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Abstract

Recent pharmacogenomic studies that generate sequencing data coupled with pharmacological characteristics for
patient-derived cancer cell lines led to large amounts of multi-omics data for precision cancer medicine. Among various
obstacles hindering clinical translation, lacking effective methods for multimodal and multisource data integration is
becoming a bottleneck. Here we proposed DeepDRK, a machine learning framework for deciphering drug response through
kernel-based data integration. To transfer information among different drugs and cancer types, we trained deep neural
networks on more than 20 000 pan-cancer cell line-anticancer drug pairs. These pairs were characterized by kernel-based
similarity matrices integrating multisource and multi-omics data including genomics, transcriptomics, epigenomics,
chemical properties of compounds and known drug-target interactions. Applied to benchmark cancer cell line datasets, our
model surpassed previous approaches with higher accuracy and better robustness. Then we applied our model on newly
established patient-derived cancer cell lines and achieved satisfactory performance with AUC of 0.84 and AUPRC of 0.77.
Moreover, DeepDRK was used to predict clinical response of cancer patients. Notably, the prediction of DeepDRK correlated
well with clinical outcome of patients and revealed multiple drug repurposing candidates. In sum, DeepDRK provided a
computational method to predict drug response of cancer cells from integrating pharmacogenomic datasets, offering an
alternative way to prioritize repurposing drugs in precision cancer treatment. The DeepDRK is freely available via https://gi
thub.com/wangyc82/DeepDRK.
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INTRODUCTION
High-throughput screening of small molecules against a large
number of cancer cell lines (CCLs) provided an unprecedented
opportunity to characterize the genetic contexts for distinct
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cancer vulnerabilities [1–5]. Significant efforts have been devoted
to decoding the relationship between genetic signatures and
drug response based on emerging multi-omics data, including
transcriptomics, proteomics, genomics and epigenomics [6–12].
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In addition, properties of chemical compounds and their protein
targets have been used to further improve the prediction of
drug sensitivity [13]. Yet, substantial complexity and heterogene-
ity of multi-omics and multisource data limited the predictive
power of the computational models challenging potential clini-
cal translation. Therefore, novel integrative models/frameworks
that efficiently incorporate heterogeneous multi-omics data and
simultaneously integrate in vitro and/or clinical response of mul-
tiple drugs from various sources are urgently needed.

Recently, deep learning framework (DLF) has been widely
used to solve complex problems using multilayer feature extrac-
tion and transformation via a cascade of nonlinear processing
units, forming a hierarchical representation of either labeled
or unlabeled subjects. Unlike previous methods that manu-
ally select features, DLF adopts efficient algorithms for feature
extraction, leading to scalable, flexible and stable models for
either unsupervised or supervised problems [14–18]. DLF out-
performed the state-of-the-art methods in various fields includ-
ing but not limited to imaging analysis, video/audio classifica-
tion and recognition [19–24]. Moreover, DLF has been applied to
the field of biomedicine, advancing a variety of areas such as
genome-guided precision cancer medicine [25–38]. However, the
DLF methods typically require a big number of data points, and
few studies integrated heterogeneous data types and multiple
data sources [39–40].

Here we proposed DeepDRK to integrate heterogeneous
multi-omics data, for predicting drug response of cancer
cells. To simultaneously consider different available drugs
across CCLs, we applied a multitasking strategy under the
assumption that drugs with similar chemical properties should
have similar treatment outcomes. To overcome the difficulty of
heterogeneous data integration, we adapted a kernel method to
construct similarity matrix based on different types of feature.
First of all, DeepDRK was trained on two well-established
pharmacogenomic resources, i.e. Cancer Therapeutics Response
Portal (CTRP) [41] and the Genomics of Drug Sensitivity in
Cancer (GDSC) [42]. We compared DeepDRK with previous
prediction methods on both datasets and found that DeepDRK
outperformed the previous methods in terms of accuracy and
robustness. Secondly, we applied DeepDRK to the early-passage
patient-derived tumor cells and found that the predictions
were compatible with the experimental outcome. Thirdly, we
predicted clinical response of TCGA (The Cancer Genome Atlas)
cancer patients and showed that DeepDRK prediction was
significantly correlated with real clinical outcome in various
cancer types. Lastly, DeepDRK has been developed into an
open-access software for research usage.

