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Abstract

Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the
development of human complex diseases. Discovering the associations between miRNAs and diseases has become an
important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental
methods is complicated and time-consuming, many computational methods have been proposed to identify the potential
associations. However, there are still challenges in accurately determining potential associations between miRNA and
disease by using multisource data.
Results: In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict
potential miRNA–disease associations. Different from simple multisource information integration, MMGCN employs GCN
encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can
enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively
learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve
superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the
effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association
prediction. Case studies also indicate the ability of the method for discovering new associations.
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Introduction
MicroRNAs (miRNAs) are a kind of small endogenous noncoding
RNAs that play critical roles in multiple biological pro-
cesses, including cell development, proliferation differentiation,
immune reaction and so on [1–3]. Their abnormal expression
can directly or indirectly cause changes in the expression level
of their regulated target genes, leading to complex diseases
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[4–6]. Therefore, to understand the pathogenesis of diseases,
it is necessary to identify more associations between miRNAs
and diseases.

So far, several wet experiment methods, such as qPT-PCR
[7] and Northern blot [8], can identify the disease-associated
miRNA by reflecting the true expression level of miRNA in
cells. However, determining the associations between miRNAs
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and diseases by biological experiments is time-consuming and
expensive [9]. As a result, it is necessary to develop computa-
tional methods to identify disease-related miRNAs. According
to previous studies [10], existing computational methods can
be divided into two categories, i.e. similarity measure-based
methods and machine learning-based methods.

The similarity-based approach is based on the assumption
that miRNAs with similarity functions are more likely to be
associated with similar diseases and vice versa. To well utilize
the known information, Jiang et al. [11] considered the miRNA–
disease association prediction problem as the link prediction
problem on miRNA–disease networks. The scholars proposed
the first computational method that used a discrete hyperge-
ometric probability distribution to identify the miRNA–disease
association. Later on, to achieve better prediction results, Xuan
et al. [12] designed a computational model HDMP that evalu-
ated the k most functionally similar neighbors to explore the
possibility that miRNAs are associated with the disease. How-
ever, the above methods only considered the direct edge infor-
mation in the involved networks, neglecting the global struc-
ture of these networks. Based on global network information,
some researchers [13–15] predict miRNA–disease associations by
using the random walk with restart algorithm. Although many
attempts have achieved significant performances in the aspect
of finding novel associations, for those diseases where there
are few or no known related miRNAs, most of the methods
cannot infer potentially related miRNAs. To solve this problem,
many new methods have been proposed, NetGS [9] explored the
global network similarity and used diffusion profile consistency
to capture the relationship between diseases and miRNAs. It can
solve the new miRNA–disease association prediction problem
with reliable accuracy. Moreover, Xiao et al. [16] proposed a graph
regularized non-negative matrix factorization approach, which
is effective to infer unknown miRNA–disease associations for
those novel diseases and miRNAs. Nevertheless, it has the prob-
lem of being sensitive to neighborhood information and strongly
dependent on the input data source. To this end, Zhang et al. [17]
formulated a model that could learn the neighbor information
for each node adaptively to update the latent factor of the node,
and further promote the effectiveness of prediction on poten-
tial links. Although these similarity-based models perform well,
many complex and nonlinear relationships between miRNAs
and diseases networks remain difficult to be captured.

Recently, machine learning-based models have been pro-
posed to better extract features, and thereby improve predic-
tion performance. Chen et al. put forward inductive matrix
completion (IMCMDA) [18] and ensemble learning method
(EDTMDA) [19] successively to learn complicated nonlinear
relationships between networks. However, with the rapid growth
of associated data in recent years, traditional machine learning
algorithms cannot adapt to complex and changeable data. Deep
learning methods have been widely used in bioinformatics
applications, for their ability to process unstructured data
quickly and efficiently. For example, CNNMDA [20] utilized dual
convolutional neural networks (CNN) to learn the original and
global representation of a miRNA–disease pair. To overcome
the problem of ‘catastrophic forgetting’, MISSIM [21] introduced
incremental learning into the field of bioassociation prediction
for the first time and achieved superior performance on the
miRNA disease association prediction task. While graph-based
methods, such as GCN [22], GAT [23], etc., can use contextual
information to make the model have splendid performance.
Now there are some studies that exploited graph neural
networks to learn the context representation of nodes, such as

