cho-
sen as weak learners. Because of lacking other types of concrete
feature information and property labels, the combination of the
GIP kernel microbe similarity and the symptom-based disease
similarity is served as the feature vector of a training sample.
Due to the lack of known associations regarded as positive
samples, unknown associations regarded as negative samples
are randomly divided into different parts. The same number of
negative samples as the number of positive samples is drawn
from each part in order to keep the balance between positive
and negative samples during the training of a decision tree.
According to the adaptive boosting, the misclassified samples
are more critical to inform the subsequent training of weak
classifiers, and a weak classifier with less error yields a higher
proportion of the final combined output of all weak classifiers.

Matrix completion

Shi et al. proposed a novel method BMCMDA [88] based on the
binary matrix completion which assumes that an unobserved
microbe-disease pair (i.e. an unknown microbe-disease pair) is
likely to be associated at the probability f (xi,j) or unassociated at
the probability 1 − f (xi,j). X = {xi,j} is the probability parameter
matrix corresponding to association matrix A, and f (·) denotes
the cumulative distribution function. The matrix X is optimized
by maximizing the log-likelihood function of the present obser-
vation. After that, incomplete matrix A could be recovered with
the optimal probability parameters.

In addition, another method, MCHMDA [89], uses the singular
value thresholding algorithm [90] to carry out the matrix com-
pletion. Specifically, a low-rank heterogeneous matrix, whose
elements belong to the set of known associations remained
unchanged, is completed via two iteration steps based on the
Uzawa algorithm [91] and the linearized Bregman iteration [92].
It also expands similarity calculation methods by considering

the microorganism-inhabited organs and measuring gene-based
disease similarity differently.

Experiment and comparison
In this section, we selected one or two prediction methods from
each category to conduct comparative experiments. Candidates
were chosen after comprehensive consideration including the
aspects of similarity, the characteristics of their algorithms, code
availability and reproducibility. In total, five typical methods
including KATZHMDA, BRWMDA, NGRHMDA, LRLSHMDA and
NMFMDA were experimentally compared. These methods adopt
a common similarity calculation method, the GIP kernel similar-
ity (some of them integrated with symptom-based disease sim-
ilarity). Their parameters were set to default values according to
the primary literature for optimal prediction performance.

Assessment methods

Owing to the single data source (i.e. HMDAD [29]), we selected
two of the widely used evaluation methods, the global leave-one-
out cross validation (LOOCV) and 5-fold cross validation (CV) [93],
to obtain a performance comparison. In the meantime, the local
LOOCV was also selected to assess the prediction performance
for reference. We took turns leaving out one known MDA (i.e.
set value of the corresponding entity in the association matrix
to be 0) as the test sample in LOOCV. Conducting LOOCV on a
small dataset is not time-consuming, and the result from LOOCV
is stable and non-random. The global LOOCV differs from the
local LOOCV because they have different scales of candidate
samples that determine the ranking range of a predicted score.
The global LOOCV indicates that the predicted score of a test
sample ranks among all candidate samples that are not yet
verified, whereas the score is compared with those of candidate
samples connecting the tested disease in the local LOOCV.

By taking 5-fold CV for 100 times, we also obtained a stable
result. The known MDAs are randomly divided into 5 folds, and
each fold is drawn out in turn as the test sample set while the
remaining folds are considered as the training sample set.

The receiver operating characteristic (ROC) curve reflects that
the relationship between sensitivity and 1-specificity changes
along with the varying cut-off threshold. The area under curve
(AUC) of the ROC has been widely used as an evaluation metric
to measure the performances of MDA prediction methods at this
stage [94, 95]. We primarily compared prediction methods by
their AUCs of the global and local LOOCV. As for 100 times of
5-fold CVs, AUCs were averaged as the final metric.

We additionally assessed the influences of using different
similarity data on prediction performances. Six combinations of
processed similarity data were tried with selected methods and
judged by AUCs of the global and local LOOCV.

The AUCs and ROC curves of three types of CVs are drawn in
Figure 4. Figure 5 shows the numbers of predicted MDAs ranking
in different top portions with global LOOCV. Based on this,
we visualize the overlaps of MDAs predicted by each method
in the form of Venn diagrams which are placed in Figure 6.
Table 3 shows the results of a predictive ability comparison via
using different similarity data. Then, we discuss the prediction
performances of different methods and give brief comments.

Experimental analysis
From the results of the prediction performances, the random
walk methods represented by BRWMDA achieved the best per-
formance among the selected methods in terms of all three
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Figure 4. Three types of ROC curves of five representative methods.

