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Abstract

Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3-ITD) constitutes an independent indicator of poor
prognosis in acute myeloid leukaemia (AML). AML with FLT3-ITD usually presents with poor treatment outcomes, high
recurrence rate and short overall survival. Currently, polymerase chain reaction and capillary electrophoresis are widely
adopted for the clinical detection of FLT3-ITD, whereas the length and mutation frequency of ITD are evaluated using
fragment analysis. With the development of sequencing technology and the high incidence of FLT3-ITD mutations, a
multitude of bioinformatics tools and pipelines have been developed to detect FLT3-ITD using next-generation sequencing
data. However, systematic comparison and evaluation of the methods or software have not been performed. In this study,
we provided a comprehensive review of the principles, functionality and limitations of the existing methods for detecting
FLT3-ITD. We further compared the qualitative and quantitative detection capabilities of six representative tools using
simulated and biological data. Our results will provide practical guidance for researchers and clinicians to select the
appropriate FLT3-ITD detection tools and highlight the direction of future developments in this field. Availability: A Docker
image with several programs pre-installed is available at https://github.com/niu-lab/docker-flt3-itd to facilitate the
application of FLT3-ITD detection tools.

Key words: acute myeloid leukaemia; FLT3-ITD; next-generation sequencing; bioinformatics

Introduction
Acute myeloid leukaemia (AML) is a type of malignant clonal
haematological disease caused by pathological proliferation and
differentiation of haematopoietic stem/progenitor cells (HSPCs)
[1–3]. The annual incidence of AML is 3 to 4 per 100 000 individ-
uals worldwide, accounting for 60–70% of adult acute leukaemia
cases [4, 5]. Previous studies have shown that AML is often
accompanied by multiple gene mutations, with FMS-like tyro-
sine kinase 3 (FLT3) constituting one of the significantly mutated
genes [6–8].

FLT3, located on chromosome 13q12, encodes a member of
the type III receptor tyrosine kinase family and is generally
expressed in the HSPCs of bone marrow. FLT3 dimerizes and
auto-phosphorylates upon binding of the FLT3 ligand, activating
the intracellular tyrosine kinase domain and leading to the
phosphorylation of downstream molecules, thereby mediating
a series of intracellular signal transductions and promoting cell
proliferation and differentiation [9, 10]. The internal tandem
duplication (ITD) of FLT3 (FLT3-ITD), first reported by Nakao et al.
[11] in 1996, mainly occurs in the juxtamembrane region of FLT3
and constitutes one of the most common mutations in patients
with AML of all age groups, with an incidence of 20–30%. Notably,
FLT3-ITD serves as a prognostic marker and therapeutic target in
AML, as its presence is associated with high blood blast counts,
normal karyotype, poor clinical prognosis, short overall survival
and high recurrence rate [12–16].

FLT3-ITD occurs within exon14 and exon15 of FLT3, with
the insertion position generally encompassing the Y591–Y597
region of exon14 [17]. The length of ITD is variable, ranging
from 3 to >400 bp but always occurring in multiples of 3 bp
[18]; additionally, each patient tends to harbour one to three
ITD mutations [19]. It is well established that the mutational
diversity of FLT3-ITD, such as mutation length, insertion site and
mutant-to-wild-type allelic ratio, not only constitutes a prognos-
tic indicator of AML but also an essential consideration for AML

risk stratification and treatment options [20–25]. Previous stud-
ies indicated that the effect of mutation length on prognosis was
still debatable: several studies concluded that the patients with
longer ITDs have a worse outcome than those with shorter ITDs
[26–28]; the research by Koszarska et al. [29] showed that a
medium-sized length indicates a worse prognosis, whereas a
recent study revealed that the size of the length is not sig-
nificantly related to the prognosis of patients [30]. Therefore,
the precise detection of length contributes to further ascertain-
ing the prognostic significance of it. In addition, the recently
revised European Leukemia Network guidelines for AML risk
stratification have incorporated the allelic ratio (AR) of FLT3-ITD
mutant alleles into prognostic stratification factors, classifying
patients with AR values >0.5 and without NPM1 mutation into
the high-risk group [31]. Thus, accurate detection of FLT3-ITD
will be helpful in determining the prognosis of AML, guiding
personalized clinical treatment, and providing new concepts for
gene-targeted therapy of AML.