GCN-MF [24], IDDkin [25], GAERF [26], GCNCDA [27], and they
all achieved outstanding performance. Nevertheless, most
of the models simply employ single information or perform
simple information filling to integrate multiple sources of
information. It is still a challenge on how to effectively use
multisource information to improve the accuracy of prediction.
Recent studies [28–30] have shown that the incorporation of
multisource information is widely embraced in the biological
fields. For example, MDA-SKF [31] is a similarity-kernel-
fusion-based methodology for integrating multiple similarity
kernels of miRNA and disease. However, MDA-SKF ignored
contextual information in the graph. To better learn the node
features, NeoDTI [32] integrated diverse information from
heterogeneous network data and used graph neural network
to automatically learn topology-preserving representations of
drugs and targets. IMDA-BN [33] integrated nine relationship
types and utilized graph embedding algorithm to obtain the
network embedded representation of nodes for miRNA–disease
interactions prediction. Integrating multisource information
into miRNA–disease association prediction may improve the
performance. Besides, the contribution of different information
to the prediction task is not necessarily the same [34]. Thus,
proposing a method that can learn multiview features adaptively
may provide a new perspective for miRNA disease association
prediction.

In this study, we present a Multi-view Multichannel Attention
Graph Convolutional Network named MMGCN for miRNA–
disease association prediction. First, we use the graph
convolutional network (GCN) to learn the multiview features
of miRNA and disease from their multiple similarity networks,
respectively. Second, instead of simply integrate multisource
information, we utilize the attention mechanism on multiple
features to learn the importance of different features adaptively.
Then the CNN combiner is used to obtain the final embedding.
Finally, we regard the problem of disease-related miRNA identi-
fication as a recommender task and use matrix completion to
predict potential miRNA–disease associations. To evaluate the
effectiveness of MMGCN, we compare it with some state-of-the-
art approaches on two benchmark datasets under 10 times 5-fold
cross-validation. Furthermore, to demonstrate the necessity of
each stage, we conduct ablation study and compare the results
of our methods under different views. Finally, case studies are
used to illustrate the strong predictive power of MMGCN in
discovering novel associations between diseases and miRNAs.

Methods
Model framework

In this section, we propose a novel multiview deep learning
framework named MMGCN to predict miRNA–disease associ-
ations. We frame the miRNA–disease prediction problem as a
recommendation task by fusing multisource similarity views
of miRNA and disease. More specifically, as shown in Figure 1,
MMGCN is an end-to-end model that consists of the following
three modules: (i) A multiview GCN encoder for encoding miR-
NAs and disease multisource data (Figure 1A). (ii) A multichannel
attention mechanism to separately learn the importance of the
different channel information for miRNA and disease learned
from the GCN encoder (Figure 1B and C). (iii) A CNN combiner
that recombines the features from the multichannel attention
module to obtain a unified embedding of miRNA and disease
(Figure 1D). After obtaining the feature embeddings of miRNA
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Figure 1. Overview of MMGCN model architecture. (A) Multi-view GCN encoder. The GCN encoder takes multiple similarity graphs of miRNA and disease nodes as input,

fuses their neighbor information, and generates miRNA and disease embeddings under different views, respectively. (B) Multichannel attention mechanism on miRNA.

It is leveraged to focus on the more important miRNA channel embedding, and get normalized channel attention features. (C) Multichannel attention mechanism on

disease. Its function is similar to that of (B), which is used to capture important information on the disease feature channel. (D) CNN combiner. The multichannel

attention features of miRNA and disease are convolved respectively to obtain their corresponding representations for association prediction.

and disease, respectively, we use matrix factorization to obtain
the potential correlation matrix of miRNA and disease.

Similarity measures

In this section, we utilize a variety of biological data sources to
comprehensively characterize similarity views of miRNAs and
diseases, which are calculated in detail below.

MiRNA sequence similarity

We figure out miRNA seed region sequence similarity matrix Ms

by using Needleman–Wunsch Algorithm [35]. To ensure global
consistency, we get the normalized relation NMs(mi, mj) between
mi and mj as follows:

NMs
(
mi, mj

) = Ms
(
mi, mj

) − Msmin

Msmax − Msmin

(1)

where Msmin and Msmax represent the minimum and maximum
score in miRNA sequence similarity matrix Ms, respectively.
Then, the sequence similarity between miRNAs mi and mj can
be written as follows:

Gs
m

(
mi, mj

) =
{

1 mi = mj

NMs
(
mi, mj

)
mi �= mj

(2)

Gs
m ∈ RM×Mcan be regarded as a sequential view of miRNAs,

where M denotes the number of miRNAs.