Figure 5. The numbers of correctly predicted MDAs from five representative methods with the global LOOCV.

validations. The good results are caused by the logistic function
and the SNF method, which bring reliable transition matri-
ces for bi-walk [68]. The performances of random walk meth-
ods highly depend on the property of the walking network. A
well-integrated and informative network leads the walker to a
proper destination. The SNF processing captures the vital infor-
mation and integrates the complementary information from
diverse networks by an iterative update based on message-
passing [96]. According to Table 3, fusing the Spearman correla-
tion coefficient similarity and the symptom-based disease sim-
ilarity by the SNF method outperformed all other combinations
(AUC = 0.9527), even is better than the original results. It indicates
that both the SNF method and the Spearman correlation coef-
ficient similarity generally fit this method, since the iterative
fusion approach and the monotonic relationship assessment of
two profiles may play an important role in constructing a more
reasonable similarity network for walkers [97].

According to the ROC curves in Figure 4, NMFMDA failed
to achieve a superior result. However, the matrix factorization
methods are common alternatives in other field such as drug–
target interaction prediction [32]. Although the MDA matrix fac-
torization is less intuitive as the image decomposition where
NMF learns the combination of components, it indeed captures
latent properties from both sides. The dissatisfactory prediction
result could be partly explained by the unbalanced distribution
of associations. A significant fraction of associations are clus-
tered with several common diseases. Hoyer et al. who improve
the NMF algorithm by incorporating sparseness constraints pro-
vide us with a solution [98]. In our case, the unbalanced distri-
bution (disease-specific centralized distribution of MDAs) sim-
ulates a ‘rare’ phenomenon [98]. To overcome this defect, the
basis vectors W containing latent properties of diseases should
be sparse [98]. Due to this phenomenon, NMFMDA performed
better under 5-fold CV when the centralized distribution was
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Figure 6. Four overlapping relationships among top 50 (a), top 100 (b), top 200 (c) and top 500 (d) ranked MDAs of five representative methods. The top left Venn diagram

of each sub-figure shows the overlapping relationships of high-score MDAs which are just predicted by NGRHMDA and NMFMDA but not by the other three methods.

The main Venn diagram of each sub-figure shows the overlapping relationships of high-score MDAs predicted by five methods together.

alleviated in contrast to LOOCV. Table 3 illustrates that the effect
of the GIP kernel similarity far exceeded other similarities. By
observing different similarity distributions, the values computed
by the GIP kernel similarity were found densely located in the
neighborhoods of 0 and 1, having a higher distinguishability,
while those computed by the Spearman correlation coefficient
similarity mainly ranged from 0 to 0.5. This binary central-
ized distribution resulting from the GIP kernel similarity may
generate sparser basis vectors W in terms of the deduction of
the graph regularization term [56, 74, 98]. As a result, matrix
factorization methods are not the optimal approach.

Among path-based methods, the representative method,
KATZHMDA, did not perform as well as others. It could be
explained that the sparse data cause rare paths linking with
isolated nodes and therefore these nodes are unable to be
identified precisely. It also indicates that path-based methods
are more intuitive methods based on the association network.
While random walk methods focus on the possible locations that

a walker may arrive at, path-based methods pay more attention
to the details of all paths. Hence, a convincing roadmap deserves
to be assured. However, path across homogeneous networks
measured with computational association-based similarities are
still not reliable enough due to the computational dimension-
reduction deviation during the similarity calculation. The results
derived from a series of experiments on different similarity
data in Table 3 are supportive evidence for our arguments.
When adopting path-based methods, we should concern about
new similarity sources and measurements to construct more
efficient homogeneous paths like what we tested on extra
similarity data.

Relatively, BLMs cover an extensive range of methods based
on diverse ideas. From the prediction results of the two selected
BLMs, they presented a satisfactory solution to the MDA predic-
tion by taking advantage of disease and microbe similarity infor-
mation separately. In addition, the further two-step diffusion
in NGRHMDA and the modified graph Laplacian regularization
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Table 3. Results of different similarity data applied to typical MDA prediction methods. M: microbe; D: disease; GIP kernel: the GIP kernel
similarity; Spearman: the Spearman correlation coefficient similarity; Ave(X + sym): the average of the X similarity and the symptom-based
disease similarity and SNF(X + sym): the SNF fusion of the X similarity and the symptom-based disease similarity. We underline the original
results and highlight the best result of each method in bold and the global best result in italics