Traditionally, FLT3-ITD detection in clinical trials is per-
formed via polymerase chain reaction (PCR) amplification based
on cDNA [32]. The negative/positive status and the mutation
length as reported through fragment analysis via capillary
electrophoresis (CE) is regarded as the ‘gold standard’ in clinical
practice and is widely used to measure the performance of
detection tools on next-generation sequencing (NGS) data
[33–35]. However, this method has several limitations: (i)
the operation process may be easily contaminated, (ii) the
insertion site and sequence information of ITD cannot be
specified, (iii) overlapping of mutation peaks leads to inaccurate
ascertainment of ITD number, and (iv) FLT3-ITD with low AR
(<5.00%) are difficult to detect [22, 32, 36].

With the development of NGS technology, a number of
bioinformatic tools and pipelines have been developed to detect
FLT3-ITD using NGS data, which can effectively overcome the
limitations of the traditional methods [37–42]. In the present
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Figure 1. Overview of the experiments and evaluations. The data preparation phase included the generation of simulated data and DNA sequencing of real data. The

data pre-processing phase involved the quality control of raw sequencing reads, mapping to the reference genome and mapping refinement. Then FLT3-ITD signals were

detected using PCR followed by CE and computational methods. Finally, a comprehensive performance evaluation of FLT3-ITD detection tools based on the qualitative

and quantitative detection capabilities, redundancy rate and execution time was conducted.

review, we divided these tools into two types based on the
detection strategy. In the alignment information-based strategy,
the raw reads are first aligned to the human reference genome,
and then discordant reads are extracted (such as via soft-
clipping) to identify FLT3-ITD according to the characteristics
of the tandem repeat. Software implementing this strategy
includes (but are not limited to) Pindel [43], ITDseek [44], getITD
[45], ScanITD [46] and FLT3_ITD_ext [47]. In comparison, the
misaligned short reads are mainly assembled using particular
algorithms, and then the assembled contigs are realigned
to the human reference genome to precisely identify the
sequence information containing FLT3-ITD in the assembly
strategy. Software utilizing this strategy includes BreaKmer [48],
ITDetector [49] and ITD assembler [50]. Additionally, Amplicon
Indel Hunter (AIH) [51], a method for detecting large indels
(>5 bp), can also be used to detect ITD mutations. However, in
contrast to the above tools, AIH is independent of the human
reference genome, rather directly detecting and annotating
ITD by comparing the sequence information of paired reads in
the FASTQ file. Furthermore, a small number of bioinformatics
pipelines [52, 53] have also been reported to detect FLT3-ITD.

Overall, significant progress has been made in the related
research of FLT3-ITD detection by adopting NGS data. However,
to our knowledge no systematic comparison and evaluation
among these methodologies have yet been reported. Thus, in
the present study, we provided a comprehensive summary of the
principles, functionality and limitations of the existing software
for detecting FLT3-ITD. Furthermore, we evaluated the qualita-
tive and quantitative analysis capabilities, redundancy rate and
execution time of six representative tools using simulated and
biological data (the workflow is shown in Figure 1). To maxi-
mize user convenience, we selected several detection tools with
effective performance and built a Docker image which is publicly
available at https://github.com/niu-lab/docker-flt3-itd. Through
this review and evaluation, we aimed to provide guidance to
clinicians and researchers regarding the selection of appropri-
ate software and strategy for characterization. Additionally, we

discussed the potential directions of development in this field of
research.

Materials and methods
Simulated data

A total of 500 FLT3-ITD-positive and 100 wild-type samples of
paired-end sequencing data were simulated, referring to a previ-
ously published simulation method [49]. The insertion locations
were randomly distributed in the region covering exon14 and
exon15 of FLT3; mutation lengths were between 3 and 300 bp,
in multiples of 3 bp; and allele frequencies were uniformly
distributed between 5 and 55%. The specific simulation method
was as follows.