METHODS
The DeepDRK model

To predict drug response, we developed DeepDRK, a deep
learning model to integrate data from different sources, diverse
cancer types and various chemical compounds. As illustrated in
Figure 1, a kernel-based approach was employed to generate
integrative representation of interacting partners of a CCL
and an anticancer drug, which was subsequently used to
train the deep neural networks (DNNs) for drug response
prediction. In particular, we firstly collected various types of
multi-omics data to, respectively, construct multiple kernel-
based similarity matrices of CCLs (Figure 1B1, Methods Multi-
omics data integration via kernel methods), and then used
chemical feature and drug-target interaction of compounds
to, respectively, calculate two similarity matrices of anticancer
drugs (Figure 1B2). In addition, the drug screening data from

different sources were binarized to represent the treatment
response of CCLs by anticancer drugs (Methods Discretization
of drug response), based on which a bipartite graph of CCL
and drug was constructed with edges labeling the digitalized
sensitivity value (Figure 1B3). Furthermore, CCL-drug pairs
were represented by concatenating multiple similarity vectors
(Figure S1), followed by the training of a classification model to
predict drug efficacy. More details of the DeepDRK framework
will be explained in the following subsections.

Discretization of drug response

Instead of estimating the continuous response value, we cate-
gorized response value into three classes, i.e. sensitive, resistant
and unclear. To achieve this goal, we visualized the overall distri-
bution of drug response data and manually selected cutoffs for
digitalization. For example, when using CTRP data, we generated
a histogram to represent the overall distribution of the area
under the dose–response curve (AUCDR) of all drugs, and labeled
CCL-drug pairs with AUCDR<6 as sensitive (red in Figure S2)
and those with AUCDR>16 as resistant (blue in Figure S2). Sub-
sequently, a bipartite graph was constructed to represent the
above defined associations (lower panel of Figure S2). In this
graph, two types of nodes in the bipartite graph were used to
represent drugs and cancer cells, respectively. The edges were
used to represent either sensitive (S) or resistant (R) response of
the corresponding cancer cells upon drug treatment.

Multi-omics data integration via kernel methods

To integrate heterogeneous data, we generated multiple simi-
larity matrices of both CCLs and anticancer drugs using kernel
methods. For CCLs, different types of features were individually
used to calculate the similarity matrices between all available
CCLs (upper panel of Figure S1A and B). In this process, the
radial basis function kernel was adopted to map different data
types into the same kernel Hilbert space. Particularly, for copy
number alteration, DNA methylation and gene expression data,
the following formula was used:

Sc
(
c, c′) = exp

(−γ ‖xc − xc′ ‖2)

where c and c′ were two CCLs; xc and xc′ were values of the
corresponding feature type; and γ was a predefined kernel
parameter. Here we used different γ in different data types,
with 0.001 for copy number alteration, 0.1 for DNA methylation
and 0.01 for gene expression in order to normalize all data into
a comparable scale. Regarding to mutation data, a Hamming
distance [43] of CCL’s mutation profile (xc and xc′) was integrated
into the kernel function:

Sc
(
c, c′) = exp (−HD (xc, xc′ ))

where HD(xc, xc′ ) represented the Hamming distance.
In addition, two similarity matrices of anticancer drugs were

also calculated (lower panel of Figure S1A and B). The similarity
matrix based on drug targets was calculated using the above
Hamming distance-based kernel function, while the Tanimoto
coefficients [44] obtained from chemical molecular descriptors
(QuaSAR-Descriptor in the Molecular Operating Environment
(MOE)) were used to represent the drug similarities based on
chemical property.