AUC of
global/local
LOOCV

M: GIP kernel
D: GIP kernel

M: Spearman
D: Spearman

M: GIP kernel
D: Ave (GIP
kernel + sym)

M: GIP kernel
D: Ave
(Spearman +
sym)

M: GIP kernel
D: SNF (GIP
kernel + sym)

M: GIP kernel
D: SNF
(Spearman +
sym)

Average AUC

KATZHMDA 0.8382/0.6806 0.8769/0.5632 0.8644/0.7 0.876/0.5576 0.8786/0.7688 0.8632 /0.5262 0.8662/0.6327
BRWMDA 0.9293/0.8595 0.9406/0.8895 0.922/0.8552 0.9431/0.8861 0.9397/0.8614 0.9527/0.8894 0.9379/0.8735

NGRHMDA 0.9111/0.7951 0.8930/0.5967 0.9117/0.7964 0.8943/0.5917 0.9025/0.7889 0.8931/0.6020 0.901/0.6951
LRLSHMDA 0.8909/0.7657 0.8610/0.6429 0.8930/0.7612 0.8429/0.5244 0.8854/0.7367 0.832/0.5222 0.8675/0.6589
NMFMDA 0.8470/0.6973 0.6167/0.4817 0.8568/0.6949 0.6433/ 0.4766 0.8510/0.7012 0.6963/0.4836 0.7519/0.5892
Average AUC 0.8833/0.7596 0.8376/0.6348 0.8896/ 0.7615 0.8399/0.6073 0.8914/0.7714 0.8475/0.6047 0.8649/0.6899

term in LRLSHMDA also contribute to the reliable prediction per-
formance. Notably, BLMs are not entirely independent for their
processes share mutual associations, but neither of the models
participates in the operation of each other until the mergence.
We recommend that this approach could be considered as the
prime candidate owes to its fast speed and weak dependence
on conditional hyperparameters and similarity data as shown
in Table 3.

In conclusion, each computational method has its own
advantages, applicability and disadvantages. An informative
similarity network integrated effectively with prior knowledge
could generally improve the prediction results for most methods.
Compared with the GIP kernel similarity, the Spearman
correlation coefficient similarity fits the methods better based
on topological networks (the random walk and path-based
methods). Considering the specific predictive capability and
the characteristic of each method, it is possible to conduct a
combination prediction on the basis of results as shown in
Figure 6. Although we analyzed the experimental results by
category, we would like to give supplementary explanations
on prior experiments: (i) hindered by the unbalanced dataset,
we were more focused on comparing computational methods
mathematically and horizontally and ignored their biomedical
authenticity judged by the empirical validation. This will be
discussed in Subsection ‘Biomedical interpretation for compu-
tational discovery’. (ii) The prediction accuracy of top-ranked
associations is a valuable metric to evaluate the applicability
and practical significance of a method. (iii) As shown in
Figure 6, the overlapping top-ranked associations predicted by
several methods are the highest confidence alternatives for the
biomedical validation.

Future work
According to previous studies and our observations, we make
some suggestions in perspectives of the data, methods and
formulations in order to achieve higher precision, better gener-
alization ability and wider applicability of the MDA prediction in
the future.

Enriching data sources

Collecting data from different sources is the top priority which
could be divided into two parts. On the one hand, original associ-
ation data are still sparse and unevenly distributed. So firstly, rig-
orously verified prediction results could be added to the original
association data. A webtool, EviMass, has been developed and

conduced to solve this issue [99]. Reported literature will return
when users query with an MDA or even association networks.
It provides a channel for biologists to test their hypotheses by
mining biomedical evidence. Secondly, searching recent related
literature for a novel association data is necessary. For example,
Yan et al. extended the MDA dataset as HMDAD-SUP [89]. Further-
more, the MDA prediction prefers more independent datasets
for training and testing models. For example, Janssens et al.
constructed the Disbiome database which continuously orga-
nizes experimental cases linking the microorganism to disease
from PubMed publications [100]. Recently, an insightful review
meticulously outlined existing knowledge bases of human MDAs
and discussed current challenges in the process of constructing
them [101]. Readers can obtain relevant information of natural
language processing, text mining, terminology unification and
data consolidation to have an overall grasp on a new MDA-
related knowledge base.