MiRNA functional similarity

To avoid reliance on existing associations between miRNA
and disease, we follow previous works [16], using associations
between miRNAs and genes to calculate miRNA functional
similarity.

The gene functional interaction network is obtained from
HumanNet [36] which contains the probability of a functional
linkage between genes. It is called log-likelihood scores (LLS).
We first obtain the similarity between genes LLSN by applying
min–max normalization to LLS. And the gene similarity graph is
defined as follows:

S
(
gi, gj

) =

⎧⎪⎨
⎪⎩

1 gi = gj

0 gi �= gj ∩ e
(
gi, gj

)
/∈ SHumanNet

LLSN
(
gi, gj

)
gi �= gj ∩ e

(
gi, gj

) ∈ SHumanNet

(3)

where SHumanNet contains all links in HumanNet; e(gi, gj) is the edge
between gene gi and gj. Then, we calculate the similarity score
between a gene gs and a set of genes GS = {gs1, gs2, . . . , .gsk}. as
follows:

S
(
gs, GS

) = max
1≤i≤k

(S
(
gs, gsi

)
) (4)
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Subsequently, we can get the functional similarity between
miRNAs mi and mj by Equation (5).

Gf
m

(
mi, mj

) =
∑

g∈Gi
S

(
g, GSj

) + ∑
g∈Gj

S
(
g, GSi

)
|Gi| + ∣∣Gj

∣∣ (5)

where Gi and Gj represents the corresponding gene sets that are
related to miRNAs mi and mj, respectively. Finally, we obtain the
view of miRNA functional similarity Gf

m ∈ RM×M.

Disease semantic similarity

To describe the relationship between diseases, we use the
Directed Acyclic Graph (DAG) to compute their semantic
similarities in the same way as Wang et al. [37]. Consequently, the
DAG graph of disease d can be defined as DAG(d) = (d, T(d), E(d)),
in which T(d) denotes a set of diseases that contains all
the ancestors of d including d, and E(d) is the link set of
the DAG graph of d. Therefore, the semantic contribution
of a disease t in DAG(d) to disease d can be computed as
follows:

{
Dd(t) = 1 if t = d

Dd(t) = max
{
� ∗ Dd (t′) |t′ ∈ children of t

}
if t �= d

(6)

where � is the semantic contribution factor (� = 0.5) [37]. It
means that as the distance between disease t and its ancestor
is farther, the semantic contribution of disease t to disease d is
lower. After that, the similarity between different disease di and
dj can be evaluated as follows:

Gs
d

(
di, dj

) =
∑

t∈T(di)∩T(dj)

(
Ddi

(t) + Ddj
(t)

)
∑

t∈T(di)
Ddi

(t) + ∑
t∈T(dj)

Ddj
(t)

(7)

where Ddi
(t) and Ddj

(t) denotes the semantic contribution of
disease t to disease di and dj, respectively. Matrix Gs

d ∈ RN×N can
be considered as the semantic view of disease, where N denotes
the number of diseases.

Target-based similarity measure for diseases

The target-based similarity measure for diseases is similar
to the calculation of miRNA functional similarity, using
associations between diseases and genes. Analogously, the
formula of similarity between disease di and dj can be defined
as:

Gf
d

(
di, dj

) =
∑

g∈Gi
S

(
g, GSj

) + ∑
g∈Gj

S
(
g, GSi

)
|GSi| + ∣∣GSj

∣∣ (8)

Similar to miRNA functional similarity, GSi and GSj repre-
sents gene sets that are related to diseases di and dj, respec-
tively. Then we obtain the view of disease target-based similarity
Gf

d ∈ RN×N.

Multiview GCN encoder

GCN is a powerful graph neural network, which acts directly
on the graph and utilizes the graph structural information. It
can aggregate information about neighbors, captures depen-
dencies between data and generates a useful representation

of nodes in the graph. To capture the structure information
of multiple similarity views, we use GCN to encode different
views respectively. As shown in Figure 1A, GCN is leveraged to
obtain the embeddings of miRNA and disease in different views.
We define the sth view of miRNA and the qth view of disease
as Gs

m and Gq
d, respectively. Given xi ∈ R1×p as the feature of

miRNA i, the features {xi1 , xi2 , . . . , xik } belongs to its neighbor in
view s: {i1, i2, . . . , ik}, respectively. In addition to the neighbor
information, that of the node itself cannot be ignored when
learning the embedding. For the message passing from miRNA i
and its neighbors, we can get the representation of i in view s as
follows:

x′
i = σ

⎛
⎝

⎛
⎝s̃i,ixi +

k∑
j=1

s̃i,jxij

⎞
⎠ Wi

⎞
⎠ (9)

where s̃i,j means the corresponding normalized similarity
weight between miRNA i and its neighbor ij in view s; Wi ∈
Rp×Fm is a learnable parameter to project the features into
the latent space and σ (•) denotes the nonlinear activation
function.

