
Xiaoyu Lu is a PhD student in the Department of BioHealth Informatics, Indiana University−Purdue University Indianapolis.
Szu-Wei Tu is a master student in the Department of BioHealth Informatics, Indiana University−Purdue University Indianapolis.
Wennan Chang is a PhD student in the Department of Electrical and Computer Engineering, Purdue University.
Changlin Wan is a PhD student in the Department of Electrical and Computer Engineering, Purdue University.
Jiashi Wang is a research associate at the Biomedical Data Research Data (BDRD) Lab at Indiana University School of Medicine.
Yong Zang is an assistant professor in the Department of Biostatistics and a member of the Center for Computational Biology and Bioinformatics, Indiana
University School of Medicine.
Baskar Ramdas is an assistant research professor in the Department of Pediatrics, Indiana University School of Medicine.
Reuben Kapur is Frieda and Albrecht Kipp professor in the Department of Pediatrics, Indiana University School of Medicine.
Xiongbin Lu is Vera Bradley Foundation professor of Breast Cancer Innovation and professor in the Department of Medical and Molecular Genetics, Indiana
University School of Medicine.
Sha Cao is an assistant professor in the Department of Biostatistics and a member of the Center for Computational Biology and Bioinformatics, Indiana
University School of Medicine.
Chi Zhang is an assistant professor in the Department of Medical and Molecular Genetics and a member of the Center for Computational Biology and
Bioinformatics, Indiana University School of Medicine.
Submitted: 21 August 2020; Received (in revised form): 18 September 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

1

Briefings in Bioinformatics, 22(4), 2021, 1–13

https://doi.org/10.1093/bib/bbaa307
Problem Solving Protocol

SSMD: a semi-supervised approach for a robust cell
type identification and deconvolution of mouse
transcriptomics data

Xiaoyu Lu†, Szu-Wei Tu†, Wennan Chang, Changlin Wan, Jiashi Wang,
Yong Zang, Baskar Ramdas, Reuben Kapur, Xiongbin Lu, Sha Cao and
Chi Zhang
Corresponding authors: Chi Zhang, Department of Medical and Molecular Genetics, Department of Bio Health Informatics, Center for Computational
Biology and Bioinformatics, Indiana University School of Medicine, 410 W. 10th Street, Indianapolis, IN 46202. Tel: +1 317-2789625; E-mail:
czhang87@iu.edu; Sha Cao, Department of Biostatistics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410
W. 10th Street, Indianapolis, IN 46202. Tel: +1-3172742602; E-mail: shacao@iu.edu; Xiongbin Lu, Department of Medical and Molecular Genetics, Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 W. 10th Street, Indianapolis, IN 46202. Tel: +1-317-2744398;
E-mail: xiolu@iu.edu

†These authors made equal contribution to this work.

Abstract

Deconvolution of mouse transcriptomic data is challenged by the fact that mouse models carry various genetic and
physiological perturbations, making it questionable to assume fixed cell types and cell type marker genes for different data
set scenarios. We developed a Semi-Supervised Mouse data Deconvolution (SSMD) method to study the mouse tissue
microenvironment. SSMD is featured by (i) a novel nonparametric method to discover data set-specific cell type signature
genes; (ii) a community detection approach for fixing cell types and their marker genes; (iii) a constrained matrix
decomposition method to solve cell type relative proportions that is robust to diverse experimental platforms. In summary,
SSMD addressed several key challenges in the deconvolution of mouse tissue data, including: (i) varied cell types and
marker genes caused by highly divergent genotypic and phenotypic conditions of mouse experiment; (ii) diverse
experimental platforms of mouse transcriptomics data; (iii) small sample size and limited training data source and (iv)
capable to estimate the proportion of 35 cell types in blood, inflammatory, central nervous or hematopoietic systems. In
silico and experimental validation of SSMD demonstrated its high sensitivity and accuracy in identifying (sub) cell types and
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predicting cell proportions comparing with state-of-the-arts methods. A user-friendly R package and a web server of SSMD
are released via https://github.com/xiaoyulu95/SSMD.

Key words: tissue data deconvolution; cancer microenvironment; semi-supervised learning; mouse omics data

Introduction
The mouse has long served as the premier model organism
for studying human biology and disease, due to their strik-
ing genetic homologies and physiological similarity to humans,
as well as the relatively low cost of maintenance. Currently,
thousands of unique inbred strains and genetically engineered
mutants have been made available for a wide array of specific
disease types [1]. Research on mouse models has provided added
impetus and indispensable tool for studying human disease,
regarding its initiation, maintenance, progression and response
to treatment, as well as evaluating drug safety and efficacy [2,
3]. Among all, the ability to examine physiological states and
interactions between diseased cells and their microenvironment
in vivo represents the most important tool for studying dis-
ease dynamics. To this end, numerous omics data have been
collected from mouse that vary in terms of genetic perturba-
tions, cell/tissue types and treatment conditions [4–7]. A strong
computational capability is needed to study the interactions of
components within the mouse tissue microenvironment (TME)
subject to different genetic and physiological perturbations; the
knowledge gained from which could be projected to human
disease scenarios and provide invaluable insight and guidance
for effective human therapeutic regimes.

Tissue transcriptomic data display convoluted signals from
different cell types [8]. Deconvoluting cell components and iden-
tifying mouse strain-/tissue-/experimental condition-specific
cell types and gene expressions are crucial for understanding
how experimentally perturbed conditions are associated with
cellular level characteristics and cell–cell interactions [9]. While
multiple deconvolution methods have been developed for
investigating the heterogeneous cell types in human cancer
or other tissues data [10–19], they may not be directly applicable
to mouse tissue data. First of all, the cell type-specific genes
for human cells differ from mouse cells; secondly, compared
with human, the variations among different mouse tissue
samples may be considerably higher, as they are collected
from different strains with varied genetic background and
experimental conditions.

