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Abstract

Phase separation is an important mechanism that mediates the spatial distribution of proteins in different cellular
compartments. While phase-separated proteins share certain sequence characteristics, including intrinsically disordered
regions (IDRs) and prion-like domains, such characteristics are insufficient for making accurate predictions; thus, a
proteome-wide understanding of phase separation is currently lacking. Here, we define phase-separated proteomes based
on the systematic analysis of immunofluorescence images of 12 073 proteins in the Human Protein Atlas. The analysis of
these proteins reveals that phase-separated candidate proteins exhibit higher IDR contents, higher mean net charge and
lower hydropathy and prefer to bind to RNA. Kinases and transcription factors are also enriched among these candidate
proteins. Strikingly, both phase-separated kinases and phase-separated transcription factors display significantly reduced
substrate specificity. Our work provides the first global view of the phase-separated proteome and suggests that the spatial
proximity resulting from phase separation reduces the requirement for motif specificity and expands the repertoire of
substrates. The source code and data are available at https://github.com/cheneyyu/deepphase.
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Introduction
How cells segregate cellular components in a temporally
and spatially appropriate manner remains a fundamental
question in cell biology. In addition to classic membrane-
bound organelles, membraneless organelles offer a flexible
way to regulate the location and concentration of various
cellular components. Under specific physiological conditions,
multivalent molecules such as proteins and nucleic acids
referred to as scaffolds undergo polymerization and recruit a
class of proteins and nucleic acids referred to as clients, leading
to the formation of biomolecular condensates, also known as
membraneless organelles or phase-separated compartments
[1]. It was recently shown that liquid–liquid phase separation
(LLPS) underlies the formation of membraneless organelles
[2, 3]. Such compartmentalization increases the local concen-
tration of components within the condensates while allowing
the components to be exchanged with the surrounding cellular
environment in a highly dynamic and tightly controlled
manner. Common membraneless organelles include nucleoli,
promyelocytic leukaemia (PML) bodies, stress granules and
processing bodies (P-bodies). Recent studies have suggested
that transcription factors (TFs) and coactivators regulate
gene expression by forming phase-separation condensates at
genomic loci such as super-enhancers [4, 5]. LLPS is also involved
in various pathological processes, such as those underlying
neurodegenerative diseases and oncogenesis [6]. The aberrant
liquid-to-solid phase transition of FUS and TDP-43 has been
linked to amyloidoses such as amyotrophic lateral sclerosis
[7, 8].

Understanding the principles underlying the formation
of membraneless organelles is crucial for investigating the
physiology and pathophysiology of various biological processes.
Furthermore, identifying the proteins linked to LLPS represents
a critical first step towards characterizing membraneless
organelles. Proteins exhibiting linear repeats of modular
domains can interact with each other to form biomolecular
condensates. In addition, a high proportion of some kinds of
intrinsically disordered regions (IDRs), which lack fixed three-
dimensional structures, represent another molecular signature
that promotes phase separation. Therefore, sequence analysis is
often utilized in the bioinformatics screening of phase-separated
proteins such as IDRs [9, 10] and in prion-like domain prediction
[11, 12]. However, current phase separation predictors are mostly
designed for IDR-containing proteins, thus inevitably overlook
phase-separated proteins with a relatively low IDR content
[13, 14].

Membraneless compartments exhibit similar droplet-
like characteristics, including a spherical shape, permeable
surface, highly dynamic nature and fusion upon contact [2,
15–18]. Identifying these spherical droplet structures from
immunofluorescence (IF) images represents the most common
approach for validating phase-separated proteins. With this
method, proteins are fluorescently labelled to trace certain
phase-separated compartments formed in vitro as well as in cells.
A recent study analysed IF images of normal and perturbed cells
to characterize the regulatory effects of 1354 human genes on
the characteristics of typical membraneless compartments [19].
The specific droplet structure observed in IF images is a typical
feature that distinguishes phase-separated proteins from other
proteins. However, such analyses are performed on a protein-by-
protein basis, and the scalable analysis of IF images to identify
phase-separated proteins has been challenging. Here, we set out
to perform the proteome-scale identification and analysis of

proteins involved in phase separation based on deep learning
from IF images of 12 073 proteins.

Results
Overview of the DeepPhase method and related works

Proteins involved in phase separation usually form spherical
droplet structures in IF images when visualized by using flu-
orescent reporters or antibody staining [3, 18–20]. Therefore,
the identification of proteins involved in phase separation can
be transformed into a binary image classification problem by
identifying IF images with spherical droplet structures.

We collected 170 experimentally confirmed human phase-
separated proteins from the published literature (see Methods,
Supplementary Table 1 available online at https://academic.oup.
com/bib). A total of 1490 IF images of these proteins were
downloaded from the Cell Atlas of the Human Protein Atlas
database (https://www.proteinatlas.org/humanproteome/cell)
[21]. Since the formation of phase separation depends on specific
conditions such as the concentration, solubility, valence and
post-translational modification of a protein [1], phase separation
does not always occur in the conditions in which IF images
are taken. Therefore, we manually screened IF images that
displayed droplets with a higher fluorescence intensity than
the background as positive samples, which included 481 images
of 75 proteins (see Methods, Supplementary Table 2 available
online at https://academic.oup.com/bib). To evaluate the quality
of the manual screening results, we segmented the droplets
and cells in IF images by using CellProfiler3 [22], which is
software for analysing cell images. CellProfiler3 provides a score
to measure the roundness of droplets in each IF image. The
roundness was significantly different between the 481 screened
IF images that were manually labelled as exhibiting droplets
and the 1009 deserted IF images that were labelled as not
exhibiting droplets (Supplementary Figure 1 available online
at https://academic.oup.com/bib). Furthermore, the screened
IF images presented a significantly higher fraction of droplets
with a roundness >0.8 than the deserted IF images. We next
tested whether the labelled proteins aggregated within the
cells. CellProfiler3 can segment cell boundaries in IF images.
Hence, within different cell regions, we calculated the mean
and standard deviation of the green signal indicating the
distribution of the labelled protein. Compared to proteins with a
diffuse distribution, proteins with an aggregated distribution are
expected to possess a higher ratio of the standard deviation to
the mean. As shown in Supplementary Figure 1 available online
at https://academic.oup.com/bib, the standard deviation/mean
ratios of the 481 screened IF images were significantly higher
than those of the 1009 deserted IF images. These results
indicated that our manual screening identified out the IF images
with distinguishable droplets.