(1) The sequence of 1000 bp covering FLT3 exon14 and exon15
(chr13: 28 607 501–28 608 500) was extracted from the human ref-
erence genome (hg19) as the wild-type sequence (FASTA format);
the repeated sequence with specified ITD length was inserted
into the wild-type sequence at random positions as the mutant
sequence.

(2) The paired-end reads (100 bp) with 200× depth were
generated from the prepared sequences in step (1), using wgsim
(https://github.com/lh3/wgsim). The insert sizes were simulated
using a normal distribution with a mean of 200 and a standard
deviation of 20. All short reads were formatted in FASTQ format
and assigned base quality values as ‘I’. FLT3-ITD-positive sam-
ples with different allele frequencies were generated by mixing
wild-type and mutant reads in different proportions.

(3) The FASTQ files were mapped to the human reference
genome (hg19) using BWA-MEM (version 0.7.17) [54] with the –
M option. Then, the mapping reads were sorted using Picard
(version 2.18.27, http://broadinstitute.github.io/picard/).

Biological data

To further evaluate the performance of different software in
detecting FLT3-ITD, we also incorporated the data of 163 patients
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in the AML cohort from the First Hospital of Jilin University, each
of whom provided written informed consent. The specific data
preparation and processing procedures were as follows.

(1) DNA extraction: Genomic DNA was extracted from
bone marrow using the Wizard Genomic DNA Purification kit
(Promega, Madison, WI, USA) following the instructions of the
manufacturer. The concentration of extracted DNA was assayed
using a NanoDrop One spectrophotometer (Thermo Scientific,
USA) and DNA samples were stored at −20◦C.

(2) Sequencing: We sequenced the DNA of 163 patients with
AML using a targeted gene panel based on hybrid capture (HC)
sequencing technology to obtain 2×150 bp paired-end sequenc-
ing FASTQ files with an average depth of ∼2000× (Supplemen-
tary Figure 1), as this technology has been shown to perform
well in FLT3-ITD detection, being generally superior to other
sequencing platforms [34, 55].

(3) Quality control and alignment: According to the NGS data
processing strategy [56], FastQC (version 0.11.8) [57] and Fastp
(version 0.19.7) [58] were applied for quality control and pre-
processing, respectively. Clean reads obtained following quality
control were then aligned to the human reference genome (hg19)
using BWA-MEM with the -M option to obtain the BAM file; sub-
sequently, the mapping reads were sorted, and PCR duplicates
were removed using Picard. Finally, the base quality correction
was performed to obtain BAM files that could be used for down-
stream analysis using the GATK4 (version 4.0.3.0, https://gatk.
broadinstitute.org/hc/en-us).

PCR and CE to detect FLT3-ITD

PCR and CE were performed on all 163 AML samples; additionally,
capillary data were evaluated using GeneMapper (version 5.0,
Applied Biosystems, Foster City, CA, USA) to analyse the number,
area and location of the peaks on the map. Previous studies
have shown that the wild-type PCR product produces a peak
at about 325 bp, whereas the position of the FLT3-ITD mutation
peak is >325 bp owing to tandem repetition, with the difference
in position reflecting the ITD length (including an average error
of ±2 bp) [22]. Theoretically, the number of mutation peaks repre-
sents the number of ITD in each sample. However, overlapping
of mutation peaks is apparent in the fragment analysis results
when FLT3-ITDs with the same length occur at different posi-
tions in a sample, rendering it impossible to report the number
of mutations accurately. In addition, the allele frequency was
calculated by dividing the ITD peak area by the sum of the ITD
and wild-type peak areas [32].

Methods and software for detecting FLT3-ITD

In the current study, we mainly investigated eight existing
software platforms used to detect FLT3-ITD, and their detection
principles, characteristics and applicable scenarios were sum-
marized in Table 1. We divided these tools into two categories
according to the detection principle: alignment information-
based [43–47] and assembly strategy-based [48–50] methods.
Notably, although the methods based on assembly strategy can
compensate for the limitations inherent in relying entirely on
the alignment information, the repetitive and heterozygous
sequences in the genome substantially negatively impact
assembly quality. Furthermore, according to the range of
detection, the existing software can be divided into those only
detecting ITD mutation [44–47, 49, 50] and those detecting all
mutation types (such as insertions and deletions, and structural
variants) [43, 48]. However, the latter requires manual screening