Currently, ImmuCC (ICC) and its varied versions are the only
method specifically focusing on mouse data deconvolution [20].
The core computational algorithm, which was adapted from
CIBERSORT designed for human [13], assumes fixed cell type and
signatures gene expressions (subject to simple transformations)
regardless of experimental conditions of the target data. This
assumption becomes problematic as mouse data, which are
collected from different strains, have varied genetic background;
thus, it is expected the tissue compositions are highly adaptable
regarding the existent cell types and their expression profiles
[21–23]. Aside from prominent variability in the appearance of
cell types and the expression levels of markers genes, mouse
data deconvolution also suffers from the following challenges:
diverse experimental platforms, prevalently small sample size
of mouse experiments and limited training data sets available
for deriving signature genes of cell types.

To address these challenges, we developed a novel semi-
supervised deconvolution method, namely Semi-Supervised

Mouse data Deconvolution (SSMD), to infer data-/tissue-specific
cell type marker genes and their expression profiles and
estimate their relative abundances from transcriptomics data.
SSMD is capable to infer the relative proportion of 35 cell types
in the blood, inflammatory, cancer, central nervous system and
hematopoietic system. To the best of our knowledge, SSMD
is the only mouse data deconvolution method considering
strain, tissue type and data specificity of cell type-specific gene
markers. We demonstrated SSMD achieved a high sensitivity in
identifying the appearance of immune and stromal cell types
in inflammatory tissue and brain cell types in central nervous
tissue, and with a high accuracy in estimating their relative pro-
portion on single-cell RNA-sequencing (scRNA-seq) simulated
bulk tissue data sets. We also experimentally validated that the
cell populations inferred by SSMD accurately recapitulates the
true cell proportions measured by fluorescence-activated cell
sorting (FACS) on a leukemia bone marrow data. Applications of
SSMD on a large collection of public mouse blood, brain, cancer
and other inflammatory tissue data suggested that the method
achieved a robust performance throughout diverse types of
experimental conditions and platforms including RNA-seq,
microarray and immunoassay. In addition, the software of SSMD
grants users to build in their own tissue-/data-specific knowl-
edge of cell type-specific markers to reinforce the method. An R
package of SSMD is released through GitHub: https://github.com/
xiaoyulu95/SSMD and an R Shiny-based web server of SSMD is
available at https://ssmd.ccbb.iupui.edu/.

Results
Mathematical consideration and problem formulation

Denote
∼
XM×N as a tissue data of M genes and N samples, a decon-

volution analysis assumes
∼
XM×N as the following non-negative

product form:

∼
XM0×N = ∼

SM0×K0 • ∼
PK0×N + E,

∼
SM0×K0 ≥ 0,

∼
PK0×N ≥ 0 (1)

Here,
∼
XM0×N represents the observed gene expression matrix

of M0 selected genes (a subset in M) in N tissue samples, and

columns in
∼
SM0×K0 and rows in

∼
PK0×N denote the expression

signatures, and the relative proportions of the K0 cell types,
respectively. In the conventional formulation of deconvolution

analysis, with fixed M0 and K0,
∼
SM0×K0 and

∼
PK0×N are solved to

minimize the L2 loss of the above linear equation. Because of
the highly varied genetic and phenotypic background of mouse

experiment,
∼
SM0×K0 , M0 and K0 are usually varied and unknown,

i.e. for each
∼
XM×N collected from tissues of certain microenviron-

ment, what cell types are present, what gene markers each cell
type expresses and how much they were expressed, could vary
drastically due to the genetic and physiological perturbations.
Correctly specified cell types K0 and selected cell type marker

genes M0 can largely increase the prediction accuracy of
∼
PK0×N.
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Table 1. Definition of mathematical terms

Terminology Mathematical definition in this study

Rank-1 matrix A matrix with rank = 1, i.e. the matrix is generated by the product of two vectors, X = A • BT.
In this study, we consider all transcriptomics data are with error. Hence, the rank-1 matrix
is defined by X = A • BT + E, where the matrix rank of X is 1 can be computed by the BCV
algorithm detailed in Materials and methods.

Local rank-1 matrix A submatrix with rank = 1, i.e. denoting I and J as the indices of the submatrix, XI×J is
generated by the product of two vectors with error, XI×J = A • BT + E.

Transcriptomically identifiable cell type The cell type with a high correlation between the true proportion Pk
1×N and estimated

∼
P

k

1×N

Prediction accuracy Pearson correlation between true proportion and predicted proportion of each cell type
Detection accuracy The number of true cell type signature genes were identified as signature genes of an

identifiable cell type
Matrix total rank The total rank of a data matrix that can be tested by the BCV algorithm

Table 1 lists the key mathematical definitions utilized in this
study.

In this study, we define a cell type k is ‘transcriptomically
identifiable’ if its ground-truth proportion Pk

1×N and estimated

as
∼
P

k

1×N have high correlation, i.e.cor
(
Pk

1×N,
∼
P

k

1×N

) = 1 − ε and ε

is substantially small, where
∼
P

k

1×N is the kth row of
∼
PK0×N, and

K0 as the number of ‘identifiable’ cell types. A strong condi-
tion for a cell type to be identifiable is that it has uniquely
expressed genes [24]. Here, we provided a comprehensive math-
ematical derivation of the relationship between cell type unique
expression and identifiability of cell proportion in the Supple-
mentary Notes. We derived the identity of cell type uniquely
expressed gene markers, denoted as the set Gk, is a necessary
but non-sufficient condition for the identifiability of cell type

k: – if k is ‘transcriptomically identifiable’,
∼
XGk×T must be a

matrix of rank one, for ∀T ⊂ {
1, . . . , N

}
. This condition forms

the foundation of how SSMD discover cell type marker genes
that are not fixed but instead specific to each data set. Fortu-
nately, we do not need to scan for all the local rank-1 matrices

within
∼
XM×N, where M is usually to the tens of thousands. In

fact, with an effective knowledge transfer of the gene labels
derived from single or bulk cell training data, the genes that are
more likely to be cell type-specific markers of identifiable cell
types can be detected, which forms the core algorithm of SSMD
pipeline.

SSMD analysis pipeline

SSMD is a semi-supervised method composed by (i) training
a large candidate list of cell type-specific marker genes, (ii)
evaluating the identifiability of each cell type and confirming
their marker genes for each to-be-deconvolved data and (iii)
estimating the proportion of each cell type.