After getting the propagation rule for a single node using GCN
on view s, we can obtain the miRNA nodes embedding on the
entire graph Gs

m:

X(l+1)
s = σ

(
∼
Ds

− 1
2 ∼
S

∼
Ds

− 1
2

X(l)
s W(l)

s

)
(10)

where X(l)
s ∈ RM×Fm denotes the Fm dimension embeddings of

M miRNA nodes that obtained by the lth GCN layer on view s,
in particular, X(0)

s is a randomly initialized embedding; W(l)
s ∈

RFm×Fm is a learnable matrix,
∼
Ds denotes the diagonal matrix,

∼
Ds(i, i) = ∑

j

∼
S(i, j).

∼
S is the corresponding normalized similarity

weight matrix on view s. Since we add a self-loop to ensure
the importance of the node itself, the formula is constructed as
follows:

∼
S = I + S (11)

Similarly, we can get disease nodes embedding on the qth
view Gq

d:

Y(l+1)
q = σ

(
∼
Dq

− 1
2 ∼
Q

∼
Dq

− 1
2

Y(l)
q W(l)

q

)
(12)

analogously, Y(l)
q ∈ RN×Fd denotes the Fd dimension embeddings of

N disease nodes that attained by the lth GCN layer on view q, in
particular, Y(0)

q is a randomly initialized embedding; W(l)
q ∈ RFd×Fd is

a learnable matrix,
∼
Dq denotes the diagonal matrix,

∼
Dq(i, i) =∑

j

∼
Q(i, j).

∼
Q represents the similarity weight matrix on view q after

adding the self-loop:

∼
Q = I + Q (13)

For miRNAs and diseases in a single view, we can get their
embedding as follows:

{
X(1)

s , X(2)
s , . . . , X(l)

s

}
(14)

{
Y(1)

q , Y(2)
q , . . . , Y(l)

q

}
(15)

where l represents the number of layers of GCN.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab174/6271996 by guest on 20 April 2024
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By using multiple layers of GCN to encode multiviews of
miRNAs and diseases, we can obtain the features of miRNAs and
diseases from different perspectives. For miRNAs of S views and
disease of Q views, their features can be shown as:

{{
X(1)

1 , X(2)
1 , . . . , X(l)

1

}
,
{
X(1)

2 , X(2)
2 , . . . , X(l)

2

}
, . . . ,

{
X(1)

S , X(2)
S , . . . , X(l)

S

}}
(16)

{{
Y(1)

1 , Y(2)
1 , . . . , Y(l)

1

}
,
{
Y(1)

2 , Y(2)
2 , . . . , Y(l)

2

}
, . . . ,

{
Y(1)

Q , Y(2)
Q , . . . , Y(l)

Q

}}
(17)

After getting multiple embeddings under different views,
we shall introduce how to focus on more important feature
information in the next step.

Multichannel attention

In the user–item recommendation task of social networks, the
user’s purchasing behavior is driven by one or more motives,
and the features of the item often include multiple aspects.
A single perspective embedding may not achieve the expected
effect for the recommendation task. Therefore, in such tasks,
researchers tend to obtain the embeddings of users and items
from multiple perspectives, and different perspectives should
have different contributions when learning their embeddings
[38]. With the same way, for miRNAs and diseases, node features
extracted from different similarity views may contain distinct
context information, thus we introduce attention mechanism to
focus on more important features.

As shown in Figure 1B, the multiple feature matrices of
miRNA are stacked to form a feature tensor.We regard the
stacked miRNA feature tensor as an image, and each feature
matrix of miRNA can be seen as a channel on the image. Then the
task of acquiring the importance of features from multiple views
can be transformed into getting the importance of multiple
channels in the task of image feature extraction. Inspired by
Hu et al. [39], we use attention on the channel to assign weights
to features.