of the results. The existing tools can also be divided into two
cases according to the applicable scenarios: those for use with
HC sequencing data only [48–50] and those for both HC and
amplicon sequencing data [43–47]. We finally included six
representative software programs: Pindel, ITDseek, ScanITD,
getITD, ITDetector and FLT3_ITD_ext, in the comparative anal-
ysis because BreaKmer and ITD assembler failed to run in our
computational environment and lacked necessary technological
support from their developers. Besides, both ITDetector and
getITD reported the mutations in the Tab-separated value (TSV)
format, whereas the other tools provided the results in the
standard variant call format (VCF), which is convenient for
downstream bioinformatics analysis. The detection principles
and limitations of the six software platforms were summarized
as follows.

Pindel

Pindel incorporates a typical method for detecting structural
variations using a split-read strategy, which adopts a pattern
growth algorithm to find the smallest and largest unique sub-
strings that match the known sequence. Pindel first aligns all
reads to the reference genome, then selects the paired-end
reads with only one end successfully mapped and divides the
unmapped end into two parts, continuing their alignment to
the reference genome. Finally, it checks the realignment results
of the two parts to identify the ITD. The two parts covering
the ITD can be successfully aligned to the reference genome,
with the alignment positions then connected end to end. Pre-
vious studies have shown that Pindel can identify the position
and length of ITD with high accuracy; however, the detected
mutation frequency is low [34, 37, 38, 40].

ITDseek

ITDseek specifically searches for all soft-clipping points in pri-
mary alignments and correlates them with the correspond-
ing secondary alignments (marked as hard-clipping) to iden-
tify FLT3-ITD, as the reads containing ITD are marked for soft-
clipping in the alignment result. Therefore, ITDseek strongly
relies on the -M parameter of BWA-MEM to mark shorter split
hits as secondary (Supplementary Table 1). Besides, ITDseek
reports all insertions of FLT3 exon14 and exon15 in the result
as ITDs. Notably, ITDseek was developed based on amplicon
sequencing data. Although the author stated that it could be
applied to HC sequencing data, to our knowledge no research
or evaluation of this issue has yet been reported.

ScanITD

ScanITD detects FLT3-ITD following a similar principle as ITD-
seek but overcomes its noted deficiencies. An improvement
incorporated in ScanITD is the string rotation method, which
can distinguish insertions of novel sequences and duplications
of the genome sequence. Conversely, the ITD callers, such as ITD-
seek, are unable to differentiate shorter insertions and tandem
repeats. Moreover, ScanITD regards all chimeric reads containing
ITD, and the split reads at the same position of the reference
genome as mutation reads when calculating the allele frequency.
Nevertheless, ScanITD cannot detect complex types of FLT3-ITD,
such as duplications carrying short insertions and deletions.

getITD

getITD first selects high-quality sequencing reads aligning to
the reference genome to identify insertions, then determines
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whether the insertions are ITDs and finally annotates insertions
and ITDs. A set of high-confidence FLT3-ITD lists can be obtained
by filtering out ITDs with variant allele frequencies <0.006%
and <2 supported reads. However, getITD utilizes FASTQ files
as input and cannot parse large files (such as the sequencing
data used in the present study containing 193 genes). Thus, it
becomes necessary to extract reads in a certain region from the
FASTQ file manually. In addition, the upper limit of ITD length
detected by getITD is affected by the length of the sequencing
data.

ITDetector

ITDetector is a method for detecting FLT3-ITD adopting an
assembly strategy. ITDetector collects soft-clipping sequences
>20 bp in length and realigns them to the human reference
genome to identify ITD breakpoint pairs (ITD-BPPs), whose
corresponding soft-clipping sequences at the left and right
breakpoints align to the position of the other breakpoints.
Supported reads and their mate pairs for each ITD-BPP are
assembled to generate a contig sequence. Finally, the contig
sequences are checked to confirm whether they cover the
corresponding ITD-BPPs. ITDetector effectively avoids the
deviation caused by alignment errors; however, it cannot detect
ITDs with more than two duplicates and is suitable for somatic
ITD detection only.