The training step is to look for genes that are more likely
to serve as cell type marker genes through different tissue
types and data sets, named as core marker lists. Specifically,
we identified the genes that are commonly overexpressed in
one cell type comparing with the others in bulk cell data and
commonly form rank-1 matrices in tissue data, by using a very
extensive set of training data sets collected from different mouse
strains and tissue types (see details in Materials and methods).
Figure 1A illustrates the procedure of SSMD to construct cell type
core marker lists. On the bulk cell training data, we adopted
a random walk-based approach to detect genes that are sig-
nificantly expressed in higher quantities in one or a few cell
types, than others (see details in Materials and methods). As

a result, a labeling matrix that annotates cell type specifically
expressed genes will be constructed, which forms the first evi-
dence of the potential marker genes for each cell type. Then, on
each bulk training tissue data set, we further identified marker
genes that form rank-1 submatrices with a community detection
approach as detailed in Materials and methods. Only those mod-
ules, whose genes significantly and consistently overrepresent
one and only one cell type across multiple training tissue data
sets, are selected to form the core marker list. Notably, variations
caused by different experiment batches, tissue types and mouse
strains were handled by enabling certain errors in the random
walk-based cell type-specific marker identification, i.e. identify-
ing the genes overly expressed in the cell type comparing with
the others in a certain proportion of the collected bulk cell data.
In addition, data batch variation was also considered in the bulk
data-based training step, by identifying the genes commonly
serve as cell type-specific marker in more than 50% of analyzed
bulk tissue training data. The goal of this training procedure is to
summarize a relatively large list of commonly observed cell type-
specific marker genes, which can be used to as semi-supervised
information to identify data set-specific cell type marker for a
further unsupervised deconvolution analysis.

Based on the cell type core markers, the deconvolution of any
given bulk tissue data set is composed by the steps as illustrated
in Figure 1B. SSMD first identifies all the rank-1 modules on the
target data set by an iterative hierarchical clustering and bi-
cross-validation (BCV) approach. Then, SSMD selects the rank-
1 modules that are likely to be markers of a certain cell type
for this data set, if genes in the modules largely overlap with
the core marker list of one and only one cell type. Modules that
are highly colinear will be merged. Consequently, genes in each
module are called gene markers of one cell type, which sat-
isfy the necessary condition for ‘transcriptomically identifiable’.
Notably, two modules may represent the same cell type, and
they are treated as marker genes of different subtypes of the cell
type. Here, the total number of modules is an estimate of the
number of ‘identifiable’ cell types, i.e. K0. Importantly, SSMD is
an ‘semi-supervised’ approach, because the cell marker genes do
not solely depend on the training data, but also the coexpression
patterns of the marker genes in the target data set. In other
words, SSMD addresses the variability issue of signature genes
from one data set to another and has the potential to discover
cell types not predefined. Algorithms of each computational step
are detailed in Materials and methods. Complete flowchart of
the SSMD pipeline is provided in Supplementary Figure S1.

The prediction of the cell type proportions is conducted using
a constrained non-negative matrix factorization (NMF) method
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Figure 1. Analysis pipeline of SSMD and core cell type-specific markers. (A) Analysis pipeline of the core marker training procedure. (B) Analysis pipeline of the

deconvolution procedure. In (A) and (B), input data including training and target data, computational procedure and key intermediate outputs were colored by orange,

green and blue, respectively. (C) Core markers of 12 cell types in blood, solid cancer and inflammatory tissue. An edge between two genes means the two genes are

coidentified as markers of one cell type in more than 50% of the training data sets. (D) Core markers of nine cell types in central nervous system. Notably, core markers

for the endothelial cell in the inflammatory tissue and central nervous system were separately trained by comparing with other cell types in the same tissue system.

by solving the following optimization problem:

min∼
SM0×K0

,
∼
PK0×N

(∥∥∥∥∼
XM0×N − ∼

SM0×K0 • ∼
PK0×N

∥∥∥∥
2

F

+λ • trace
(∼

SM0×K0

T

• (
1M01T

K0
− CM0×K0

)))
(2)

where CM0×K0

[
i, j

] = 1 if gene i is marker of the cell type j,
and 0 otherwise. 1d denotes an all-1 column vector of length
d, λ is a hyperparameter selected by cross-validation, and other
annotations follow equation (1). The constraint matrix CM0×K0 is
enforced upon the regular NMF to guarantee similarity of the

solved signature matrix
∼
SM0×K0 and constraint CM0×K0 , namely, in

the kth column of
∼
SM0×K0 , it should have higher expressions for

genes that are markers of cell type k. The solution to (equation

2) is by alternative update where each time one of
∼
SM0×K0 ,

∼
PK0×N

is held fixed, and the other is updated. λ can be tuned by using
simulated tissue data with known cell proportion. In this study,

we tuned λ and empirically select λ as 10 when
∼
XM0×N is log-

normalized microarray data or log (X + 1) normalized FPKM/CP-
M/TPM RNA-seq data.

Following these procedures, and on a large collection of
mouse bulk cell and tissue training data, we generated core
marker gene lists for different TMEs: (i) for mouse blood,
solid cancer and inflammatory tissues, 980 genes of 12 cell
types, namely T cell, B cell, nature kill (NK) cell, hematopoietic
stem cell (HSC), monocyte, macrophage, neutrophil, mast cell,
adipocytes, fibroblast, dendritic cell and endothelial cell were
discovered (Figure 1C); (ii) for mouse hematopoietic system,
2877 genes of 14 cell types namely HSC, common lymphoid pro-
genitor, granulocyte–macrophage progenitors, megakaryocyte
lineage-committed progenitor, erythroid cell, megakaryocyte–
erythrocyte progenitors, multipotent progenitors, early myeloid
progenitor, mature myeloid cell, precolony-forming unit ery-
throid, premegakaryocytic/erythroid progenitor, B cell, CD4+
T and CD8+ T cell were discovered (Supplementary Table S1)
and (iii) for mouse central nervous system tissue, 1570 genes
of nine cell types namely ependymal cell, general glial cell,
oligodendrocyte, stromal-like cell, Schwann cell, microglial,
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neuron and astrocyte were discovered (Figure 1D). Complete lists
of the core marker genes are given in Supplementary Table S1.
It is noteworthy that the size of core marker list ranges
from 27 to 547 for different cell types. However, our analysis
suggested that more than five marker genes that form a
rank-1 matrix is sufficient for an accurate estimation of cell
proportion. Note that, compared with conventional regression-
based deconvolution analysis, SSMD only uses labels of the
core markers as the semi-supervised information and identifies
data set-specific cell type markers for a further unsupervised
estimation of cell types, which grants a flexibility and robustness
to handle the variation of cell type-specific marker genes
and their expression scale through different mouse strains,
tissue types and experimental platforms. In addition, the
semi-supervised formulation of SSMD enables the inference
of identifiability of each cell type and identification of rare or
sub cell types.