To obtain the importance of different channels, we first uti-
lize global average pooling to generate channel-based statistics.
For miRNAs with Cm

in channels, a statistic Z ∈ R1×1×Cm
in is gener-

ated by squeezing miRNA’s features Xm = [x1, x2, . . . , xCm
in

], Xm ∈
RFm×M×Cm

in . Specifically, for the cth feature matrix of miRNA xc, the
channel statistic zc is calculated as:

zc = φsq (xc) = 1
Fm × M

Fm∑
i=1

M∑
j=1

xc
(
i, j

)
(18)

To fully capture channel importance, we employ attention
mechanism to compute the attention weights of channels:

Zatt = φatten
(
Z, Wm

in

) = δ (W2σ (W1Z)) (19)

where δ(•) is Sigmoid activation, σ (•) is Relu activation, Wm
in =

{W1, W2} is the training parameter. Finally, multichannel atten-
tion can be defined as Zatt = [zatt

1 , zatt
2 , . . . , zatt

Cm
in

].
After getting the attention weight of different channels, we

combine the channel features with attention to normalize it,
which is defined as follows:

x̃c = φscale
(
xc, zatt

c

) = zatt
c • xc (20)

Through the above steps, we can obtain the normalized

miRNA channel information
∼
Xm = [

∼
x1,

∼
x2, . . . ,

∼
xCm

in
]. Similarly, the

disease channel information
∼
Yd = [

∼
y1,

∼
y2, . . . ,

∼
yCd

in
].

Next, we will introduce how to combine the channel infor-
mation to learn the final miRNA and disease embedding.

CNN combiner

Since multiple convolution kernels of CNN can help us learn
complex nonlinear relations in the feature of nodes, after
obtaining the multichannel features of miRNA, we utilize CNN
to extract features and generate the final miRNA embeddings
that integrate multiple view information. Given miRNA channel

information
∼
Xm = [

∼
x1,

∼
x2, . . . ,

∼
xCm

in
], the final embedding X′

m ∈
RCm

out×M is defined as follows:

Coutk = φagg

(∼
Xm

)
= biask +

Cm
in∑

i=1

x̃i ∗ wm
k (21)

X′
m = stack (Coutk)) (22)

where wm
k ∈ RFm×1 denotes convolution filter, it belongs to set

Wm
out = {wm

1 , wm
2 , . . . , wm

Cm
out

}, and ∗ denotes the convolution oper-

ator. Coutk ∈ R1×M means the embedding from the kth output
channel, where k= 1, 2 . . . , Cm

out. The final miRNA embedding
X′

m is obtained by stacking the embeddings of multiple output
channels.

Similarly, we can obtain disease final embedding Y′
d. These

learned embeddings will be used as the input in the final
miRNA–disease association prediction task.

Association prediction for miRNA and disease

We regard miRNA and disease association prediction as a rec-
ommendation task, and the preference matrix U ∈ RM×N can be
computed as:

U = X′
m

TY′
d (22)

for the elements in U, the higher Uij is, the more likely miRNA i is
to be associated with disease j, otherwise, the less likely miRNA
i is to be associated with disease j.

We use mean square error by minimizing the Frebious norm
of the difference between preference matrix U and label matrix
U′ as the loss function of our model. The loss is formally formu-
lated as follows:

L = ∥∥ U − U′∥∥ 2
F (23)

We test our codes on a machine equipped with one NVIDIA
2060 GPU and one 3.60 GHz Intel(R) Core(TM) i7-9700K CPU with
32 GB memory, and the running time of MMGCN on HMDDV3.2
dataset is 753 s.

Experiments
Data preparation

We use multiple biomedical datasets to extract the multisource
information of miRNAs and diseases, and build a network of
multiple views for subsequent association prediction tasks.
Below we describe the process of building a multiview network
in our study.

Known human miRNA–disease associations verified by
experimental evidences in literature are obtained from HMDD
v3.2 [40], which includes 35 547 associations between 1206
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miRNAs and 894 diseases. The miRNA sequence information
is downloaded from miRBase Release 22 [41], which contains
1917 human miRNAs. The miRTarBase Release 8.0 [42] contains
502 652 pairs of miRNA–gene relationships, including 2599
miRNAs. As done in previous studies [34, 37], we merge multiple
miRNA transcripts with the same mature miRNA. Then we
intersect the datasets and obtain 905 disease-associated miRNAs
that have sequence information. The semantic trees of diseases
and disease–gene relations are downloaded from MESH (https://
www.nlm.nih.gov/mesh/) and DisGeNET v7.0 [43]. The two
databases contain 29 638 and 30 170 diseases, respectively. After
merging duplicates and removing the irregular data, we get
12 446 experimentally validated miRNA–disease associations
among 853 miRNAs and 591 diseases. The weighted gene–gene
association network is got from HumanNet v2 [36]. For miRNAs
and diseases we obtain above, there are 14 971 and 19 258 genes
associated with them, respectively.