FLT3_ITD_ext

Reads containing ITD result in local alignment and soft-
clipping upon mapping to the reference genome. FLT3_ITD_ext
extends these reads and adopts the central clustering-based
greedy algorithm sumaclust for clustering, with each centroid
sequence of the clusters being regarded as an FLT3-ITD.
This method is unique in exon interval sensitivity, UMI
handling, alignment-based annotation and platform-specific
AR estimates, which can effectively solve the shortcomings of
existing methods that underestimate mutation frequency. The
limitation of FLT3_ITD_ext is its inability to identify large, purely
non-templated insertions, such as dispersed duplications.

Experiments using six FLT3-ITD detection
software platforms

We tested all six software platforms on an Ubuntu 16.04.4 LTS
server with Linux 4.4.0-116-generic x86_64. ITDseek, ITDetector
and FLT3_ITD_ext were run in the Perl environment; getITD
and ScanITD, which are available as Python scripts, were exe-
cuted via the terminal (command line) in Python version 3.8.1;
and Pindel was compiled and run in the C++ environment.
All software programs were run using the default parameter
settings obtained from the respective instruction manuals. The
thresholds of detecting insert length and allele frequency were
fine-tuned according to the information of the simulated data.
The execution time was recorded as the time taken to detect
FLT3-ITD; the previous data processing and subsequent result
filtering time were not included.

Performance evaluation of detection tools

In order to evaluate the performance of each software plat-
form in detecting FLT3-ITD, the performance test and analysis
of results were conducted on simulated and biological data.

Comparative analysis of the software mainly involved four fac-
tors. (1) Qualitative analysis: comparison of the ability to dis-
tinguish FLT3-ITD-positive and -negative patients correctly; pri-
mary measurement indicators included sensitivity, specificity,
false-positives, F1-score and accuracy. (2) Quantitative analysis:
comparison of the accuracy of the ITD insertion position, length
and mutation frequency reported in positive samples. The gold
standard to measure the detection performance is the result of
fragment analysis for real data and the pre-set ITD information
for simulated data. The capacity of quantitative analysis mainly
considers its linear correlation with the gold standard results,
with the Pearson correlation coefficient and R2 being adopted
for correlation analysis. (3) Redundancy rate: comparison of the
redundancy rate of the results. (4) Execution time: comparison
of the time required for FLT3-ITD detection by various software
platforms under the same computing environment.

Results
PCR and CE fragment analysis

PCR and CE results showed that the 163 AML samples included
29 (17.79%) FLT3-ITD-positive and 134 (82.21%) negative cases.
Fragment analysis of the 29 positive cases revealed that the
insert length ranged from 6 to 165 bp, the allele frequency
ranged from 4.45 to 69% and each sample contained one or
two ITD mutations. The peak graph for fragment analysis using
GeneMapper is shown in Supplementary Figure 2. In the present
study, the expected peak value of the wild-type PCR product was
324 bp; a peak with a value greater than this was considered as
an FLT3-ITD. Therefore, the mutation peak appeared on the right
side of the wild-type fragment, with the number of right-hand
peaks reflecting the number of FLT3-ITD in a sample.

Comparison of the six methods

We tested the six representative software platforms (Pindel,
ITDseek, ScanITD, getITD, ITDetector and FLT3_ITD_ext) on sim-
ulated and real data to evaluate the performance of each package
in detecting FLT3-ITD. As the format of the results and the
description of the mutation differ for each platform, we wrote
Python scripts to batch process the results for the purpose of
extracting the sample name, ITD insertion position, sequence
information, length and allele frequency to facilitate direct com-
parison.

Qualitative analysis

The key indicators used to measure qualitative analysis ability
comprised sensitivity (recall rate), which refers to the proportion
of positive samples that are detected among the samples judged
to be FLT3-ITD-positive by the gold standard; specificity, which
refers to the proportion of negative samples that are detected
among the samples judged to be negative by the gold standard;
precision, which refers to the proportion of the samples judged
to be FLT3-ITD-positive by the gold standard among the detected
positive samples; false-positive, which refers to the proportion of
positive samples that are detected among the samples judged to
be negative by the gold standard; and F1-score, defined as the
harmonic average of precision and recall.