Next, for a given CCL and an anticancer drug, we extracted
a corresponding vector from each feature similarity matrix and
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Figure 1. The framework of DeepDRK. (A) Heterogenous high-throughput pharmacogenomic data sources were integrated. Multi-omics data characterizing cancer cell

lines (CCLs) and drug properties characterizing anticancer compounds were used to represent CCL-drug pairs, while drug screening data from multiple sources labeled

these pairs. (B) A kernel-adapted deep neural network was proposed to learn the drug response in cancer cells. (B1) The cancer omics data were converted into similarity

matrices to form the multi-omics representation of CCLs. (B2) Drug chemical structures and previously reported target proteins were converted into similarity matrices

to form an integrated representation of anticancer drugs. (B3) A bipartite graph was constructed to label the relationship between CCL and anticancer drug based on

digitalized drug sensitivity.

concatenated all relevant vectors of this CCL and the anticancer
drug to represent the CCL-drug pair for further investigation
(Figure S1C). All available CCL-drug pairs with the proper labels
(defined as sensitive or resistant in section 2.1.1) were used as
the training samples. Subsequently, we used this strategy to
integrate multiple datasets to train fully connected feedforward
neural networks with multiple hidden layers. In these DNNs, the
input layer was the above concatenated vectors, and the output
layer was a single node indicating the predicted drug sensitivity.
The hyperbolic tangent function was selected as the activation
function.

Model implementation and evaluation

To implement the DeepDRK model, the ‘h2o’ R package [45] was
applied to train the feedforward DNN. Particularly, the hyperbolic
tangent function (Tanh), a continuous function producing an
output for all input values in scale of [−1, 1], was used as the
activation function. In the training process, the cross-entropy
function was used as the loss function, and we allowed each
hidden layer to contain at most 200 nodes and the maximal
iteration times to be 10. To optimize the model parameters,
the Nesterov accelerated gradient method was carried out, and
the area under the precision-recall curve (AUPRC) was used
as the stopping metric. Moreover, the input dropout ratio was
set as 0, while the dropout ratio for hidden layer was set as

0.5. Model performance was then evaluated through the 5-fold
cross-validation based on different metrics including AUC (the
area under receiver operating characteristic (ROC) curve) [46],
AUPRC [47], Accuracy, Sensitivity, Specificity, Precision and F1
score (harmonic mean of precision and recall). The output of the
well-trained DeepDRK classifiers was named as the DeepDRK
score to represent the level of sensitivity of a CCL-drug pair.

Pharmacogenomic datasets

Two well-established cancer genomic resources, i.e. CTRP and
GDSC, were used to train the DeepDRK model. The CTRP dataset
contained the AUCDR value for 545 drugs across 887 CCLs. These
cell lines were characterized by genomic and transcriptomic
sequencing, leading to the multi-omics profiles that include
genomic mutation, copy number alteration and gene expres-
sion (https://portals.broadinstitute.org/ccle). The GDSC dataset
included the dose–response curves for 265 anticancer drugs
across 1074 CCLs. We acquired genomic mutation, copy number
alteration, DNA methylation and gene expression data of these
GDSC CCLs from https://www.cancerrxgene.org/. Moreover, the
chemical properties of compound for anticancer drugs were
extracted from a collection of 2D molecular descriptors and
calculated by QuaSAR-Descriptor in the Molecular Operating
Environment (MOE v. 2011.10, Chemical Computing Group Inc.,
Montreal, Canada) based on chemical structures from PubChem
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SDF files. The 2D MOE descriptors included physical properties,
atom counts and bond counts. The target proteins were collected
from DrugBank [48] and KEGG [49]. More details of these two
datasets were listed in Supplementary Table S1.

TCGA patients

The molecular properties for cancer patients used in this
study, including somatic mutation, copy number variation, DNA
methylation and gene expression were acquired from TCGA
data portal (https://gdac.broadinstitute.org/). The clinical drug
response of TCGA cancer patients was extracted from Ding et al.
[50] including 2182 patient-drug pairs between 1029 pan-cancer
patients and 130 clinical drugs.