Besides, to better evaluate the performance of the model, we
use the miR2disease database [44] to build a small multiview
network. MiR2disease contains 2925 experimentally validated
associations between 438 miRNAs and 174 diseases. We use
the same method as above to perform intersection and dedu-
plication of the datasets, and finally get 701 miRNA–disease
associations, including 193 miRNAs and 54 diseases.

Experiment settings

We evaluate the performance of MMGCN to predict potential
disease-related miRNAs by performing 5-fold cross-validation.
In each round, the known miRNA–disease associations are con-
sidered as positive samples and randomly divided into five
disjoint subsets. One subset is considered as the testing set and
the remaining is utilized as the training set. The number of
GCN layer is selected in {2, 3, 4}, embedding size from miRNA
and disease is selected from {32, 64, 128, 256}, the number of
filters is set from {32, 64, 128, 256} and learning rate is chosen
in {0.1, 0.01, 0.001}. We evaluate the performance of MMGCN
and the baseline models on HMDD and miR2disease dataset,
and the parameters used by the other baselines are in the sup-
plementary materials. The analysis experiments of the MMGCN
model are based on the HMDD dataset. All experiments are
repeated 10 times to obtain a sound estimate of prediction
results.

Evaluation metrics include area under the receiver operating
characteristic (ROC) curve (AUC), area under the precision/re-
call (PR) curve (AUPRC), accuracy, precision, recall and F1-score.
Moreover, it is important to guide wet experiments through
the top-ranked disease-associated miRNAs obtained based on
the computational model. Therefore, we use precision@N and
recall@N to verify the performance of MMGCN and other meth-
ods within the top N. We set N = {5%, 10%} in all experiments.
The results reported are average of the 10 runs.

Baselines

To demonstrate the effectiveness of our method, we compare
it with the following baselines. In this study, the comparison
methods and the MMGCN model are run on the same dataset.

IMCMDA [18]: The method integrated miRNA functional simi-
larity, disease semantic similarity, and Gaussian interaction pro-
file kernel similarity, and used the inductive matrix completion
to generate associations.

SPM [34]: Zeng et al. constructed a bilayer network by integrat-
ing the miRNA–disease association network and their similarity

networks and then utilized the structural perturbation method
to discover potential associations between miRNA and disease.

MDHGI [45]: It is a computational model of matrix decompo-
sition and heterogeneous graph inference for discovering new
miRNA–disease associations.

GRGMF [17]: The method utilized similarity information as
Laplacian regularized terms, and proposed graph regularized
generalized matrix factorization to identify potential links in
biomedical bipartite networks.

NIMCGCN [46]: Li et al. performed GCN on miRNA similarity
network and disease similarity network, respectively, and intro-
duced a neural inductive matrix completion method to predict
miRNA–disease associations.

MDA-SKF [31]: The method proposed a novel similarity kernel
fusion to integrate multiple miRNA and disease similarity ker-
nels, respectively. Then utilized the Laplacian regularized least
squares method to uncover potential miRNA–disease associa-
tions.

KBMFMDA [47]: It is a neoteric Bayesian model that combined
kernel-based nonlinear dimensionality reduction, matrix factor-
ization and binary classification. The method projected miRNAs
and diseases into a unified subspace then predict potential
miRNAs for diseases.

SNMDA [48]: It utilized the sparsity of the miRNA disease
association network and presented a novel approach to predict
the potential microRNA disease associations based on sparse
neighborhood.

LLCMDA [49]: It is an approach based on Locality-constrained
Linear Coding (LLC). The method reconstructed similarity net-
works for both miRNAs and diseases using LLC and then applied
label propagation on the similarity networks to get reliable rele-
vant scores for the final output.

Performance comparison

Here, we use 10 times 5-fold cross-validation to evaluate the
performance of MMGCN with the other baselines on HMDD and
miR2disease datasets.