The positive sample sets were separated into three parts:
the training set, the validation set and the test set. Then, we
built a convolutional neural network (CNN) classifier referred
to as DeepPhase with the training and validation set, which
discriminated IF images that displayed droplet structures (see
Methods, Figure 1A, Supplementary Figure 2 available online
at https://academic.oup.com/bib). The prediction performance
of the classifier was evaluated with the test set. The final
area under the curve (AUC) of DeepPhase for the test set
was 0.93 (Figure 1B), and the balanced accuracy was 0.84
(score cutoff = 0.9), indicating that IF images with droplet-like
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Figure 1. Screening phase-separated candidate proteins with DeepPhase. (A) Overview of DeepPhase for identifying droplet structures in IF images. (B) Receiver operating

characteristic (ROC) curves of classification on the test set. (C) Distribution of DeepPhase scores (DS) in 12 073 proteins. (D) IF images of EDC3 in MCF7 cell line and U-2

OS cell line. (E) IF images of SOS1 in U-251 MG cell line and A-431 cell line. (F) Distribution of cell line diversity in candidate proteins.

structures could be discriminated effectively with our deep-
learning approach. A total of 12 073 proteins with IF images
were scored with DeepPhase. For each protein, multiple scores
were generated from IF images from different cell lines and
antibodies; the highest score was taken as the DeepPhase
score. Among these 12 073 proteins, 2343 (19.4%) candidate
phase-separated proteins exhibited DeepPhase scores >0.9
(Figure 1B and C, Supplementary Table 3 available online at
https://academic.oup.com/bib).

Proteins with DeepPhase scores >0.9 and DeepPhase scores
<0.5 were denoted as candidate proteins and control proteins,
respectively. It has been found that some sequence features of
proteins are closely relative to their phase separation behaviour,
and several sequence-based computational tools had been
developed accordingly. We compare the DeepPhase score with
four sequence-based LLPS predictors PLAAC [11], PScore [23],
PSPer [12] and catGRANULE [24]. As shown in Table 1, scores
of both PSPer and catGRANULE were significantly different
between candidate and control proteins. Furthermore, it is
well established that some types of IDRs facilitate protein
phase separation [20]; consistent with this, candidate proteins
possess significantly higher content IDR and disorder-promoting
residues than control proteins (Table 1). Besides IDR, non-IDR
interacting elements like the coiled-coil domain can drive
phase separation as well [25, 26]. We predicted the coiled-coil
residues with DeepCoil [27], and the contents of coiled-coil
residues of candidate proteins in nucleus were significantly
higher than those of control proteins in nucleus. Furthermore,
the EDC3 and SOS1 proteins have been shown to undergo phase
separation in membraneless compartments [14, 28], but only
∼20% of their peptide sequences consist of IDRs. Both EDC3 and
SOS1 were predicted to form droplets according to DeepPhase
(Figure 1D and E). These results suggest that phase-separated
proteins with lower IDR content can also be successfully
predicted by DeepPhase.

Many phase separation proteins were found to be RNA-
binding proteins [29, 30]; hence, we tested if candidate pro-
teins prefer to bind to RNA. The RNA-binding property was
predicted by TriPepSVM [31], and the results displayed in
Table 1 show that candidate proteins prefer to bind to RNA
(Table 1). We also predicted the content of disordered DNA,
RNA and protein binding residues with disoRDPbind [32].
As shown in Table 1, all these kinds of disordered binding
residues were significantly higher in candidate proteins than
in control proteins (Table 1). Protein aggregation was reported
to correlate with LLPS, and aberrant protein aggregations
were usually found in neurodegenerative diseases [33, 34].
We used TANGO [35] and PASTA2 [36] to predict the residues
that contribute to protein aggregation; to our surprise, both
predictors showed that the candidate proteins exhibit signif-
icantly lower potential of aggregation. We further compared
the scores of TANGO and PASTA2 between the known phase-
separated proteins and the control proteins and found that
known phase-separated proteins also exhibit significantly
lower potential of aggregation than control proteins (see
Supplementary Table 4 available online at https://academic.ou
p.com/bib).

We further explore the electrostatic properties of candidate
proteins. We found that compared with control proteins,
candidate proteins exhibit significantly higher fractions of
charged residues (R/K/D/E), higher mean net charge (calculated
at pH = 7.4) and lower hydropathy (Table 1). Though the net
charge per residue (calculated at pH = 7.4) and isoelectric point
showed no significant difference between candidate proteins
ensemble and control proteins, these two parameters were
significantly higher in the nucleus-localized candidate proteins
than the nucleus-localized control proteins. Furthermore, we
compared the kappa parameters defined by Das and Pappu
[37]. Candidate proteins also exhibit significantly higher kappa
parameters than control proteins. All these results indicated that
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the value, fraction and distribution of charges could contribute
to protein phase separation, especially for proteins localized in
nucleus.

In general, our results showed that the candidate proteins
prefer to exhibit higher content of disordered regions, more
charged residues, lower hydropathy and higher mean net charge;
candidate proteins also exhibit higher content of disordered
binding residues and prefer to bind RNA. These results were
consistent with features of known phase-separated proteins [30,
33, 38, 39].

DeepPhase can measure the cell type specificity of
identified phase-separated candidate proteins

In contrast to amino acid sequence-based prediction, DeepPhase
predicts phase separation behaviour in the specific conditions
when IF images are taken, providing a unique opportunity to
investigate the cell type-specific regulation of phase separation
for proteins with for which IF images from different cell lines. For
all 2343 candidate proteins with DeepPhase scores higher than
0.9, 2296 (2296/2343 = 98%) proteins had available IF images from
staining in at least two cell lines, and 2109 (90%) proteins had
IF staining images from at least three cell lines. To cover more
candidate proteins, we defined the difference between each pro-
tein’s highest and the second highest DeepPhase scores in differ-
ent cell types as the cell type diversity score, and proteins that
were found to be droplet-like in different cell types presented
relatively low diversity scores. Proteins with cell type diversity
scores <0.05 and cell type diversity score >0.1 were denoted as
conserved candidate proteins and diverse candidate proteins,
respectively. Approximately 33% of the candidate proteins were
conserved and exhibited similar droplet structures in different
cell lines (Figure 1F). For example, EDC3 formed droplets in both
MCF7 and U-2 OS cells (Figure 1F). On the other hand, 54% of
candidate proteins displayed droplet structures in one specific
cell type. For example, SOS1 exhibited a diversity score of 0.49. It
displayed a droplet structure in the U-251 MG cell line, whereas
the signal was more diffuse in the A-431 cell line (Figure 1E). As
another example, IF images of EWSR1 were generated in three
cell lines, A-431, U-2 OS and U-251MG, but droplet structure was
only detected in U-2 OS cells, which is consistent with the cell
type diversity score of 0.22 (see Supplementary Figure 3 available
online at https://academic.oup.com/bib).