RESULTS
Evaluation of DeepDRK in benchmark datasets

We first assessed the performance of DeepDRK on two bench-
mark datasets: CTRP and GDSC (Table S1). Based on drug screen-
ing data in each dataset, all CCL-drug pairs were grouped into
sensitive (S), resistant (R) and unclear (Method, Figure S2). Pairs
in categories S and R were used as the training samples of Deep-
DRK. To evaluate the performance within a benchmark dataset,
5-fold cross-validation procedure was carried out. Considering
that the number of samples labeled as positive and that labeled
as negative was unbalanced, the AUPRC was applied as the
evaluation criterion. As a result, DeepDRK achieved the AUPRC
of 0.97 on CTRP dataset, and 0.96 on GDSC dataset. Compared
to conventional methods such as Support Vector Machine (SVM)
and Random Forest (RF), our model showed better accuracy (high
AUPRC) and robustness (low standard deviation) (Figure 2C). Yet,
we realized that the deep learning model might be overfitted
due to the potential information linking during the calculation
of similarity matrix in cross-validation. We therefore performed
the hold-out validation on both benchmark datasets (CTRP and
GDSC). Particularly, 80% of the drug-cell pairs of a given dataset
was used to construct the similarity matrix and train the Deep-
DRK model, which was then tested in the other 20% of unseen
pairs. We found that although the performance of the hold-
out validation was slightly worse than that of the initial cross-
validation, AUC and AUPRC of DeepDRK were over 0.85 on both
benchmark datasets (Figure 2D). To demonstrate the effective-
ness of multi-omics data integration, more experiments were
carried out to evaluate the model performance of DeepDRK with
a single data type. As expected, the model integrating all data
types achieved the best performance (Tables S2 and S3).

Generalization ability of DeepDRK

To test whether DeepDRK works for drugs not seen by the classi-
fier, we trained the DeepDRK model using both CTRP and GDSC
(including 10,754 sensitive and 10,607 resistant CCL-drug pairs)
and tested it in 16 anticancer drugs that were not included in the
combined dataset. These 16 drugs were experimentally screened
across 49 CCLs in another study [3], based on which we extracted
196 sensitive and 195 resistant CCL-drug pairs as an indepen-
dent test set (Figure S3). Interestingly, we found that DeepDRK
scores of the sensitive pairs were significantly higher than that
of the resistant ones (fold change = 3.35, P < 2e−16, Figure 3A).
To compare the prediction performance of different training
datasets, another two DeepDRK models were trained based on a
single dataset (either CTRP or GDSC). We demonstrated that the
model integrating both datasets achieved AUC of 0.93 (Figure 3B)

and AUPRC of 0.92 (Figures 3C), which outperformed both CTRP-
based model and GDSC-based model. More comparisons using
various metrics including accuracy, sensitivity, specificity, preci-
sion and F1 score were summarized in Figure S4.

Although the 16 tested drugs were not seen in the training set,
DeepDRK was able to infer their profile of treatment outcome,
mainly due to the rule of ‘guilty by association’, which implied
that if two drugs had the same drug targets or shared chemical
properties, they might have a higher chance to behave similarly
in inhibiting CCLs (Figure 3D). For instance, Lapatinib, a dual
tyrosine kinase inhibitor targeting HER2 and EGFR pathways in
breast cancer and other solid tumors, was not studied in CTRP or
GDSC, while the CTRP project investigated Neratinib across 850
CCLs. As these two compounds have similar chemical properties
(similarity = 0.913) and they share the same targets (Figure 3E),
the deep learning model automatically used Neratinib as a ‘tem-
plate’ to infer Lapatinib’s treatment outcome. Accordingly, Deep-
DRK predicted potential response of 27 CCLs upon Lapatinib
treatment. Overall, this prediction achieved 0.85 (23/27) accuracy
in comparing with experimental data (Figure 3F).

Collectively, our deep learning model successfully integrated
multisource and multimodal data, outperformed traditional
machine learning methods, and was able to predict potential
efficacy of new drugs with proper characterization.