On the other hand, multi-source data need to be introduced
to enhance the generalization performance and support
innovative approaches. For example, other data for similarity,
including GDA, symptom-based disease similarity and so on
[36, 40, 46, 47, 53, 89], have been successfully applied to the
MDA prediction. However, these data could also be used as
microbe and disease features in feature-based learning models.
Likewise, other microbe-related and disease-related information
that could identify a microorganism or a disease should be
considered in the MDA prediction. For example, PHI-base stores
a lot of genetic information about pathogens and their various
mutant phenotypes [102]. EuPathDB is a large-scale retrieval
platform for eukaryotic microbes, serving to identify genes with
an all-round search strategy [103]. The therapeutic drug list of a
given disease can be retrieved in KEGG [104].

There is yet no certain microbe-disease non-association
dataset to date. The label ‘0’ has two possible interpretations,
unknown association or non-association. It affects the effective-
ness of supervised learning methods. Although some technical
solutions have already been proposed in ABHMDA (balanced
sampling from bi-class sets) [87], BMCMDA (unobserved states
with the probability of being non-associations) [88] and other
studies (in silico screening) [105, 106], it is necessary to curate
verified non-association entries manually.

Unifying taxonomy and terminology

Another measure for the enhancement of prediction reliability
is to define the taxonomic level of each microorganism and
perform the prediction at the same level [71]. Organisms
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could be classified and mapped with taxonomy (e.g. NCBI
[107] and SILVA [21] taxonomy). Moreover, the introduc-
tion of taxonomy would facilitate a precise identification
of microorganisms among microbiology databases, which
aids in incorporating microbiome (e.g. microbial genome
sequences [21, 22] and patient-derived microbial metagenome
[22, 108], transcriptome and metabolome [24–26]) into the
MDA prediction. Microbiomic data could be used to identify
microorganisms and measure inter-microorganism similarities,
whereas relevant work has been done with the aim at predicting
virus-host associations. Ahlgren et al. measured inter-viruses
dissimilarities utilizing genomic oligonucleotide frequencies
and Liu et al. constructed the virus similarity network based
on the prediction of virus-host associations, which provide
examples of using microbiome in microbe-related association
prediction [109, 110].

Additionally, it is necessary to expand the current size of
diseases and requires a basic terminology dictionary to regulate
disease synonyms and classifications [101]. Because of complex
aliases, extended description (e.g. ‘new-onset untreated’
rheumatoid arthritis) and ambiguity between symptoms and
diseases [38], hierarchical classifications, such as Medical
Dictionary for Regulatory Activities [111] and MeSH [112] are
required. They could contribute in organizing disease terms
with a structured standard and hence allow to retrieve stan-
dardized disease terms from different disease repositories in
a consistent way.

Introducing deep learning methods

Machine learning is a powerful tool, and related algorithms
have been widely applied to our issue, such as least squares,
matrix factorization and completion. However, feature-based
machine learning algorithms are trapped in the dilemma of lack-
ing effective features and hence received little attention. Com-
pared with machine learning, deep learning, which is regarded
as a meaningful attempt, has not yet been introduced into MDA
prediction. In response to the dilemma above, deep learning-
based algorithms that target a complicated topological network
and capture its node embeddings have been proposed in many
studies [113–118].

Inspired by representation learning such as DeepWalk [115],
refining characteristics of the topological structure of the MDA
network by deep learning methods is an available way to
obtain distinctive representations. For example, Masashi et al.
extracted topological information from the drug molecular
structure by encoding all atoms and chemical bonds in a variable
dimensional space. They then converted these stochastic pre-
encodings to final molecular embeddings in the form of vector
representations by the graph neural network [119]. In our
case, a microbe or disease node can be represented as the co-
contribution of its neighbors and itself in the homogeneous
network through graph neural networks, and then the end-to-
end model is a preferred choice for handling the subsequent
prediction.

Furthermore, Zitnik et al. proposed an approach for modeling
a node encoder in the heterogeneous network constituted
of multigraph convolutional networks [120]. When we intro-
duce new interactive networks into the MDA prediction,
the encoder integrating multi-graph information for a node
would take effect. Although topography-based deep learn-
ing methods mentioned above, especially the graph neural
network, are effective tools, these types of methods are
unable to predict novel associations because the encoding

dictionary (or one-hot codes) is pre-fixed. Hence, it is urgent
to curate valid features capable of identifying a microorganism
or a disease.

Fusing multi-source similarities in an effective manner is
also an essential task that we can apply deep learning methods
to. For example, Zeng et al. assembled 10 types of drug-drug
networks and converted them to a common feature space that
generates reconstructed drug features via multi-modal deep
autoencoder [121]. The step of aggregating similarity features
could be addressed by multi-input concatenation or summation
layer.