We investigated common characteristics shared by proteins
with cell type-specific phase separation behaviours relative to
proteins with conserved phase separation behaviours in dif-
ferent cells. First, we tested whether proteins that only gener-
ated droplet structures in specific cell types tended to present
variable expression levels across different cell lines, indicating
that the diversity of phase separation correlates with the diver-
sity of expression levels. RNA-seq data from different cell lines
were downloaded from the Human Protein Atlas database. Here,
RNA-seq data are used instead of mass spectrum (MS)-based
protein expression levels since MS-based protein expression
data are limited. For each protein, the diversity of expression
levels was defined as the ratio of the mean expression level to
the standard deviation. We compared the diversity of expres-
sion levels with the diversity score of phase separation and
found that the diversity of phase separation was significantly
different between proteins showing high or low diversity of
expression levels (see Supplementary Figure 4 available online
at https://academic.oup.com/bib). These results indicated that
expression level is a possible reason why proteins form droplets
in one cell line but not another.

In addition to the diversity of expression levels, the diversity
of phase separation was related to the IDR content of a protein.
As shown in Figure 1I, conserved candidate proteins tended
to harbour more IDRs than diverse candidate proteins. Fur-
thermore, conserved candidate proteins also presented signif-
icantly more charged residues, higher kappa parameters, higher
mean net charge, higher isoelectric point, lower hydropathy
and stronger binding properties than diverse candidate pro-
teins (Table 1). In particular, the difference in kappa param-
eters between conserved and diverse candidate proteins was
even more significant than the difference between candidate
and control proteins, suggesting that these properties can help
to distinguish between conserved and cell line-specific phase-
separated proteins.

To test the robustness of the above conclusion, we defined
two additional diversity scores to investigate the phase
separation diversity of each protein in different cell lines.
The first score was the standard deviation of the DeepPhase
scores from different cell types. For the cell type with more
than one available IF image, the highest score was used. The
second score was the ratio of the standard deviation to the
mean. As shown in Supplementary Table 5 available online
at https://academic.oup.com/bib, all three diversity scores
resulted in the similar conclusion. For people working with
such proteins that generate droplet structures conditionally,
the antibody and cell line information might guide subsequent
phase separation studies (see Supplementary Table 3 available
online at https://academic.oup.com/bib).

DeepPhase can discriminate known and novel potential
phase-separated proteins in different membraneless
organelles

To further investigate whether the DeepPhase scores extracted
from the IF images of specific proteins predict phase separation
potential, we examined the DeepPhase scores of proteins
known to be localized in different membraneless organelles
from database annotations and high-throughput experiments
(see Methods, Supplementary Table 6 available online at
https://academic.oup.com/bib); the proteins used in training
and test processes were removed for this analysis. We found
that known phase-separated proteins in nucleoli, PML bodies
and P-bodies presented significantly higher DeepPhase scores
than other proteins (Figure 2A).

Nucleolar proteins are considered to segregate into at least
three subcompartments where different ribosome biogenesis
processes take place [40]. The markers of these subcom-
partments, POLR1E, FIB1 and NPM1, were shown to form
droplet structures with DeepPhase scores as high as 0.99 (see
Supplementary Table 3 available online at https://academic.oup.
com/bib). The PML body is another membraneless compart-
ment in the nucleus. The proteins ATRX, MRE11, HIPK3,
RPAIN, TDP2 and SP100 were previously demonstrated to be
components of the PML body [41]. They similarly displayed
clear droplets, and their DeepPhase scores were higher than
0.90 (Figure 2B, see Supplementary Figure 5 available online at
https://academic.oup.com/bib). It is worth noting that despite
the identification of similar DeepPhase scores for proteins
such as UTP18 in nucleoli (1.00) and SP100 in the PML body
(1.00), the nucleoli droplets were less spherical and significantly
larger than the PML body droplets, and our method could
recognize both types of droplets. In addition to these two
intranuclear membraneless organelles, components of extranu-
clear membraneless organelles could also be discriminated by
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Figure 2. Visualization of proteins localized in phase-separated component. (A) DeepPhase scores of proteins in known phase-separated component. (B) IF images and

DeepPhase scores (DS) of known marker proteins in phase-separated components. (C) T-SNE visualization of identified 2343 candidate proteins in the PPI network.

(D) Visualization of five clusters in the PPI network. (E) IF images of TP53BP1 and WDR76 (potential PML body-associated members) and SMG5 and ZC3H10 (potential

P-body-associated members).

DeepPhase. For example, DCP2, a component of the P-body [42],
displayed clear droplets mainly in the cytoplasm (Figure 2B).
Stress granules are phase-separated organelles that appear
to protect RNAs when cells are stressed [43]. Since the IF
images downloaded from the Human Protein Atlas database
were generated without exogenous stress, the components of
stress granules displayed diffuse signals with relatively low
scores (Figure 2A). One recent report showed that without
exogenous stress, the stress granule marker G3BP1 displays
diffuse signals throughout the cytoplasm [44], which agrees with
diffuse cytosolic signals found in G3BP1 IF images (Figure 2B).
Taken together, these analyses demonstrated that DeepPhase
was highly effective in extracting putative phase-separated
components of both nuclear and cytoplasmic membraneless
organelles.