As shown in Figure 2 and 3 and Tables 1 and 2, our pro-
posed MMGCN method can achieve competitive performance
on both two datasets. For HMDD dataset, MMGCN outperforms
all the other methods under all evaluation metrics. Due to the
sparsity of the data, the precision and recall values of MMGCN
are relatively low. But MMGCN is still better than the compar-
ison method, which may attribute to the use of the attention
mechanism in multiple perspectives, i.e. the Multichannel atten-
tion mechanism enables MMGCN to capture richer and more
important features. It demonstrates the reasonable design of
our model. Compared with the single-view approach (GRGMF),
our MMGCN uses multiple similar views to enable the model
to learn more information. Compared with the methods that
simply combine different similar views into one (IMCMDA, SPM,
MDHGI, NIMCGCN, KBMFMDA, SNMDA and LLCMDA), MMGCN
adaptively learns the weight of different views’ features through
a well-designed channel attention mechanism to focus on more
important features. Although MDASKF is a multikernel fusion
method that uses three similar information of miRNAs and
diseases to make association prediction, which combines more
information than MMGCN, the performance is still not as good
as that of MMGCN. It may be because MMGCN uses graph neural
network to capture the context information of nodes and has
better representation ability. For miR2disease dataset, Figure 3
and Table 2 show that MMGCN can also perform well on a small
dataset. It is better than other comparison methods in most
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Figure 2. (a) Comparison of ROC curve and AUC values between MMGCN and other existing methods on HMDD dataset. (b) Comparison of precision/recall curve and

AUPRC value between MMGCN and other existing methods on HMDD dataset.

Table 1. Performance of compared methods on HMDD dataset

Method Accuracy Precision Recall F1 precision@5% precision@10% recall@5% recall@10%

IMCMDA 0.9885 0.0889 0.1365 0.1074 0.0350 0.0236 0.3474 0.4705
SPM 0.9815 0.0714 0.2168 0.1068 0.0437 0.0294 0.4338 0.5847
MDHGI 0.9901 0.1624 0.2224 0.1861 0.0555 0.0342 0.5512 0.6791
GRGMF 0.9894 0.1747 0.2904 0.2174 0.0659 0.0394 0.6544 0.7835
NIMCGCN 0.9909 0.1681 0.1979 0.1809 0.0544 0.0347 0.5406 0.6893
MDASKF 0.9929 0.2798 0.2575 0.2677 0.0657 0.0393 0.6526 0.7806
KBMFMDA 0.9929 0.2881 0.2562 0.2680 0.0635 0.0375 0.6304 0.7452
SNMDA 0.9924 0.2474 0.2470 0.2471 0.0630 0.0283 0.6261 0.7741
LLCMDA 0.9851 0.1141 0.2811 0.1613 0.0597 0.0381 0.5936 0.7576
MMGCN 0.9934 0.3338 0.2989 0.3146 0.0705 0.0413 0.7005 0.8200

cases. Overall, these experimental results indicate the effective-
ness of MMGCN in predicting potential relations of miRNA and
disease.

Ablation study

To analyze the necessity of components of our model, we adopt
two variants of MMGCN (MMGCN-nl and MMGCN-noatten) as
comparison methods. Specifically, MMGCN-nl means we only
use the output of GCN at the nth layer as the feature. MMGCN-
noatten removes the multichannel attention and regards the
different channel information as equally important, which only
uses the CNN combiner to fuse the features.

Table 3 shows the average evaluation metrics obtained with
MMGCN and its variant models. For MMGCN-nl and MMGCN,
after incorporating the feature output by each layer of GCN,
compared with a single layer of information, the model obtains
more disease and miRNA structural features. This result shows
that the neighbors at different distances in the network may
contain various information. For MMGCN-noatten and MMGCN,
after adding adaptive attention mechanism to different features,
compared with a simple combination, MMGCN can get better

final embedding of miRNA and disease. The result of this exper-
iment proves that the importance of the feature information
in different views is different. Using a multichannel attention
mechanism can enhance the representation of nodes to improve
prediction performance.

Performance of different view fusion

To demonstrate the effectiveness of multiview learning, we com-
pare the results of our approaches leveraging different views.

As shown in Table 4, MMGCN can achieve the best perfor-
mance using all views on miRNA and disease similarity net-
works. Moreover, in the case that miRNA similarity views are
consistent, the approach would have a better performance by
adding more views than it with only a single view on the disease
similarity network, vice versa. A possible reason is that the addi-
tion of different view information enriches the characteristics
of the nodes. However, the model may also have the problem
of performance degradation caused by adding one more view.
For instance, the accuracy of MMGCN under the view of miRNA
functional similarity (Gf

m) and disease semantic similarity (Gs
d) is

0.9932, while the result decreases a little (0.9931) after adding
disease target-based similarity (Gf

d). It may be caused by the
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Figure 3. (a) Comparison of ROC curve and AUC values between MMGCN and other existing methods on miR2disease dataset. (b) Comparison of precision/recall curve

and AUPRC value between MMGCN and other existing methods on miR2disease dataset.