Application of DeepDRK to patient-derived CCLs

We then applied DeepDRK to a more complex dataset con-
taining drug screening data of a cohort of patient-derived can-
cer cell lines (PDCs). These PDCs were early passages of the
three-dimensional tumor culture derived from newly diagnosed
cancer patients, better representing heterogeneous genetic and
molecular backgrounds of cancer patients in real world [51]. We
acquired the drug sensitivity data of 60 drugs on 74 glioma PDCs,
and separated the PDC-drug pairs into sensitive and resistant
groups (Figure S5). The DeepDRK model integrating CTRP and
GDSC was applied to predict sensitivity of these PDC-drug pairs.
We found that the DeepDRK model achieved AUC of 0.84 and
AUPRC of 0.77 (Figure 4A and B). Moreover, we found that the
DeepDRK score of the sensitive group was significantly higher
than that of the resistant group, further demonstrating the
efficacy of our method in segregating PDCs into groups with
different treatment outcome (Figure 4C).

Notably, DeepDRK provided an in silicon way to infer drug
response of PDCs whose experimental results were missing.
Figure 4D displayed the DeepDRK prediction on the anticancer
drugs with partially known and partially unknown experimen-
tal outcomes. DeepDRK correlated tremendously well with the
known response measurements with accuracy 0.91 (70 out of 77),
and importantly, it revealed novel PDC-drug interactions when
biological experiments were not available.

Application of DeepDRK to cancer patients

We then applied the DeepDRK model to predict drug response
in cancer patients. According to a recent study, some patients in
the cancer genome atlas (TCGA) had drug response information
and therefore the patient-drug pairs can be divided into two
classes: the responders and the nonresponders [50]. To apply the
DeepDRK model to these patient-drug pairs, we first calculated
the similarity between the TCGA patients and CCLs in our
training datasets via multi-omics data and then calculated
the similarity between the corresponding drugs that were
applied to TCGA patients and the anticancer drugs that were
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Figure 2. Comparison of DeepDRK with the baseline machine learning approaches on two benchmark datasets. (A-B) Precision-recall curves of different methods on

CTRP and GDSC. (C) Comparison of the area under the precision-recall curve (AUPRC) of different methods. Error bars indicated the standard deviation of AUPRC in 10

repeated procedures of 5-fold cross-validation. RF: random forest; SVM: support vector machine. (D) Hold-out validation performance on these two benchmark datasets.

included in the training datasets. Concatenated similarity
vectors were then used to represent the patient-drug pairs,
which were subsequently adopted as the input to calculate
DeepDRK score. Interestingly, we found that the DeepDRK score
in the responder group was significantly higher than that
in the nonresponder group (P-value < 0.001, Figure 5A). This
observation was consistent in various cancer types, especially
Breast Invasive Carcinoma (BRCA), Head–Neck Squamous
Cell Carcinoma (HNSC), Lung Adenocarcinoma (LUAD), Colon
adenocarcinoma (COAD), Sarcomas (SARC) and Testicular Germ
Cell Tumors (TGCT) (Figure 5B).

Note that some cancer types such as SARC and TGCT had no
CCLs available in the combined training dataset, but DeepDRK
can transfer knowledge from available tumor types to patients
with novel cancer types. For instance, the SARC patient TCGA-
LI-A67I was similar to a glioma CCL (LN405) in not only the

profile of genomic mutation (Figure 5C) but also the overall gene
expression (Figure 5D). Similarly, the TGCT patient TCGA-2G-
AAHA was mirrored by a lung CCL SW900 (Figure 5C and D).
Taking advantage of the similarities between cancer cells, Deep-
DRK was able to provide a meaningful prediction for pan-cancer
patients based on multi-omics data integration.