Building on these observations, we investigated whether the
novel potential phase-separated proteins identified by Deep-
Phase could be assigned to different membraneless organelles.
To achieve this goal, we clustered proteins based on protein–
protein interactions (PPIs) from the STRING database [45]. The
PPI network was embedded into vectors using the node2vec
algorithm [46] and visualized in 2D space using T-distributed
stochastic neighbour embedding (t-SNE) [47], so that proteins
with more similar PPI contexts were located closer to each
other (Figure 2C; see Methods). As shown in Figure 2D, known
proteins found in nucleoli (Cluster 1), PML bodies (Cluster 2) and
P-bodies (Cluster 3) were clustered. These clusters provide an
approach to identify novel components of the corresponding
membraneless organelles. For example, TP53BP1, which was

recently demonstrated to be a phase-separated protein [48],
was included in the PML body cluster, and PML was previously
reported to colocalize with TP53BP1 in DNA lesions [49]. As
another example, WDR76, which interacts with chromatin com-
ponents and exhibits functional similarity to PML bodies [50],
was also included in the PML body cluster. Both TP53BP1 and
WDR76 received a score of 1.00 and exhibited similar droplet
structures to PML bodies (Figure 2E), suggesting that they are
potential components or interacting proteins of PML bodies.
Among proteins in the P-body cluster, the RNA-associated pro-
teins ZC3H10 and SMG5, whose DeepPhase scores were 0.97
and 1.00, respectively, showed droplet structures in the cyto-
plasm similar to known P-body components (Figure 2E). Further-
more, SMG5 plays a role in nonsense-mediated mRNA decay, and
ZC3H10 regulates the microRNA miR-143 [51, 52], whose func-
tions are highly associated with the P-body, indicating that these
proteins are likely new P-body components. These data sug-
gested that with additional functional annotations and droplet
types in IF images, the phase-separated candidate proteins iden-
tified by DeepPhase could be assigned to different membrane-
less organelles.

Beyond well-studied organelles, we found that two novel
clusters (clusters 4 and 5) were highly enriched in two large TF
families (the zinc finger family and homeobox family, respec-
tively), suggesting their general potential to undergo phase sepa-
ration. This is consistent with recent studies, indicating that TFs
form phase-separated condensates with coactivators at genomic
loci with transcriptional enhancers and influence gene expres-
sion [4, 5].
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Proteome-scale analysis of phase-separated proteins 7

Phase-separated proteins exhibit different structural
characteristics

Previous works have suggested that structural characteristics
such as Pi–Pi interactions and fibril core-forming segments con-
tribute to LLPS [23, 53]; however, the common characteristics
and mechanisms of protein phase separation remain unknown.
To investigate the structural preference of phase-separated pro-
teins, we clustered the sequences of identified candidate pro-
teins with structural information. To this end, we adopted a
neural network that mapped a protein sequence to a sequence of
vector embeddings that encoded structural information [54] (see
details in Methods). With this approach, each protein sequence
was mapped to a sequence of vector embeddings encoding
structural information. Then, ordered and disordered candidate
proteins were clustered separately with the agglomerative hier-
archical clustering algorithm. A total of 716 disordered candidate
proteins with IDR > 0.25 were clustered into four groups, and
1586 ordered proteins with IDR ≤ 0.25 were clustered into six
groups (HC1-4 and LC1-6, Figure 3A).

To investigate the domain and function of each sequence
cluster, we applied gene set enrichment analysis to all clusters
with Enrichr [55]. Interestingly, zinc finger domains were
enriched in cluster LC1, and homeobox domains were enriched
in cluster HC1 (Figure 3B), suggesting different IDR content
preferences of different TF families. The zinc finger family
and homeobox family were found to be enriched in PPI
clusters 4 and 5, respectively. We calculated the correlations
between PPI clusters and sequence clusters based on the
observed-to-expected ratio (see Methods). PPI cluster 4 was
most similar to cluster LC1, and PPI cluster 5 was most
similar to HC1 (see Supplementary Figure 6 available online at
https://academic.oup.com/bib). Moreover, WD40 repeat domains
and ankyrin repeat-containing domains were enriched in
clusters LC5 and HC3, respectively. These two domains were
previously reported to mediate PPIs [56, 57] and may contribute
to the multivalence of membraneless organelles, which is an
important feature in LLPS. It was recently reported that protein
interactions using WD40 motifs might be a common feature of
processes that are reliant on LLPS, which was consistent with
our findings [58]. Previous work indicated that the RNA helicase
DDX3X can undergo LLPS in vitro [59], and we found that proteins
with helicase activity were dramatically enriched in cluster LC3
and enriched in HC2 (Figure 3C), suggesting the phase separation
behaviour of RNA helicases. Interestingly, transmembrane
proteins, including four ABC transporter proteins, were enriched
in LC6, and it was recently reported that a member of the ABC
transporter family has the ability to undergo phase separation
into mesoscale assemblies [60].

We further investigated the amino acid preference of differ-
ent sequence clusters. As shown in Figure 3D and E, cluster HC2
exhibited more glycine residues but fewer glutamine residues.
Previous work indicated that glycine maintains the liquidity
of proteins, and the replacement of aspartate and glutamate
residues with glycine residues enables the phase separation of
the prion-like RNA-binding protein TAF15 [61]. Consistent with
that finding, our results showed that the increase in glycine
may only have contributed to proteins in HC2, in which RNA-
binding proteins were enriched. We also found that lysine (K)
was enriched in all high-IDR clusters compared with both control
high-IDR proteins and the human proteome (Figure 3D and E)
and was also enriched in LC4 (Figure 3F and G). These results
suggested that an increase in lysine discriminates candidate
proteins from control proteins, independent of IDRs.

Increased post-translational modification frequencies
and decreased substrate specificities of
phase-separated candidate proteins

Post-translational modifications (PTMs) are frequently found in
IDRs mediating multivalent interactions [62], and they might
play a role in regulating phase separation [63, 64]. PTMs change
the physicochemical properties of the modified amino acids and
can thereby affect phase separation behaviour [65]. For instance,
the phase separation of FUS is inhibited by arginine methylation
[66], and phosphorylation helps to clear amyloid-like assemblies
during meiosis [67].