Pindel, ITDseek and FLT3_ITD_ext detected all 500 positive
samples in the simulated data with a sensitivity of 100%,
whereas ITDetector and ScanITD detected 86.8% (434) and
83% (415) of the 500 samples, respectively. However, getITD
only detected 20.20% (101) (Figure 2), mainly resulted from its
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Figure 2. Heatmap of qualitative results of FLT3-ITD detection software on

simulated and real data. The colour reflects the qualitative analysis capability

of the six software platforms; darker colour indicates higher qualitative analysis

capability.

sensitivity limited by read length and region (chr13:28 608 023–
28 608 352). The statistical results showed that performance of
getITD was improved when the ITD length is less than 100 bp
(Supplementary Table 2). According to the region, we further
grouped the simulated samples and found that F1-score of
getITD was improved from 0.336 to 0.782 (Supplementary Table
2). In addition, all software platforms showed a specificity of
100% and a false-positive rate of 0.00%. We considered that
this phenomenon primarily resulted from the simulated data
being generated under ideal conditions, such as high sequencing
quality, single mutation type (ITD) and only one FLT3-ITD in each
sample.

Therefore, we further conducted testing using biological
data from 163 AML cases (Figure 2). Pindel, ScanITD and
FLT3_ITD_ext performed significantly better than the other
three software programs, with high sensitivity and specificity,
and low false-positive rates. FLT3_ITD_ext showed the highest
sensitivity (100%) and detected all positive samples; ScanITD
and Pindel showed comparable sensitivity (96.55%) although
ScanITD exhibited the highest specificity (100%) and the lowest
false-positive rate (0.00%). Comprehensively, considering the
evaluation indicators, FLT3_ITD_ext and ScanITD performed
better with regard to the qualitative analysis being able to
distinguish between FLT3-ITD-positive and -negative patients
more accurately.

Quantitative analysis

Quantitative analysis of FLT3-ITD refers to the accuracy of
detecting ITD insertion position, length and allele frequency
in positive samples, mainly considering the linear correlation
with the gold standard results by using the Pearson correlation
coefficient and R2 correlation analysis.

On the simulated dataset, the six software platforms accu-
rately located the insertion position of FLT3-ITD, with the value
of each evaluation index differing <0.10 (Table 2). Notably, getITD
was not sensitive to FLT3-ITDs with length longer than read
length (Supplementary Figure 3), whereas the other five software
programs precisely detected the mutation length. However, the
accuracy of the allele frequency detected by different software
platforms markedly varied (except for ITDetector, which did
not report allele frequency). The accuracy of allele frequency
detected by ITDseek, ScanITD and getITD was low, with the
Pearson correlation coefficient of the detection and fragment
analysis results being <0.80 and the R2 value of the fitting curve
<0.50, which does not indicate a strong correlation between
these results (Figure 3). In contrast, the allele frequency reported
by Pindel and FLT3_ITD_ext strongly correlated with that from
fragment analysis. Further observation of the linear regression
slope for the fitting curve showed that the four software pro-
grams Pindel, ITDseek, getITD and ScanITD underestimated the
allele frequency of ITD, which was consistent with the con-
clusion from previous studies [21, 31]. FLT3_ITD_ext was the
only platform that accurately identified the ITD allele frequency
(linear regression slope = 0.98).

We only compared the accuracy of FLT3-ITD length and allele
frequency on the AML data because PCR and fragment analysis
did not report the insertion position of ITD (Table 2 and Figure 3).
The results suggested that except for ITDseek, the other five soft-
ware platforms could also accurately detect insertion length. The
allele frequency detected by Pindel and FLT3_ITD_ext exhibited
a strong correlation with the fragment analysis compared with
that of the other programs (Figure 3 and Supplementary Figure
4), which is consistent with the conclusions from the simulated
data. Similarly, FLT3_ITD_ext effectively solved underestimating
the allele frequency exhibited using most methods by adjusting
its allele frequency through internal algorithms (linear regres-
sion slope = 1.05). In general, FLT3_ITD_ext accurately detected
the insertion position, length and allele frequency of ITD on both
simulated and real data.