Benchmarking based on artificial tissue data simulated
by using scRNA-seq data

We first benchmarked SSMD on a set of artificial tissue data
simulated from four scRNA-seq data sets of mouse lung, pan-
creas, small intestine and melanoma. For each data set, we
simulated 100 tissue samples by randomly drawing and mix-
ing cells of different types whose proportions follow random
Dirichlet distributions. Prediction accuracy of each cell type
was assessed by the Pearson correlation coefficients between
its known mixing cell proportions and the predicted relative
proportion. We compared SSMD with three state-of-arts decon-
volution methods of mouse data, namely ICC, tissue-ImmuCC
(TICC) and EPIC [11]. Our analysis suggested that SSMD achieved
93.2% prediction accuracy on average in the four simulated data
sets and 23 out of the 28 cell types (82.1%) are with higher
than 0.9 prediction accuracy (Figure 2A–D). In contrast, EPIC, ICC
and TICC achieved 69.7%, 45.2% and 48.5% averaged prediction
accuracy on the cell types covered by these methods, and the
proportion of cell types with higher than 0.9 prediction accuracy
are 32.2% (9/28), 0% (0/28) and 7.2% (1/14), respectively. We also
tested the popular human data deconvolution methods such as
CIBERSORT (CIBERSORTx) and TIMER [9, 13], by using the known
human and mouse homolog genes. Nonsurprisingly, predictions
made by CIBERSORT and TIMER on the mouse are less accurate
than SSMD. TIMER and CIBERSORT achieved 49.25% and 47.5%
averaged prediction accuracy, and the proportion of cell types
with higher than 0.9 prediction accuracy are 17.9% (5/28) and
3.6% (1/28) (Supplementary Table S4).

It is noteworthy that the SSMD enables the detection of
sub cell types defined as transcriptomically identifiable. SSMD
successfully identified two subpopulations of fibroblast cells in
the melanoma data and different subtypes of neutrophils in lung
and small intestine data. In contrast, ICC, TICC and EPIC are not
capable of providing cell subtype predictions due to their fixed
cell type assumption.

We also benchmarked SSMD on simulated brain tissue data
using two scRNA-seq data of central nervous systems. SSMD
achieved more than 0.9 correlation in predicting the cell types
microglial, stromal-like and ependymal subtypes in the simu-
lated tissue data (Figure 2E and F). To the best of our knowledge,
SSMD is the first of its kind method to specifically target mouse
central nervous system decomposition. To benchmark SSMD, we
selected MUSIC as the state-of-the-art method, which requires
an additional input of scRNA-seq data to train context-specific
gene signatures [25]. Here, we first utilized the same scRNA-seq
data for tissue data simulation and signature training in MUSIC.

Nonsurprisingly, MUSIC achieved consistently good predictions
(averaged cor = 0.99), and the predictions made by SSMD are very
close to MUSIC with slightly lower correlations compared with
MUSIC under this ideal setup. In sight the possible disparity
caused by tissue, strain and experimental platform variations
between the target tissue data and available scRNA-seq data
for training cell markers, we also conducted a robustness test
of MUSIC and SSMD (see details in Supplementary Notes). Our
analysis suggested that MUSIC highly depends on the consis-
tency of cell type-specific marker genes and their expression
scale between the target tissue and the training scRNA-seq data.
In contrast, the de novo data set-specific marker identification by
SSMD enables a broader application to the tissue data without
matched scRNA-seq data. Because EPIC, ICC and TICC cannot
analyze brain tissue data and the melanoma and pancreas tissue
were not covered by TICC, we did not include the comparison
with these methods on the brain tissue data.

To validate the specificity of SSMD, we tested the total rank
of the identified marker genes and compared with the number
identified cell types (TIMER and CIBERSORT achieved 49.25%
and 47.5% averaged prediction accuracy. and the proportion of
cell types with higher than 0.9 prediction accuracy are 17.9%
(5/28), and 3.6% (1/28).). We also compare the total matrix rank
of the marker genes used in other methods and the number
of cell types assumed in those methods. Comparing with the
fixed number of cell types in other methods, the number of cell
types predicted by SSMD better matches the total rank of the
expression profile of identified marker genes. Our observation
suggested SSMD can correctly estimate the number of cell types
and select proper markers for cell type proportion estimation. It
is noteworthy the predicted number of cell types may not exactly
match the total rank of selected markers because possible colin-
earity among the true proportion of the cell types.

Experimental validation of SSMD by using matched
RNA-seq and cell sorting data

We generated tissue RNA-seq data of 11 mouse bone marrow
tissue samples with matched cell counting using FACS (see
details in Materials and methods). Application of SSMD on the
RNA-seq data identified HSC, general myeloid progenitor (GMP),
mature myeloid cell and pre-B cells and their cell type-specific
markers. We also observed that the correlation between SSMD
predicted and FACS measured amount of HSC, GMP, mature
myeloid cell and B cells are 0.92, 0.8, 0.86 and 0.97, respectively,
suggesting a high prediction accuracy of SSMD. Figure 3A–D
shows the correlation between the SSMD predicted cell pro-
portion and the FACS measured cell proportion of the four cell
types. Figure 3E–H illustrates the FACS-based cell counting of
the four cell types. Complete cell type-specific markers, cell
proportions counted by FACS and predicted by SSMD were given
in Supplementary Table S2. It is noteworthy that SSMD is not
compared with other methods as none of the existing method
is capable of predicting proportions of hematopoietic cell types.