We further investigated the difference in PTMs between can-
didate and control proteins. For proteins with more than 25%
IDRs, the occurrence of phosphorylation (on Ser/Thr), sumoyla-
tion, ubiquitination and acetylation was more frequent in candi-
date proteins (Figure 4A). In particular, the candidates exhibited
dramatically more phosphorylation sites at both the C- and
N- termini, while for proteins with less than 25% IDRs, the
difference was not as substantial. In different clusters, can-
didate proteins with a high IDR content (HC1–HC4) all exhib-
ited more phosphorylation sites on Ser/Thr residues than both
control proteins with a high IDR content (HNC) and candidate
proteins with a low IDR content (Figure 4B). This difference
was not observed for phosphorylation on Tyr, but cluster LC2
exhibited slightly more Tyr phosphorylation sites (Figure 4C).
Considering that protein kinases were enriched in LC2, these
results suggested that the candidate protein kinases were par-
tially regulated by Tyr phosphorylation. In regard to sumoy-
lation, unlike the observed general enrichment of phospho-
rylation, only candidates in the HC2 and LC2 clusters exhib-
ited increased sumoylation (see Supplementary Figure 7 avail-
able online at https://academic.oup.com/bib).

Phase separation can concentrate a specific set of molecules
in the condensed state to facilitate efficient biochemical
reactions. In contrast, molecules such as components of
enzymatic reactions may be sequestered in different phases
of condensates to prevent reactions or for inactivation [20, 68].
For example, after being phosphorylated by the ZAP70 kinase,
the transmembrane protein LAT recruits ligands such as the
SOS1 protein and forms a LAT complex that coalesces into T cell
microclusters that activate downstream signalling pathways
[14]. In this process, the kinases and substrates are concentrated
and may facilitate the phosphorylation process by reducing the
requirement for substrate specificity. To test this hypothesis,
we investigated whether the substrate specificities of these
potential phase-separated kinases were lower than those of
other kinases. The substrate specificities of 286 kinases were
extracted from a previous study [69]. A total of 243 of 286 kinases
observed in IF images were scored by using DeepPhase. Substrate
specificities determined based on a small substrate set will likely
be inaccurate; therefore, 84 kinases with less than 50 potential
substrates were removed. The remaining 159 kinases included
127 serine/threonine kinases and 32 tyrosine kinases. We found
that the substrate specificities of 29 potentially phase-separated
Ser/Thr kinases with DeepPhase scores >0.9 were significantly
lower than those of 58 Ser/Thr kinases with DeepPhase scores
<0.5 (one-tailed Mann–Whitney U test, P = 0.012, Figure 4D).
Then, for each kinase, we calculated the proportion of substrates
with DeepPhase scores higher than 0.90 to further examine
whether phase-separated kinases tend to have phase-separated
substrates (see Supplementary Table 7 available online at
https://academic.oup.com/bib). The results indicated that
kinases with DeepPhase scores >0.9 tended to have more
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Figure 3. Sequential and functional preference of candidate proteins. (A) Sequence clustering of high-IDR candidate proteins HC1–4 and low-IDR candidate proteins

LC1–6. (B) Interpro domain enrichment of proteins in different sequence clusters. (C) Gene ontology enrichment of proteins in different sequence clusters. (D) Amino

acid distribution of high-IDR candidate proteins compared with human proteome. (E) Amino acid distribution of high-IDR candidate proteins compared with high-IDR

control proteins. (F) Amino acid distribution of low-IDR candidate proteins compared with human proteome. (G) Amino acid distribution of low-IDR candidate proteins

compared with low-IDR control proteins.

substrates with DeepPhase scores >0.9 (one-tailed Mann–
Whitney U test, P = 0.013, Figure 4E). When the phase-separated
kinases were ranked by the fraction of substrates with a Deep-
Phase score > 0.9, the top five kinases were CDK4, CHEK2, AKT2,
PDPK1 and MTOR (see Supplementary Figure 8 available online
at https://academic.oup.com/bib). Taken together, these data
suggest that protein kinases may function by recruiting sub-
strates in condensates, thereby reducing substrate specificity.

The above analysis revealed that the spatial proximity result-
ing from phase separation reduce the requirement of specificity
of kinase–substrate interactions. We further argue that the
phase separation of TFs may result in spatial proximity to their

target genomic loci and, thus, reduce the specificity of protein–
DNA interactions that are normally required to affect gene
expression. To test this hypothesis, we compared the binding
motif specificity of candidate phase-separated TFs and control
TFs by comparing the AUC of their position-specific scoring
matrices from the HOCOMOCO database [70]. The AUCs of 259
TFs were collected, including 55 TFs with DeepPhase scores
>0.9 and 109 TFs with DeepPhase scores <0.5. Compared with
TFs with low phase-separated potential (DeepPhase score < 0.5),
TFs with high phase-separated potential (DeepPhase score > 0.9)
exhibit significantly lower specificity (one-tailed Mann–Whitney
U test, P = 0.012, Figure 4F). The results suggested that TFs
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Proteome-scale analysis of phase-separated proteins 9

undergoing phase separation tend to recognize less-conserved
motifs, whereas TFs without phase separation generally require
more specific binding motifs. In summary, our results indicated
that reducing motif requirements is a general biochemical
function of phase separation.

Discussion
In this study, we established a method referred to as DeepPhase
that discriminates IF images with droplet structures. The
application of DeepPhase to proteome-scale IF images produced
a list of proteins that displayed droplet structures. In contrast
to sequence-based analysis methods, the phase-separated
proteins predicted by DeepPhase exhibited multimerization
potential. Furthermore, as IDRs are present in many phase-
separated proteins, current phase separation predictors are
mostly designed for IDR-containing proteins, and such analysis
may lead to bias and overlook proteins that drive phase
separation without the presence of IDRs. Our method identified
phase-separated candidate proteins regardless of their IDR
composition and revealed that many of them exhibited relatively
ordered structures.