Redundancy rate

We next assessed the six methods mainly focusing on the
redundancy rate of the results. The proportion of extra
information in the results was termed the redundancy rate in
this study. The experiments showed that multiple mutation
items were reported with continuous insertion positions for
one FLT3-ITD (Figure 4). High redundancy in results is not con-
ducive for obtaining precise ITD information and complicates
subsequent filtering and post-processing. In addition, through
comparative analysis, we also found that the method based on
assembly strategy (ITDetector) exhibited a low redundancy rate.
Furthermore, ScanITD and FLT3_ITD_ext significantly reduced
the redundancy rate compared with other methods based on
alignment information (Table 3).

Execution time

The execution time required for detecting FLT3-ITD varied
among the six tools, primarily owing to the dependent software
and detection principle. We evaluated the execution time of
all software platforms by carrying out detection on identical
datasets with the default parameter settings. Table 3 showed
that ITDseek had the fastest performance on both simulated
and real data, being able to analyse one AML sample in <1 s
on average, followed by FLT3_ITD_ext (2.77 s), getITD (14.85 s),
Pindel (17.65 s) and ScanITD (336.74 s). ITDetector was the
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Table 2. Quantitative analysis results of FLT3-ITD detection tools

Tool data and evaluation indicator Pindel ITDseek ScanITD ITDetector getITD FLT3_ITD_ext

Simulated
data

Position Pearson correlation coefficient 0.9871 0.9994 0.9999 1.0000 0.9545 0.9999
Linear regression slope1 1.06 1.02 1.00 1.00 1.09 1.00
R2 0.9745 0.9989 0.9998 1.0000 0.9111 0.9998

Length Pearson correlation coefficient 0.9999 0.9998 1.0000 0.9999 -0.3827 1.0000
Linear regression slope 1.00 1.00 1.00 1.00 -0.09 1.00
R2 1.0000 0.9997 1.0000 0.9998 0.1465 1.0000

Frequency Linear regression slope 0.53 0.21 0.39 —— 0.30 0.98

Real data Length Pearson correlation coefficient 0.9999 0.8559 0.9999 0.9983 0.9967 0.9999
Linear regression slope 1.02 0.83 1.02 0.98 1.01 1.02
R2 0.9998 0.7326 0.9998 0.9966 0.9935 0.9998

Frequency Linear regression slope 0.70 0.57 0.44 —— 0.59 1.05

1The regression slope of the fitting curve is used to evaluate the veracity of detecting FLT3-ITD.

Figure 3. Quantitative analysis of the FLT3-ITD mutation allele fraction using simulated (bottom-left) and real data (top-right). The different colours represent five tools

(ITDetector was excluded as it did not report the mutation allele fraction). Each dot represents a positive sample detected by the software. The solid line constitutes

the linear regression curve of the FLT3-ITD allele fraction reported by the NGS tools and the gold standard. The list in the dashed box represents the R2 and Pearson

correlation coefficient of each fitted curve.

Table 3. Redundancy rate and execution time of FLT3-ITD detection tools

Evaluation tool indicator Pindel ITDseek ScanITD ITDetector getITD FLT3_ITD_ext

Simulated
data

Redundancy rate (%) 7.75 47.92 11.32 1.14 76.99 0.00
Execution time1 (s) 10.62 0.09 2.42 301.78 21.72 1.65

Real data Redundancy rate (%) 60.76 53.47 20.51 27.03 71.79 18.42
Execution time (s) 17.65 0.81 336.74 10106.23 14.85 2.77

1The execution time is the average time required to detect the FLT3-ITD for each sample.
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Figure 4. Example of redundant FLT3-ITD lists generated by the six software

platforms. (A) Integrative Genomics Viewer screenshot of a positive sample

(FLT3-ITD of 18 bp at chr13: 28 608 245–28 608 262). Reads covering ITD are

marked as coloured soft-clipping. The black dotted line represents the left and

right breakpoints formed by aligning these reads to the reference genome, and

the sequences between the two breakpoints represent the repeated fragments.