Evaluating diversely

Comprehensively, evaluating prediction methods is also a criti-
cal part of the MDA prediction. In this article, we mainly focus on
discussing non-feature-based prediction methods. These meth-
ods require a reconstruction of the association matrix via remov-
ing label ‘1’ when testing novel associations. Therefore, the
association matrix changes by different test sampling modes. In
order to evaluate the prediction ability comprehensively, more
test sampling modes should be designed besides CVs. For exam-
ple, to evaluate the capability of predicting associations of a new
disease with known microbes (or vice versa), the corresponding
profile should be excluded from the association matrix and
recovered by a set of predicted scores. Note that supplementary
similarities (i.e. based on data mentioned in Section ‘DATA’)
are still available for predicting new diseases and microbes.
Besides probabilistic outcome for a pair of microbe-disease, we
could further determine a threshold to estimate whether they
associate by maximizing the Matthews correlation coefficient
[122] theoretically, which could serve as an evaluation metric
other than the rank.

Reforming predictive tasks

The MDA prediction is a typical binary classification task but
able to develop a much finer-grained prediction. Predicting drug–
target binding affinities, for example, is a further work based on
drug–target interaction prediction [123]. HMDAD records addi-
tional entries whether the quantity of microbial population is
increased or decreased in the reported cases [29]. Furthermore,
the Disbiome database provides the microbial population vari-
ation between control-derived and patient-derived groups [100].
Most of population indexes are given in the absolute quantita-
tive value responded in a given unit (the unit is dependent on
the used detection method) [100]. Such quantitative relation-
ships could be used for predicting disease-induced microbial
population variations, physiological disorders in response to
microbial population dynamics, inter-microbe interactions and
even synergisms in combinations of human microbiota in the
future.

The network analysis is a worthwhile strategy that further
extends more refined prediction tasks methodologically for a
better mechanistic inference. On the one hand, applying network
analysis to the combined heterogeneous network is a popular
trend along with the enrichment of microbe-centric and disease-
centric networks. Microbe-centric networks (e.g. microbe co-
occurrence [124, 125], microbe-gene [22], microbe-protein [44]
and microbe-host [126]) and disease-centric networks (e.g.
disease-gene [34, 127], disease-symptom [38] and disease-
drug [128, 129]) could cooperate to construct a comprehensive
relational database based on MDAs. This is a challenging task
requiring the screening and consolidation of these massive data
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based on specialized knowledge. On the other hand, the network
analysis has been more common in studying community-level
microbiome-host relationships to explain pathogenesis [130].
For example, a literature-curated network, composed of the gut
microbiome and host cells that metabolically interact annotated
with small-molecule transport and macromolecule degradation
events, has been constructed and serves to reveal microbial
metabolism functionally for a specific disease [131]. Additionally,
identifying enzyme-coding genes and their annotated enzymes
from microbial metagenomics data derived from healthy
individuals and diseased individuals has been used to compare
topological differences based on metabolic networks [132].
These networks take enzymes as nodes, and there is an edge
between two enzymes if they catalyze successive reactions.
These studies indicate that networks constructed of a given
population-derived microbiomic data truly help to analyze and
infer disease mechanisms, which is worthy of consideration for
predictive tasks ahead.

Developing related tools

There are only a few web-based platforms where researchers can
perform a customized MDA prediction. For instance, MicroPat-
tern is a web-based tool that divides microorganisms into differ-
ent disease-related sets for reference and provides the function
of similarity calculation [133]. Such platforms have integrated
various state-of-the-art prediction methods, which are special-
ized for other fields (e.g. meta-PPISP [134], DINIES [135] and
DIANA-microT [136]). However, we could not ignore other related
works which explore microbe-disease and microbe-host rela-
tionships. For example, an open-source pipeline, MicroPro, can
estimate abundance profiles of unknown microbial organisms
based on unmapped reads from the metagenomic data and
predict phenotypes using complete abundance profiles of the
cases and the controls [137]. Furthermore, an online tool, Net-
Cooperate, can quantify the ability of the nutritive support of a
host for a parasitic or commensal organism and the complemen-
tarity of a pair of microorganisms based on their metabolic net-
works [138]. Such open web-based platforms and available soft-
ware packages truly facilitate further studies of microorganism–
human relationships from both methodological and biomedical
perspectives.