The importance of phosphorylation in phase separation is
well established, but how phase separation affects phospho-
rylation is less clear. Based on the scores generated by Deep-
Phase, we found that the enrichment of phosphorylation sites is
an important characteristic of phase-separated candidate pro-
teins (Figure 4A). During the phosphorylation process, kinases
display a preference for certain sequence motifs flanking the
target Ser/Thr/Tyr site. However, it is common for kinases to also
phosphorylate substrate sites without the preferential motif.
Our results displayed in Figure 4D indicated that the phase-
separated compartments might facilitate the phosphorylation
process by reducing the requirement for substrate specificity.
The candidate phase-separated kinases identified in this study
provide new mechanistic insights into well-established phos-
phorylation signalling pathways. For example, the candidate
kinase CHEK2 (with 29% candidate substrates) phosphorylates
PML [19, 71, 72] and tau [73, 74], and PML and CHEK2 can mediate
p53-independent apoptosis following gamma irradiation [75]. In
addition to PML and tau, the other two substrates of CHEK2,
CDC25C and BDNF, received DeepPhase scores of 0.97 and 0.95,
respectively. Multiple studies have proven that CHEK2 phospho-
rylates PML on Ser-117 and colocalizes in PML nuclear bodies
[75, 76]. Furthermore, it has been found that the interaction
of CHEK2 with the proteasome activator REGγ is necessary for
the regulatory effect of REGγ on the number of PML nuclear
bodies [77]. However, the functions of CHEK2 in phase-separated
compartments have not been clearly elucidated.

It has been suggested that the compartmentalization of
phase-separated proteins concentrates biochemical reactions
[33]. In our work, we suggested that in the condensate of a
phase-separated kinase-substrate complex, the kinase could
phosphorylate sites that are suboptimal (less specific) or are
not fully consistent with its conventional phosphorylation
motif. Interestingly, in addition to the reduced substrate
specificities observed in the phosphorylation process, we
found that compared with the diffused TFs in IF images, the
droplet-like TFs also exhibited lower motif specificity, indicating
a general biochemical function of protein phase separation
to expand the repertoire of substrates by spatial proximity
and reduce motif specificity (hence increasing tolerance and
robustness).

As described in the Introduction section, studies have usually
predicted the LLPS potential based on protein sequences [11,
23, 24]. To compare the results of DeepPhase analysis with
existing methods, we used PSPer, catGRANULE, PScore and
PLAAC to score candidate proteins. However, except for PSPer
and catGRANULE, the prediction results of the sequence-based
methods were different from those of DeepPhase. One possible
reason for this disparity is that some phase-separated proteins
that did not appear as droplets in the scored IF images could
not be identified by DeepPhase. It is well established that
parameters such as temperature, pH and solvent strength
can affect the phase separation process, and some proteins
aggregate only under certain conditions [34]. The other possible
reason is that DeepPhase predicts phase-separated proteins
independent of peptide sequences. Among the 2343 candidate
phase-separated proteins with a DeepPhase score > 0.9, 1586
proteins presented an IDR content of less than 0.25, while
sequence-based prediction methods are usually biased toward
phase-separated proteins with a high IDR content. We used the
LLPS driver protein GM130 (Golgi matrix protein) as an example.
Unlike other LLPS driver proteins, GM130 does not possess a high
proportion of IDRs and LCRs [25]. The scores for GM130 produced
by PSPer, catGRANULE, PScore and PLAAC were ranked as 22, 61,
56 and 81% of the 12 703 scored proteins, while the score of
GM130 was ranked by DeepPhase as 93%.

Intermolecular interactions including charge–charge inter-
action, cation–pi interaction, dipole–dipole interaction and pi–
pi interaction have been proposed to drive phase separation
[23, 78, 79]. As shown in Table 1, candidate proteins possess
larger fractions of charged residues and exhibit significantly
higher kappa parameters, which indicate the segregated distri-
bution of oppositely charged residues. However, the predicted
results of PScore, which indicate planar pi-pi contacts, show
no difference between candidate and control proteins. These
results suggest that charge–charge interactions contribute more
to DeepPhase-detected candidate proteins compared to pi–pi
interactions.

Besides intermolecular interactions, protein aggregation
contributes to LLPS as well [80], while the results of two protein
aggregation predictors (TANGO and PASTA2) demonstrate
that candidate proteins exhibit significant lower potential of
aggregation than control proteins (Table 1). A possible reason is
that IF images used in this study were not taken under specific
pathological conditions suitable for protein aggregation. Another
reason is that both TANGO and PASTA2 were designed to predict
protein aggregation by identifying the cross-beta structure. The
structure should be underrepresented in the candidate proteins
and known phase-separated proteins, which are enriched
with disordered regions. However, a significant difference of
aggregation potential is found among the low IDR structural
clusters. Compared with candidate proteins from LC1 to LC5,
the proteins from LC6 exhibit significantly higher potential
of aggregation (one-tailed Mann–Whitney U test, TANGA:
P = 3.4E−72, PASTA2: P = 1.4E−55, see Supplementary Figure 9
available online at https://academic.oup.com/bib). The results
suggest that a subgroup of candidate proteins with low IDR
content exhibits the potential of protein aggregation.

There are still drawbacks in the identification of phase-
separated candidate proteins from IF images. First, unlike
conditions in the nucleus, cytoplasmic membrane-bound
organelles such as endosomes or lysosomes display spherical
structures similar to membraneless organelles. Among the
2343 candidate phase-separated proteins, 120 were annotated
as being located in endosomes and lysosomes by Swiss-Prot.
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Figure 4. Preference of PTMs in candidate proteins. (A) Differences of position-based PTM distributions in candidate/control proteins. Line plots show differences of

specific PTMs distribution in proteins with DeepPhase scores higher than 0.9 and DeepPhase scores lower than 0.5; proteins with high or low IDR were individually

shown. Comparison of phosphorylated serine or threonine (B) and phosphorylated tyrosine (C) sites in different sequence clusters. (D) Comparison of substrate

specificity of candidate/control Ser/Thr kinases. (E) Comparison of fraction of candidate substrates in candidate/control Ser/Thr kinases. (F) Comparison of specificity

of candidate/control transcription factors.