(B) FLT3-ITD lists detected by Pindel, ITDseek, ITDetector, getITD, ScanITD and

FLT3_ITD_ext.

slowest, requiring nearly 3 h to analyse one AML sample, which
is inconvenient for practical application. Notably, getITD requires
FASTQ files as input, cannot parse large files, and requires
manual extraction of the region from the FASTQ files prior to
implementation, which is time-consuming. However, these were
not included in the execution time.

Discussion
Method summary and software comparison

In this study, we initially investigated eight software platforms to
detect FLT3-ITD in AML and summarized the detection strategy,
operating environment, applicable scenarios and other features.
To further evaluate the detection performance, we compared
and assessed the qualitative and quantitative analysis capa-
bilities of six representative tools on simulated and biological
data. Except for getITD, the other five software exhibited con-
sistent detection capability on simulated and biological data. On
the contrary, getITD performed significantly better on biological
data, mainly resulted from its sensitivity limited by read length

and region. In addition, most tested programs underestimated
the frequency of mutations relative to fragment analysis except
for FLT3_ITD_ext.

Furthermore, we also compared the redundancy rate and
execution time of these tools. The experiments showed that
the redundancy rate of results on biological data was generally
higher compared with simulated data, mainly because other
mutation types in samples and sequence features nearby the
insertion position of FLT3_ITD may also potentially affect detec-
tion. In addition, the results also revealed that the execution
time of ITDetector was significantly longer than other tools. The
reason behind this observation was that ITDetector relied on
the CAP3 Sequence Assembly Program and did not provide a
parameter to set the region for detecting ITD. Overall, our study
indicated that FLT3_ITD_ext accurately identified and quantified
FLT3-ITD-positive samples considering all evaluation indicators
and obtained allele frequencies nearly equal to the results of
fragment analysis, which is sufficient to satisfy present clinical
research requirements.

Limitations of this study

Although we comprehensively compared the performance of
existing software to detect FLT3-ITD in this review, some limi-
tations were noted. Firstly, we simulated the data used herein
under ideal conditions, with each sample only containing a
single ITD mutation. However, the sequencing errors, contam-
ination and complex mutations in NGS data may affect the
detection performance, resulting in higher sensitivity and speci-
ficity of detection using simulated rather than biological data.
In addition, we tested only HC sequencing data; thus, amplicon
sequencing data should also be included to realize the analysis
of software performance across sequencing platforms. Finally,
several tools were not included in our study, as they did not
provide open-source programs and had execution errors.

Limitations of existing software and directions
of future developments

The FLT3-ITD detection software based on NGS has made signif-
icant advances. However, several problems remain to be solved.
We found that most software platforms relied on third-party
programs that needed to be manually installed. However, the
installation process was relatively complex, rendering the pro-
cess potentially difficult for researchers lacking sufficient back-
ground knowledge in computers. The selection of quality control
and sequence alignment tools during data pre-processing is also
crucial for the detection software, most of which only accept
BAM files as input and lack detailed instructions. Moreover,
none of the existing software platforms can detect large, purely
non-template insertions, such as duplications carrying indels,
and dispersed duplications. Although no large non-template
insertions have been reported in FLT3, this aspect should be
further investigated. Finally, detection of FLT3-ITD in the ref-
erence genome repeat regions remains a significant problem,
which not only leads to incomplete alignment information but
also affects the assembly quality, resulting in reduced detection
performance.

Therefore, future research should focus on integrating the
advantages of existing software, automating the installation and
improving the detection of FLT3-ITD with atypical structures.
A bioinformatics pipeline affording platform specificity, high
operational efficiency and high portability should be developed
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that accepts FASTQ files as input and tests on a larger sam-
ple set to provide enhanced practical guidance for the clinical
stratification and prognostic treatment of patients with AML.

Key Points
• We compiled a comprehensive summary of the prin-

ciples, functionality and limitations of the software
used for detecting FLT3-ITD.

• We compared the detection performance of six rep-
resentative tools using simulated and biological data.
We found that FLT3_ITD_ext outperformed the other
tools with regard to qualitative and quantitative anal-
ysis, redundancy rate and execution time.

• A Docker image (https://github.com/niu-lab/docker-
flt3-itd) has been made available to facilitate identi-
fying and quantifying FLT3-ITDs.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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