To elaborate on the prediction of DeepDRK, we focused on
the cancer types with relatively good performance where the
responders had elevated DeepDRK scores compared to that of
the nonresponders (Figure 5B). For each of these cancer types,
we evaluated the impact of a driver mutation on the DeepDRK
score of an anticancer drug. Significant interactions between
driver genes and the selected FDA approved drugs (that were
not only applied to TCGA patients but also investigated in at
least one of the training datasets) were extracted and visual-
ized via the gene-drug networks (Figure 6), providing a list of
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Figure 3. DeepDRK revealed treatment efficacy of unseen drugs. (A) Comparison of DeepDRK score between the sensitive and resistant groups. (B) The receiver operating

characteristic (ROC) curves for DeepDRK in predicting novel CCL-drug interactions (using CTRP, GDSC or both). (C) The precision-recall curves for DeepDRK in predicting

novel CCL-drug interactions (using CTRP, GDSC or both). (D) The ‘guilty by association’ assumption for inference of CCL-drug interactions. (E) The profiles of Lapatinib

represented by its top 20 similar compounds, respectively, based on chemical properties (upper panel) and known targets (lower panel). (F) The confusion matrix of

prediction for Lapatinib.

potential targeting strategies via drug repurposing. Notably, the
gene-drug networks pinpointed novel candidate drugs (high-
lighted in red squares) for genome-characterized cancer cells,
potentially benefiting patients whose conventional therapeutic
interventions had failed. For example, we reported 23 sensitive
anticancer drugs against KIT mutations in the TGCT patients,
and the top prioritized candidates included Tamoxifen (inhibit-
ing testicular spermatogenesis and steroidogenesis), Cetuximab
(EGFR inhibitor), Pazopanib (VEGFR Inhibitor) and Bicalutamide
(an antiandrogen drug).

DeepDRK with incomplete feature types

In addition, in case that some feature types were not available,
we further constructed alternative versions of DeepDRK using
different list of features via the kernel-based methods. As shown
in Figure S6A, all possible feature combinations have been used
to train DeepDRK. Not surprisingly, models with more feature
types had higher accuracy in both cross-validation and inde-
pendent testing (Figure S6B). Importantly, although the training
accuracies were scarified when losing important feature types,
a number of updated models could achieve acceptable accura-
cies (AUPR > 0.7 for independent testing), providing applicable
models for various application scenarios. Furthermore, we also
trained DeepDRK models in case that some features might be
partially lost. To infer the missing values, we introduced the
hot deck imputation method which uses similar samples’ value

to fill the missing ones. To test the model performance, we
manipulated the training dataset by randomly removing certain
percentage of values and retrained DeepDRK models. Figure S7
showed the change of model performance according to the
proportion of missing values in the training datasets. We found
that DeepDRK achieved reasonable accuracy with less than 10%
missing values.

Lastly, DeepDRK model was developed into an open-access
software for academic usage, which provided a translational tool
for predicting the potential drug effects in cancer patients based
on the integration and deep learning of existing knowledge and
large-scale pharmacogenomic data on a remarkable number
of CCLs.

DISCUSSION
In this work, we developed a kernel adapted DLF, namely
DeepDRK, to computationally predict anticancer drug response
via large-scale heterogeneous data integration from multiple
datasets. We showed that the deep learning model outperformed
conventional machine learning approaches in both accuracy
(high average AUC and AUPRC) and robustness (low variation
of AUC and AUPRC). Note that there were other deep learning
methods previously developed on the same problem such as
DeepDSC, tCNNS and CDRscan [9–12, 36–37, 52]. Most of these
studies were regression models based on single-source data
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Figure 4. The application of DeepDRK in glioma patient-derived cancer cells (PDCs). (A-B) The receiver operating characteristic (ROC) curve and precision-recall curve

of DeepDRK predicting drug response of glioma PDCs. (C) The comparison of DeepDRK score in sensitive and resistant PDC-drug groups. P-value was calculated by

Wilcoxon signed-rank test. (D) Heatmap comparing DeepDRK score and the experimental results. DeepDRK score of selected pairs of PDCs and anticancer drugs were

visualized in heatmap and compared to the experimental data in [51]. We used the ‘tick marks’ to indicate consistent results between prediction and experimental

data, and ‘wrong crosses’ indicating inconsistent results. Notably, the PDC-drug pairs without any marks either had no available experimental data or had experimental

values falling in unclear group but our computational model provided predictions for further biological and clinical investigation.