However, it seems impossible to generally exclude these proteins
since the known phase-separated proteins PML, LSM4, NBR1
and BAAT were annotated as being located in endosomes and
lysosomes as well. Second, since the development of phase
separation depends on specific conditions, proteins that are
capable of undergoing phase separation are not always phase-
separated. Those conditionally phase-separated proteins that
do not appear droplets in the IF images cannot be identified
by DeepPhase, which could result in false negatives. Third,
it has been established that under specific conditions, some
multivalent molecules (mainly proteins and nucleic acids)
referred to as scaffolds can undergo polymerization and recruit

a class of proteins and nucleic acids referred to as clients [81, 82].
However, the differences between scaffolds and clients could not
be discriminated by DeepPhase since they both display droplet
structures in IF images. We extracted 3493 client proteins and
113 scaffold proteins from two recently published databases,
DrLLPS and PhaSePro [83, 84]. Twenty-two scaffold proteins
and 502 client proteins received a score higher than 0.9 from
DeepPhase. We found that 72% (16/22) of scaffold proteins came
from the high IDR clusters (IDR content >0.25) and that 39%
(195/502) of client proteins came from the high IDR clusters.
These results indicated that for the candidate phase-separated
proteins generated by DeepPhase, the scaffold proteins tended
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Proteome-scale analysis of phase-separated proteins 11

to possess a high IDR content, while client proteins tended to
possess low IDR content. We anticipated that further sequence
and structure analysis may contribute to refining the candidate
list and discriminating the scaffolds and clients.

Methods
Collection of proteins involved in phase separation and
related images

A total of 2526 publications from 1 January 2000 to 21 October
2018 were extracted from PubMed using the keywords ‘phase
transition’, ‘phase separation’, ‘membraneless organelles’ or
‘biomolecular condensate’, and these articles were manually
reviewed. As a result, 170 human proteins were confirmed to
be involved in phase separation (see Supplementary Table 1
available online at https://academic.oup.com/bib). The extracted
articles and proteins were integrated and could be accessed in
the external database PhaSepDB [85].

The Cell Atlas of the Human Protein Atlas database
(https://www.proteinatlas.org/humanproteome/cell) [21] pro-
vides antibody-based profiles obtained by immunofluorescence
confocal microscopy for 12 073 proteins with available antibod-
ies. In total, 83 673 IF images generated for different antibodies in
different cell lines were downloaded and stored for subsequent
analysis.

A total of 152 of 170 collected human phase-separated
proteins had available IF images, and they were mapped
to 1490 IF images. The development of phase separation
is condition dependent, and experimentally verified phase-
separated proteins do not appear spherical droplets in all IF
images. Three types of images were manually labelled as positive
samples: (i) images with droplet-like condensates in the nucleus,
(ii) images with nucleoli-like condensates and (iii) images
with droplet-like condensates in the cytosol. Example images
are displayed in Supplementary Figure 10 available online
at https://academic.oup.com/bib. Finally, 481 of 1490 images
displayed droplets with a higher fluorescence intensity than
the background were manually selected for further analysis.
These images were separated into a positive training set, a
validation set (195 and 79 images from 40 proteins) and a test
set (207 images from 35 proteins) according to the time at which
these proteins were manually collected. The proteins in the test
set did not overlap with those in the training and validation
sets.

A total of 734 of 12 703 proteins exhibited overlapping
IF images because of the use of antibodies recognizing
multiple antigens. The overlap often occurred for homolo-
gous proteins and did not affect the training, validation or
test set. A total of 130 candidate phase-separated proteins
(DeepPhase scores >0.9) selected from the overlapping images
are presented in Supplementary Table 3 available online at
https://academic.oup.com/bib.

Segmentation of droplets and cells in IF images by
using CellProfiler3

CellProfiler3 was used to segment droplets and cells in the
IF images. The droplets were segmented by the robust back-
ground thresholding method based on the green signal (the
labelled protein). The roundness of the segmented droplets was
measured according to the FormFactor score in CellProfiler3.
The cells were segmented by Otsu’s thresholding method in
CellProfiler3 based on the red (microtubules) and blue (DAPI)
signals. The mean and standard deviation of the green signal,

which demonstrated the distribution of the labelled protein,
were calculated for each cell. More details and the script for
segmentation and measurements are available at https://githu
b.com/cheneyyu/DeepPhase.

Convolutional neural network

As described in Supplementary Figure 11 available online
at https://academic.oup.com/bib, our CNN model contained
seven layers with trainable weights; the first five layers
were convolutional, and the remaining two layers were fully
connected. Convolutional layers were activated with the RELU
function and connected with max-pooling layers, which pooled
each 2 × 2 pixels into 1 pixel; the last max-pooling layer
was linked with a global max-pooling layer, which pooled a
14×14×64 tensor into a vector of length 64. Then, the vector
was connected with a fully connected layer with 64 neurons and
RELU activation, a dropout layer with a dropout rate equal to
0.2, and a fully connected layer with one neuron and sigmoid
activation. The output of the sigmoid function was a value
ranging from 0 to 1, which represented the possibility of image
classification. We built our model with Keras 2.2 and TensorFlow
1.12.

Training and test process of DeepPhase

Two-stage training was applied in the training process
(Figure 1A). In the first stage, the CNN network was trained
with the positive training set, which included 195 images, and
an equal-sized negative training set, which were randomly
selected from the 83 673 IF images after filtering out positive
samples. The remaining 79 IF images and equal-sized images
in the negative set were used as the validation dataset. To
augment the size of the training and validation datasets, each
image (3, 2048, 2048) was cropped into four non-overlapping
sections (3, 512, 512), which increased the number of IF images
by four times. The sample sizes of the training set and validation
set were 1560 (780 positive versus 780 negative samples) and
632 (316 positive versus 316 negative samples), respectively.
The ImageDataGenerator module from the Keras library was
applied to generate rotated and flipped images. The CNN
model was trained with the cropped training sets. The Adam
optimizer in the Keras library was applied to train the CNN
with the default parameters and batch size equal to 64 for
50 epochs. The obtained CNN classifier was used to score the
cropped IF image in the test set. For each original IF image in
the validation set, the highest score of four cropped images
was treated as the final score (see Supplementary Table 8
available online at https://academic.oup.com/bib). The AUC
of the obtained CNN classifier for the validation dataset was
0.72.

In the second stage, each downloaded IF image was cropped
into four non-overlapping sections, and 334 692 cropped images
were finally obtained. We applied the CNN classifier established
in the first stage to all 334 692 cropped images, and the top
1000 scored images that did not overlap with the positive and
negative sample sets were manually checked and labelled. A
total of 934 manually labelled cropped images (461 positive sam-
ples and 473 negative samples) were added to the positive and
negative training set of the first stage. Then, the CNN network
was retrained with this extended training set, and the validation
dataset was the same as in the first stage. The AUC for the
test set was 0.90 in the second stage. We further set the signals
from the red (microtubules) and blue (nucleus) channels to zero
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and used only the green (antibody) channel; the AUC for the
same validation set was 0.91. The final model used in DeepPhase
was the green-only model. For each IF image, the highest score
of the four non-overlapping sections was taken as the final
score.