Biomedical interpretation for computational discovery

A pair of high-confidence MDA could be interpreted from
two biomedical perspectives as follows: (i) species-specific
changes in microbial community composition are found
within patients, but there is no evidence to suggest that
it is a pathogen or even a diagnostic signature [139]. (ii) It
is a pathogen [140]. The pathogenicity is not the intrinsic
nature of microorganisms, and the host response to potential
virulence factors varies [141]. More importantly, identifying
the causality of microbe-outcome relationships is sometimes
unrealistic [142]. Therefore, interpreting any computational
discovery is a complex and tough work. When obtaining
potential candidates, computational scientists usually seek
for empirical literature to conduct case studies [72]. However,
biologists can purposefully identify species-specific microbial
biomarkers from the host response and link microorganism to
disease with the novel computational discovery [143]. Based
on this, biologists and bioinformaticians can work together

and carry out a thorough research on the detailed mechanism,
combining the subjects such as genetics, metabolism, toxicology
and so on. For example, considering genetic and metabolic
strategies of microbiota, biologists curated organ-specific
and patient-specific microbial community-level metabolic
networks and developed computational frameworks to study
the biomedical interpretation of specific microbial impact on
human health [131, 132]. Additionally, some biologists have
modelled dynamic simulators based on immune responses and
environment-driven microbial behaviors for the pathological
interpretation. For example, Wendelsdorf et al. developed a
gastrointestinal immune system simulator and applied it to find
a treatment strategy for Brachyispira hyodysenteriae infection-
induced dysentery [144]. The agent-based models have been
established to study gastrointestinal cell-pathogen interaction
mechanisms of Pseudomonas aeruginosa and Helicobacter pylori
from the aspects of pathway regulation of immunity and
virulence [145, 146]. The shift of computational discovery to
biomedical discovery heavily relies on expert experiences.
Therefore, computational scientists are encouraged to increase
the accessibility of the MDA discovery to biomedical research
community.

Conclusion
The MDA prediction is critical in revealing relationships
between human diseases and microorganisms. In this study,
a comprehensive overview of the MDA prediction has been
given. Firstly, we introduced multi-source data applied for the
MDA prediction and their purposes, respectively. Secondly, we
described several similarity calculation methods that are widely
used in the MDA prediction. We then classified computational
prediction methods and give detailed descriptions of them.
Meanwhile, we conducted a comparative assessment of
similarity calculation methods and computational prediction
methods and then analyzed their prediction performances.
Finally, we offered a series of recommendations on enhancing
the prediction performance and discussed top tasks in the
future.

The development of sequencing technologies lays the
basis for conducting a detection in microorganism population
abundance [147]. High-throughput sequencing technologies
and advanced omics technologies allow diversified means to
detect the changes in patient-derived microbial composition
[148]. However, these data are still deficient with the problems
of information loss, sparsity, small-scale data, unbalanced
distribution, lack of a unified taxonomic standard and ambiguity
in disease terms at this stage. The problems of small-scale
data and unregulated use of terms need the most attention.
Enriching data, introducing the taxonomy and the terminology
dictionary and performing fine-grained predictions are effective
approaches to alleviate these problems. Each method proposed
its unique strategy by adopting, integrating, improving and
inventing algorithms adapted to our issue. Besides the method-
ology, we should also guide future efforts to a practical and
broad direction like the instances that we talked over in future
work. Microbe-related association prediction is a rising research
field and has broad prospects of development and application
because its interdisciplinary perspective relates to fields
including medication [149], genome [150], pathogenesis [151]
and phenotype [152]. It is to be expected that more and more
advanced computational methods as well as comprehensive
datasets will be developed in the future.
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Key Points
• The microbe-disease association (MDA) prediction is

an in silico pre-screening instrument for the clinical
trials of pathogenic mechanisms related to microor-
ganisms. Various raw data used for predicting MDAs
and computational similarity pre-processes methods
are summarized.

• Computational MDA prediction methods based on
diverse strategies and algorithms, to our knowledge,
are classified and elaborated. A series of experiments
with different combinations of prediction methods
and similarity data are performed. An analysis of
the results and possible improvement based on their
nature are discussed.

• Considering the small-scale dataset and the lack
of feature data, data enrichment and regularization
are the prime tasks that could be ameliorated in
many ways. Deep learning technologies can help
address it by learning latent topological informa-
tion based on the MDA network structure, and more
machine learning models are encouraged to be pro-
posed and adopted as the data are expanded and
regularized.

• Concerning further work after the MDA prediction,
quantitative records of the microbial population vari-
ation in experimental cases enable the models to per-
form fine-grained prediction tasks, and the network
analysis could be applied to the inference of micro-
biological pathogenesis with annotated networks of
biological events in the future.
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