Application of SSMD to real mouse tissue
transcriptomics data

We applied SSMD to nine cancer and eight central nervous
system tissue data of four different experimental platforms,
including one data set measured by immunoassay. On average,
SSMD identified more than seven cell types in each of the cancer
data, and the number of identified cell types is highly consistent
with the total rank of the expression profile of the detected
cell type-specific marker genes (Figure 4A). This indicates that

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa307/5998844 by guest on 10 April 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa307#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa307#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa307#supplementary-data


6 Lu et al.

Figure 2. Method evaluation on scRNA-seq simulated tissue data. (A–D) Correlation between true and predicted cell proportions in the simulated lung (A), pancreas

(B), small intestine (C) and mouse melanoma (D) tissue data. The x-axis represents cell type and y-axis represents prediction accuracy. Predictions made by SSMD, EPIC,

ICC and TICC were dark blue, green, yellow and orange colored, respectively. The red dash line represents the 0.9 correlation cutoff. (E, F) Correlation between true and

predicted cell proportions in the two simulated brain tissue data. (G) The total rank of the gene expression profile of selected marker genes in the six simulated tissue

data (gray), and the total number of cell types identified by SSMD in each data set or assumed in other methods (left three gray bars).

SSMD is capable of capturing the latent structure of the data.
We further examined the explanation score (E-score), defined
as the averaged absolute residual of the non-negative linear
regression of each marker gene’s expression on the predicted
cell proportion, i.e. the average measure of how the predicted
proportions could explain all the marker genes’ expression lev-
els. A high E-score is a necessary condition for an accurate cell
proportion prediction. On average, the data set-specific markers
genes of each cell type identified by SSMD achieved 0.73 E-
score, whereas the average E-score of the marker genes used
by EPIC and ICC is 0.45 and 0.3 (Figure 4B). Similarly, application
of SSMD on eight central nervous system tissue data identified
more than seven cell types on average. The number of identified
cell types is highly consistent with the total rank of the gene
expression profile of the marker genes (Figure 4C). In addition,
the marker genes identified by SSMD achieved averaged 0.77 E-
score for the cell types in central nervous system (Figure 4D). It
is noteworthy that multiple marker sets of fibroblasts, myeloid
or microglial cells that forming distinct rank-1 bases were iden-
tified in numerous data sets, suggesting the possible subtypes of
these cell types identified by SSMD.

Robustness analysis

We first evaluated the variation of cell type-specific markers
through different mouse strains on one transcriptomic data set

of mouse liver tissue samples collected from 31 different mouse
strains [26]. To the best of our knowledge, this is the only data
set in the public domain that systematically measured gene
expression profiles of the same tissue type for different mouse
strains by using the same experimental platform. SSMD was
applied to the data of each mouse strain, respectively. Nine
cell and their subtypes were commonly identified in the liver
tissue of most strains. The identifiability of the cell types and
the detected cell type markers among different strains were
compared (Figure 5). We analyzed all the identified marker genes
that form rank-1 modules, i.e. the necessary condition for gene
markers of identifiable cell types, and noticed that only 9.1% of
the identified marker genes are shared in more than 50% strains,
whereas 58.4% of the identified marker genes only served as
a cell type marker in less than 20% of the analyzed strains,
suggesting a high variation of cell type-specific markers among
different mouse strains, and the necessity to consider strain or
data set specificity in deconvolution analysis.

We further examined the robustness of SSMD by evaluat-
ing its (i) sensitivity and (ii) specificity in identifying cell type-
specific marker genes and its (iii) accuracy in assessing of cell
proportions on the data of different sample sizes. Previous stud-
ies revealed that the robustness of the computation of coexpres-
sion correlation will decrease when the sample size is below
25. To comprehensively evaluate the method’s robustness, we
selected five data sets, namely GSE76095, GSE67186, GSE90885,
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Figure 3. Method evaluation on scRNA-seq simulated tissue data on hematopoietic tissue data. (A–D) Correlation between SSMD-predicted (x-axis) and FACS-identified

(y-axis) cell proportions of HSC, GMP mature myeloid cell and pre-B cell. (E–H) Marker proteins utilized to identify the four cell types by using FACS. The x- and y-axis

of the plots represent the level of cell type markers. The black block in (E), the green block in (F), the upper-right block in (G) and the block in (H) are the sorted HSC,

GMP, myeloid and pre-B cell, respectively.

GSE94574 and GSE126279, with sample size ranging from 15 to
30 and randomly drew samples from each data set to build
testing data sets of different sample size. We assumed the cell
type markers and cell proportion inferred from whole data as
‘true’ markers and proportions and evaluated the consistency
between the ‘true’ ones and the ones predicted from small sub
data sets. Accuracy in cell proportion prediction was assessed
by the Pearson correlation between proportions predicted from
small data and the ‘true’ proportion on overlapped samples.

On average, all of the marker genes of the ‘true’ cell types
were also identified when sample size is low (Figure 6A). In addi-
tion, the cell proportion of 92.3%, 94.6% and 98.9% of the correctly
identified cell types were with more than 0.9 correlation with
their ‘true’ proportions when the sample size is 6, 12 and above
20 (Figure 6A). Our analysis suggested a high robustness of the
sensitivity and prediction accuracy of SSMD when sample size
is as small as six, i.e. the commonly used sample size in two-
condition-comparison experiment (three samples versus three
samples). However, as a trade-off, there is a high false discovery
rate of cell type-specific modules when sample size is small,
due to the low specificity of gene coexpress analysis. To control
the false discoveries on small data sets, we further derived a
more ‘stringent’ set of 341 cell type-specific marker genes among
the core marker set (see details in Materials and methods). Our
method validation demonstrated a slight drop of the sensitivity
and prediction accuracy when using the stringent marker set
on small data set (Figure 6B), whereas the specificity of the
identified cell type-specific markers increased to from 54.4%
to 72.6% when sample size is above 12 (Figure 6C). Figure 6D
illustrates the E-score of the cell type-specific marker genes
identified by using the core and the more stringent marker
set with respect to different sample size. The E-score of the
cell types marker genes identified by using the more stringent

marker set were significantly higher than the ones identified
by using the general core marker sets when sample size is
below 10, also demonstrating the stringent core marker sets can
effectively increase the analysis specificity when sample size is
small.