Given that the test set might partially overlap with the
extended training sets, we filtered the positive test set by
removing 30 images from 4 overlapping proteins, and the filtered
positive test set contained 177 images from 31 proteins. We
randomly selected 20 000 images as negative samples in the test
set, and these images were generated from proteins that were
not used in the training and validation processes. Similarly,
each image in the test set was cropped into four sections,
and the highest score of the four sections was calculated for
each image. A detailed framework for the training and test
process is displayed in Supplementary Figure 2 available online
at https://academic.oup.com/bib.

Annotations of proteins in known components

To evaluate the performance of DeepPhase, we collected proteins
in known components, including nucleoli, PML bodies, P-bodies
and stress granules. The protein list for nucleoli was retrieved
from the UniProt database [86], including 440 proteins; the pro-
tein list for the PML bodies was retrieved from the PhaSepDB
database [85], including 82 proteins; the protein list for the P-
body was retrieved from a single high-throughput experiment
[28], including 186 proteins; and the protein list for stress gran-
ules was retrieved from a single high-throughput experiment
[87], including 146 proteins.

Calculating sequence properties of candidate proteins

To characterize the sequence properties of candidate phase sep-
aration proteins, we downloaded protein sequences from Swiss-
Prot database. We submitted the Ensembl gene ID provided by
Human Protein Atlas database to Swiss-Prot as identifiers and
retrieved 11 832 protein sequences. 6174 of 11 832 proteins were
labelled as nucleic proteins based on their localization annota-
tions in Human Protein Atlas database. CD-HIT [88] was applied
to remove redundancy in these sequences. Using 40% sequence
similarity as a threshold, 9224 of 11 832 proteins were remained
for sequence analysis, including 1827 candidate proteins and
3799 control proteins. The analysis in Table 1 was performed on
this non-redundant data set.

For each protein, the fraction of charged residues, net
charge per residue, mean net charge, hydropathy, isoelectric
point, kappa parameter defined by Das and Pappu and the
fraction of disorder-promoting residues were calculated using
LocalCIDER [89]. In the calculation of the net charge per residue,
R/K/D/E/C/Y/H are all considered titratable residues using
EMBOSS pKa values, and pH = 7.4 was assumed. The hydropathy
of a protein was defined as the average hydropathy of each
residue from a normalized Kyte–Doolittle hydrophobicity scale
[90, 91]. The kappa parameter was measured by a combination
of the fraction of charged residues and the linear sequence
distributions of oppositely charged residues [37], and the
segregation of oppositely charged residues within linear protein
sequences leads to high kappa parameters. In the calculation
of the kappa parameter and the fraction of charged residues,
a neutral pH where only R/K/D/E are charged was assumed.
Besides LocalCIDER, the isoelectric point was also calculated
with ProPAS [92].

The IDR content of each protein was downloaded from
the D2P2 database [9]. We predicted the IDR content of each
protein by Espritz as well [10], and the final Espritz score is
the average score of three models (X-Ray, DisProt and NMR).
Protein aggregation was predicted by TANGO and PASTA2. In
the prediction of TANGO, default parameters with pH = 7.4,
ionic strength =0.05 mol l−1 and temperature = 303 K were
used.

Embedding PPI network of candidate proteins into 2D
space

Weighted PPIs in the human proteome were downloaded from
the STRING database, and each node in the PPI network was
embedded in a 128-dimensional vector using the node2vec
algorithm [46]. The vectors of candidate proteins were mapped
in 2D space using the t-SNE dimension reduction algorithm
[47].

Mapping protein sequences to the sequence of vector
embeddings that encode structural information

The amino acid sequence of each protein was mapped to
a sequence of vector embeddings using a recent sequence-
embedding model [54]. The model provided a trained multilayer
long short-term memory (LSTM) network that mapped every
amino acid of a protein into a 3705-dimensional vector. The
trained weight of the model was downloaded from https://gi
thub.com/tbepler/protein-sequence-embedding-iclr2019. Since
the LSTM network was constructed by incorporating infor-
mation from pairwise residue contact maps within indi-
vidual proteins and global structural similarity between
proteins, the output vector of the last LSTM layer embed-
dings contained structural information. As shown in the
framework (see Supplementary Figure 12 available online at
https://academic.oup.com/bib), for one protein with N amino
acids, each amino acid was transferred to a 3705-dimensional
vector by using the sequence embedding model, and the N
vectors at each dimension were then averaged and used as
the final vector embeddings. According to the above process,
each protein was encoded as a 3705-dimensional vector and
then clustered with an agglomerative hierarchical clustering
algorithm.

To compare the correlation between PPI clusters and
sequence clusters, we calculated the numbers of observed
and expected common proteins. The expected number was
computed as the number of common proteins in each PPI
cluster times the fraction of each sequence cluster for all
proteins. Finally, log10(observed/expected) values were calcu-
lated to measure the correlation in each PPI-sequence cluster
pair.

Annotation of kinases and PTM sites

The human kinase–substrate interaction dataset and the
human PTM site dataset were downloaded from the Phos-
phoSitePlus database [93], which included 10 266 kinase–
substrate relationships, 237 796 phosphorylation sites, 97 933
ubiquitylation sites, 8035 sumoylation sites, 21 245 acetylation
sites and 15 619 methylation sites. For each protein, the
positions of PTM sites were divided by the full length and
standardized into (0, 1). The fractions of each kind of PTM
site per 1% sequence were calculated and are shown in
Figure 4A.
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Key Points
• We identified 2343 phase-separated candidate pro-

teins with deep learning from immunofluorescence
images and analysed their sequence properties.

• Disordered and ordered candidate clusters exhibited
diverse sequence, function and modification prefer-
ences.

• Phase-separated kinases show a reduced requirement
of substrate specificity.

• Phase-separated TFs exhibit less conserved DNA-
binding motifs.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.

Data availability

Source code and supplementary tables are available at
https://github.com/cheneyyu/DeepPhase.
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