or single-omics sample characterization, while DeepDRK is a
classification model integrating multimodal and multi-omics
data from different sources. In our model, we transformed the
continuous responses into three classes: sensitive, resistant and
unclear, which denoised the raw experimental measurement of
drug responses, and provided explicit prediction to guide clinical
decision. Moreover, DeepDRK utilized the kernel methods
to construct CCL-CCL and drug–drug similarity matrices for
sample representation, which naturally reduced the feature
space and model parameters. In addition, the model carried
out a multitasking strategy by training models using the edges
of a bipartite graph connecting CCLs to anticancer drugs.
Lastly, the multimodal integration framework of DeepDRK
enables the potential extension of the model by including
additional features. Future work on incorporating protein and/or
noncoding RNA expression to further characterize CCLs [53] or
incorporating drug therapeutic annotations (ATC-code), drug
side-effects and targeted proteins to characterize anticancer
drugs [54–60] might further increase the model performance.

From the biological perspective, we have listed several find-
ings with biological significance, and some of them were already
supported by the literatures. The nice performance of Deep-
DRK in PDCs indicated an advantage of DeepDRK in predict-
ing clinical drug responses in data with complex genetic and
molecular backgrounds, which enabled the potential application
in patients. When applied to TCGA patients, DeepDRK performed
well on BRCA and HNSC, but not on cancer types like CESC
and UCEC. This is mainly due to small cohort size. As shown
in Figure S8, the prediction performance denoted by the fold
change of DeepDRK score between responders and nonrespon-
ders was significantly related to total number of responders and
nonresponders in each TCGA cancer type.

To eventually achieve clinical application of DeepDRK,
another main challenge in drug response prediction i.e.
intratumoral heterogeneity (ITH) shall be considered. ITH, a
phenomenon observed in a number of aggressive cancers, is
precluding efficacy of targeted therapies. Actually, many tumors
consist of heterogeneous cell populations with a wide range of
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Figure 5. The application of DeepDRK in TCGA cancer patients. (A) The violin plot showing DeepDRK score of responders and nonresponders of TCGA patients.

(B) DeepDRK score comparison of responders and nonresponders in individual TCGA cancer types. The red bars represent responders and the blue bars represent

nonresponders. All cancer types with patient-drug pairs larger than 10 were considered. ∗ indicated P-value < 0.1; ∗∗ indicated P-value < 0.01; ∗∗∗ indicated P-value

< 0.001. (C) Heatmap showing the mutation profile of training CCLs and SARC and TGCA patient, implying that the DeepDRK model might use these CCLs as template

to infer treatment response of SARC and TGCA patients. (D) The scatter plot showing the correlation between expression of training CCL and test patient.

Figure 6. DeepDRK repurposed anticancer drugs based on cancer type-specific molecular alterations in TCGA. Nodes with different shape types represent the genomic

alterations (circle) and inhibitors (square), respectively, and size of a circle represents number of patients harboring mutations of the gene. The known response

anticancer drugs and prioritized compounds identified by DeepDRK are visualized by different colors. The width of each edge is proportional to -log10 (FDR) in which

False Discovery Rate (FDR) was calculated by two-sided ranksum test with Benjamini–Hochberg correction.
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morphologies, genotypes and phenotypes. Increasing evidence
suggested that ITH plays an important role in drug resistance
and treatment failure [61–63]. To address this challenge, more
efforts will be needed to further develop DeepDRK. Moreover,
recent studies suggested that the identification of synergistic
drug combination might provide an efficient way for drug
repositioning [64]. More efforts will be needed to collect
enough amount of drug combination data to further extend
the prediction models to advance computational precision
medicine.

Key Points
• Deep learning provided an accurate model to predict

drug response of cancer cells.
• Kernel-based methods integrated multi-omics and

multisource data.
• DeepDRK was developed into an open-access software

in R.
• DeepDRK offered a computational framework for pre-

cision cancer medicine.

Supplementary Data

Supplementary data are available online at Briefings in
Bioinformatics.
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