Discussion
Over the years, research using well-established mouse models
to mimic human conditions has provided extensive insight into
the mechanisms underlying many human diseases. We devel-
oped SSMD to study mouse TME of complex traits, to mine the
interactions of cell components in the microenvironment, which
will feed back to studying human microenvironment. In order to
have a robust prediction of cell component abundance in mouse
tissue, SSMD detects a subset of the genes and identifiable
cell types that are the most representative to the tissues to
be analyzed, instead of using fixed gene signatures and cell
types as in classic deconvolution schemes. The limitation in
expression profiling and the intrinsic and mysterious variability
in microenvironments exclude the possibility to have a unified
set of cell type-specific genes that have absolutely constant
expression across all conditions. The way SSMD flexibly defines
cell type marker genes mitigates the impact of variable marker
genes due to experimental platforms and microenvironment
alterations. This strategy allows our model to fully recapitu-
late the disparity of cell types and their marker genes across
different microenvironment and data-generating platforms. In
addition, the semi-supervised formulation enables the detection
of sub cell types, which has been validated on scRNA-seq data-
simulated tissue data. Hence, a relatively coarse standard for
categorizing the cell types was used in training the core marker
list, which enabled a high robustness of the core markers. The
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8 Lu et al.

Figure 4. Prediction of SSMD on real tissue data. (A, C) The total rank of the gene expression profile of selected marker genes (gray) in different (A) cancer tissue and (C)

brain data and the total number of cell types identified by SSMD in each data set (colored). (B, D) E-score for different cell types identified by SSMD (blue) in (B) cancer

and (D) brain data set or assumed in other methods (EPIC: red, ICC: yellow).

unsupervised constrained-NMF or singular value decomposition
(SVD)-based deconvolution on the selected marker genes further
excludes the adversarial batch effects.

It is noteworthy a successful identification of the rank-1
modules depends on a relatively large samples (>25) sharing
cell types and marker genes. Currently, SSMD cannot be applied
to the data with a single or small sample size. However, we
consider such a trade-off between sample size and prediction
robustness is highly worthwhile, especially considering using
SSMD as an exploratory tool in large scale publicly available
mouse transcriptomics data. After all, the predicted proportions
are often to be associated with other biological and clinical fea-
tures, which will be severely underpowered with a small sample
size.

We released an R package of SSMD via https://github.com/
xiaoyulu95/SSMD and a web server via https://ssmd.ccbb.iu

pui.edu/. As illustrated in Supplementary Figure S2A, the input
data are a mouse tissue transcriptomics data and user-selected
tissue-specific cell type core marker sets. Currently, SSMD offers
general core and stringent marker sets of 6 cell types in blood
system, 12 cell types in normal, inflammatory and cancer
tissue, 9 cell types in central nerve systems and 14 cell types
in hematopoietic systems. Supplementary Figure S2B illustrates
a practical guide for using SSMD of different tissues and sample
size. The input of SSMD is a mouse tissue expression data set
and user-selected tissue environment category. The output of
SSMD includes the identified data set-specific cell type markers
and the estimated sample-wise relative proportion of each
identifiable cell type. We consider the currently included cell
types are comprehensive enough to cover major cell types in
mouse. However, the tissue-specific cell types (e.g. liver cells in
liver tissue, colon cells in colon tissue, etc.) were not included
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Figure 5. Correlation between expression level of strain-specific cell type marker genes and predicted cell proportion. High correlation is a necessary but nonsufficient

condition for the genes to serve as marker genes of the cell types in corresponding mouse strain. In the heatmap, x- and y-axis represent genes and mouse strains,

respectively. Genes in the core marker list of four selected cell types, namely neutrophil, NK, macrophage and monocyte, were colored on the column side bar.

Figure 6. Performance evaluation of different sample size. (A) Prediction accuracy (y-axis) in different sample size (x-axis) using all core markers. Accuracy is the Pearson

correlation between predicted proportion using only selected small sample and using all samples. (B) Prediction accuracy (y-axis) in different sample size (x-axis) using

selected stringent markers. (C) True positive rate (y-axis) of the cell type-specific markers identified by using the stringent markers (blue) and core markers (green)

with respect to different sample size (x-axis). (D) E-score for using coexpression modules consisting of all core markers and only selected stringent markers. From top

to bottom, the statistics were derived from GSE76095, GSE67186, GSE90885, GSE94574 and GSE126279.
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10 Lu et al.

in our training scope. As forming rank-1 pattern among marker
genes is a necessary but non-sufficient condition of identifiable
cell types, SSMD R package can also output rank-1 modules that
do not enrich the core markers of any cell type, which could
possibly be markers of rare cell types. The user could further
investigate whether the gene module corresponds to a real cell
type or not. Another key feature of the web server is that users
are welcome to contribute their data to reinforce the training of
cell type-specific marker genes.

Potential future directions of SSMD include (i) enabling
identification of cell type-specific varied functions, which is
not generally available for tissue data analysis in the public
domain; (ii) identifying data set-specific cell type markers
forming rank-1 submatrix in a subset of samples, i.e. local rank-1
submatrix, which can benefit from state-of-the-arts subspace
clustering methods [27–29] and (iii) extending and implementing
the semi-supervised framework of SSMD with other state-of-
the-arts deconvolution methods by refining data set-specific cell
marker genes. We anticipate that our computational concept,
which is to identify data set-specific and computationally
‘identifiable’ cell types and their marker genes, can provide high
robustness in deconvolution analysis, by which the predicted
cell proportions can be reliably correlated with experimental
features to provide biologically meaningful interpretation of
the roles of microenvironmental changes in different disease
tissues.

Materials and methods
Random walk-based identification of cell type
specifically expressed genes from tissue data

We applied a nonparametric random walk-based approach to
screen genes with higher expression in certain cell types com-
paring with others, using bulk cell training data. On the com-
bined expression matrix containing M genes for N samples of
K cell types, we first calculated the expected frequency of each
cell type, i.e. dividing the total number of samples for the cell
type (Nk, k = 1, . . . , K) by the total number of samples N, denoted
as Ek = Nk/N, k = 1, . . . , K. For a given gene g, denote x and xk

as vectors of expression profile for cells of all types and type k.
Denote Ojk as the percentage of values in xk that are no less than
the jth largest value in vector x. A random walk vector d1×N that
describes the non-negative discrepancy between the observed
and expected cell type frequency of the gene was defined as
dj = ∑K

k=1

(
Ojk − Ek

)2
, j = 1, . . . , N, which attains a minimum value

of zero at N. A higher peak of the random walk d1×N suggests gene
g is more enriched in certain cell types than the others. Denote
m as the index of the maximum of d1×N, i.e. m = argmax

(
d1×N

)
,

and the cell type frequency at m as em
k = Omk −Ek. Cell types were

further ordered by em
k decreasingly, and a labeling matrix L was

built such that Lg,k = 0, if em
k ≤ 0; otherwise, Lg,k = 1

p , if xk has the
pth largest mean among x1, . . . , xK.

It is noteworthy the approach can be directly applied to
scRNA-seq data for marker training. In this study, due to the
relatively limited availability of existing scRNA-seq data, espe-
cially the mouse strain and tissue type coverage, we generate
core marker list purely by using bulk cell data.

Identification of rank-1 cell type uniquely expressed
gene modules

To screen genes that form tight rank-1 modules on various
tissue training data sets, SSMD performs a community detec-
tion method among the genes specifically expressed in each

cell type as stored the labeling matrix. A correlation matrix
was first built among cell type specifically expressed genes,
and the significance cutoff of correlation was determined by
random matrix theory (RMT). RMT has been widely used to
understand the low-rank structure encoded in biological data. In
this study, an RMT-based approached developed by Luo et al. [30]
was used to determine the threshold of significant correlation
for each data set. rm.get.threshold functions in the RMThreshold
R package was utilized. Specifically, RMT indicated that the
nearest neighbor spacing distribution of eigenvalues will have
a characteristic change when the threshold properly separates
signal from noise. By removing all the below-threshold correla-
tion elements, the coexpression modules can be more robustly
unraveled. Then, hierarchical clustering was performed using
the correlation matrix as similarity measure.

Specifically, SSMD gradually increases the height of the hier-
archical clustering at which the tree is cut. At each height, the
number of genes, the average correlation among the genes and
the rank of the matrix composed of the genes in each of the clus-
ter is calculated. Here, matrix rank is determined by a modified
BCV algorithm. SSMD stops scanning the hierarchical tree if all
the clusters contain less than q0 genes or the three following
criteria are met for all the clusters: (i) with at least q0 genes,;(ii)
the average correlation among the genes is above the threshold
determined by RMT and (iii) the rank of the expression matrix
profile of the genes in the cluster is 1. In this study, q0=7 is used.
Such an iterative approach will eventually select the clusters
with at least q0 genes, each of which is considered as possible
cell-specific marker genes specific to this data set. SSMD merges
modules until the canonical correlation between any pair of
module is lower than a cutoff corcut or the number of current
modules is not larger than the total rank of the gene expression
profile of the selected data set-specific markers genes. In this
study, we utilized corcut = 0.9.

A modified BCV rank test

BCV has been developed to estimate the matrix rank for SVD
and NMF, which requires a prefixed low-dimension K and two
low-rank matrices for the approximation XM×N = WM×K • HK×N.
The error distribution of gene expression data is usually non-
identical/independent, mostly because a gene’s expression can
be affected by its major transcriptional regulators, other biolog-
ical pathways and experimental bias. Hence, undesired biologi-
cal characteristics and experimental bias may form significant
dimensions in a gene expression data [31]. In sight of this, we
developed a modified BCV rank test (Algorithm 1) to minimize
the effect of the non-i.i.d errors in assessing the matrix rank of
a gene expression data.

After running the rank-1 module detection on all the training
bulk tissue data sets, those genes commonly identified in the
rank-1 modules in more than 40% (70%) data sets were selected
as core (stringent) markers. The list of stringent marker sets
was derived with more stringent criterion, which is particularly
useful for the analysis of small sample-sized target data. Core
markers of cells in central nervous systems were identified
by a similar approach on the brain training tissue data sets.
Due to the limitation of hematopoietic system tissue training
data, its core markers were selected as the genes specifically
overexpressed in each hematopoietic cell type, by using the
criteria: the gene’s expression level is above 10% quantile in
one cell type and below 50% in the other cell types. Complete
lists of selected core and stringent marker sets were given in
Supplementary Table S1.
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Algorithm 1. Modified BCV matrix rank test

Estimation of cell proportion

Two methods were utilized to estimate cell proportion: (i) SVD-
based computation. With cell type-specific markers derived, the
first row base of the gene expression profile of the marker genes
is directly utilized as an estimation of the cell proportion, which
can be directly computed by SVD. (ii) Constraint NMF-based
computation. With the number of identifiable cell types and

cell type-specific markers identified, the signature matrix
∼
SM0×K0

and proportion matrix
∼
PK0×N can be estimated by minimizing the

following objective function:

min∼
SM0×K0

,
∼
PK0×N

(∥∥∥∥∼
XM0×N − ∼

SM0×K0 • ∼
PK0×N

∥∥∥∥
2

F

+λ • trace
(∼

SM0×K0

T

• (
1M01T

K0
− CM0×K0

)))

where CM0×K0

[
i, j

] = 1 if gene i is marker of the cell type j, and 0
otherwise. λ is the hyper parameter. In this study, we tuned λ by
using single-cell data-simulated tissue data. λ=10 is empirically
utilized in the analysis.

E-score and comparison with state-of-the-arts methods

An E-score was utilized to evaluate the goodness that each
marker gene’s expression is fitted by the predicted cell propor-
tions:

E − score(x) = 1 −
N∑

j=1

(
x∗

j − x̂j

)2
/

N∑
j=1

(
x∗

j

)2
, x̂j =

kx∑
k=1

βx
k pk

j , βx
k ≥ 0

where x∗
j is the observed expression of marker gene x in sample

j, x̂j is the explainable expression by cell proportions, obtained by
a non-negative regression x on the predicted proportion pk

j , k =
1 . . . kx. Here, kx represents the number of cell types that express
x, and βx

k are the non-negative regression parameters. Intu-
itively, with correctly selected marker genes, the marker gene’s
expression can be well explained by the predicted proportions
of the cell types that express the gene. Hence, a high E-score
is a necessary but not sufficient condition for correctly selected
marker genes and predicted cell proportion.

Data used in this study

Bulk cell training data sets

For mouse blood, solid cancer and inflammatory TME, we
retrieved 116 data sets of sorted mouse cells of 12 selected cell
types, totaling 1106 samples from GEO database. For mouse brain
TME, we collected 2130 bulk cell samples of the nine selected
cell types in central nerve systems. For mouse hematopoietic
microenvironment, two data sets were available that cover 14
hematopoietic cell types. All the bulk cell training data were
generated by the Affymetrix GeneChip Mouse Genome 430 2.0
Array platform and normalized with MAS5 method [32]. Samples
of the same cell type were further merged together with batch
effect removed using Combat [33].

Single-cell RNA-sequencing data

One mouse melanoma scRNA-seq data set (6638, 9) was acquired
from the Human Cell Atlas database [34]. Three scRNA-seq data
sets of lung (4485, 12), pancreas (4405, 8) and small intestine
(4764, 10) and two sets of brain tissue (3679, 7 and 1099, 6)
were accessed from Mouse Cell Atlas data portal [35]. The two
numbers in the parenthesis indicate the number of cell samples
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and cell types of each data set. We specifically selected the cells
with UMI more than 500 to exclude low-quality cells. Cell labels
were either provided in the original data or curated using Seurat
v3 with cell type-specific genes [36, 37].

Training tissue data from cancer and blood

In total, 33 cancer tissue data sets of nine cancer types gen-
erated by four popular experimental platforms were collected,
namely Illumina HiSeq 2000 Mus musculus, Affymetrix Mouse
Genome 430 2.0 Array, Illumina HiSeq 2500 M. musculus and
Affymetrix Mouse Genome 430A 2.0 Array from GEO database.
Each data set has at least 15 samples. We did not consider
data sets from immunodeficient mouse, mouse cell lines and
PDX models, as only real cancer or blood microenvironment is
considered. A data set of liver tissue collected from 31 mouse
strains (GSE55489) were utilized to evaluate the variation of cell
type-specific markers through different mouse strains [26].

Brain tissue data

Fourteen data sets of mouse brain tissues generated by two
experimental platforms, namely Illumina HiSeq 2500 M. muscu-
lus and Affymetrix Mouse Genome 430 2.0 Array were collected
from Gene Expression Omnibus. Data sets were split into sub-
data sets of different brain regions. Each data set has at least 40
samples. The complete training data information is available in
Supplementary Table S3.

Hematopoietic system tissue and FACS data

We generated a RNA-seq data set with matched FACS data of
bone marrow cells isolated from the hind limbs of C57BL/6,
Tet2−/−Flt3ITD, DNMT3A−/−Flt3ITD and DNMT3A−/−Tet2−/−
Flt3ITD mice (n = 3 for each group). RNA (600 ng/sample) was
used to prepare single-indexed strand-specific cDNA library
using TruSeq-stranded mRNA library prep kit (Illumina). The
library prep was assessed for quantity and size distribution
using Qubit and Agilent 2100 Bioanalyzer. The pooled libraries
were sequenced with 75 bp single-end configuration on
NextSeq500 (Illumina) using NextSeq 500/550 high-output kit.
The quality of sequencing was confirmed using a Phred quality
score. The sequencing data were next assessed using FastQC
(Babraham Bioinfomatics, Cambridge, UK) and then mapped to
the mouse genome (UCSC mm10) using STAR RNA-seq aligner
[38] and uniquely mapped sequencing reads were assigned
by featureCounts. The data were normalized to RPKM. FACS
data were collected from same biological prep by IU School
of Medicine Flowcytometry Core. HSCs were identified by
lineage negative, C-Kit high and Sca1 high cells; GMP cells were
identified by Cd34 and Cd16/32 high cells; mature myeloid cells
were identified by Gr1 and Cd11b high cells, and Pre-B cells were
identified by B220 and SSC-A high cells.

Generation of simulated bulk tissue data from
scRNA-seq data

Cell types in each scRNA-seq data were labeled by the cell
clusters provided in the original works or by using Seurat
pipeline with default parameters. Detailed information of
the scRNA-seq data and cell type annotation is given in
Supplementary Table S3. For each data set, we simulate bulk
tissue data by: (i) removing insignificantly expressed genes, (ii)
randomly generate the proportion of each cell type, called true
proportion in this paper, which follows a Dirichlet distribution

and (iii) draw cells randomly from the cell pool with replacement
according to the cell type proportion, and sum up the expression
values of all cells to produce a pseudo bulk tissue data. The
insignificant expressed genes were identified by left truncated
mixture Gaussian model [39, 40]. The Dirichlet distribution
matrix was generated with R package ‘DirichletReg’ [41].

Key Points
• We provide a novel tissue deconvolution method,

namely SSMD, which is specifically designed for
mouse data to handle the variations caused by differ-
ent mouse strain, genetic and phenotypic background
and experimental platforms.

• SSMD is capable to detect data set- and tissue
microenvironment-specific cell markers for more
than 30 cell types in mouse blood, inflammatory tis-
sue, cancer and central nervous system.

• SSMD achieve much improved performance in esti-
mating relative proportion of the cell types compared
with state-of-the-art methods.

• The semi-supervised setting enables the application
of SSMD on transcriptomics, DNA methylation and
ATAC-seq data.

• A user-friendly R package and an R shiny of SSMD-
based web server are also developed.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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