Table 2. Performance of compared methods on miR2disease dataset

Method Accuracy Precision Recall F1 precision@5% precision@10% recall@5% recall@10%

IMCMDA 0.9607 0.1180 0.2734 0.1652 0.0885 0.0594 0.3130 0.4192
SPM 0.9377 0.0697 0.2447 0.1032 0.0592 0.0496 0.2094 0.3505
MDHGI 0.9728 0.1989 0.2712 0.2207 0.1146 0.0753 0.4052 0.5314
GRGMF 0.9571 0.1213 0.2757 0.1567 0.0906 0.0704 0.3205 0.4974
NIMCGCN 0.9592 0.1192 0.2868 0.1668 0.0968 0.0730 0.3425 0.5155
MDASKF 0.9741 0.1794 0.2185 0.1932 0.1042 0.0753 0.3685 0.5314
KBMFMDA 0.9707 0.1890 0.2685 0.2096 0.1090 0.0771 0.3857 0.5442
SNMDA 0.9700 0.1770 0.2857 0.2126 0.1094 0.0732 0.3871 0.5171
LLCMDA 0.9724 0.1653 0.2261 0.1886 0.1030 0.0797 0.3642 0.5630
MMGCN 0.9706 0.1882 0.2930 0.2215 0.1195 0.0811 0.4228 0.5724

Table 3. Performance of MMGCN and its variants

Models MMGCN-nl MMGCN-noatten MMGCN

AUPRC 0.1121 0.2279 0.2589
AUC 0.8816 0.9195 0.9266
Accuracy 0.9914 0.9933 0.9934
Precision 0.1833 0.3148 0.3338
Recall 0.1984 0.2738 0.2989
F1 0.1892 0.2919 0.3146
precision@5% 0.0544 0.0684 0.0705
precision@10% 0.0342 0.0403 0.0413
recall@5% 0.5406 0.6794 0.7005
recall@10% 0.6790 0.8017 0.8200

incorporated noise when adding views. But in most cases, the
addition of multiple views can effectively improve the perfor-
mance of the model.

In summary, adding multiple views makes MMGCN more
efficient, especially when all views are added to the model,
which can achieve the best performance.

Parameter analysis of MMGCN

In this section, we will analyze some of the parameters in our
model to illustrate their impact. All experiments are repeated
10 times in 5-fold cross-validation on known miRNA–disease
associations to obtain a more accurate result. In the following,
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Table 4. Performance of MMGCN with different views

Views Gf
m+Gf

d Gf
m+Gs

d Gs
m+Gs

d Gs
m+Gf

d Gs
mGf

m+Gf
d Gs

mGf
m+Gs

d Gf
m+Gs

dGf
d Gs

m+Gs
dGf

d Gs
mGf

m+Gs
dGf

d

AUPRC 0.1810 0.2074 0.2152 0.1895 0.2131 0.2464 0.2128 0.2310 0.2589
AUC 0.9032 0.9172 0.9156 0.9021 0.9126 0.9228 0.9182 0.9178 0.9266
Accuracy 0.9927 0.9932 0.9932 0.9931 0.9933 0.9933 0.9931 0.9932 0.9934
Precision 0.2695 0.3012 0.3002 0.2889 0.3099 0.3220 0.3007 0.3118 0.3338
Recall 0.2504 0.2555 0.2550 0.2372 0.2606 0.2883 0.2720 0.2797 0.2989
F1 0.2589 0.2754 0.2742 0.2592 0.2826 0.3033 0.2844 0.2930 0.3146
precision@5% 0.0604 0.0665 0.0671 0.0609 0.0638 0.0698 0.0672 0.0683 0.0705
precision@10% 0.0374 0.0397 0.0398 0.0375 0.0389 0.0409 0.0400 0.0401 0.0413
recall@5% 0.6000 0.6608 0.6669 0.6046 0.6334 0.6931 0.6672 0.6786 0.7005
recall@10% 0.7439 0.7898 0.7915 0.7446 0.7729 0.8134 0.7949 0.7980 0.8200

we vary one parameter to test its effect while the others are
fixed.

GCN layer

We use GCN to obtain the feature of miRNA and disease from
different views. Figure 4(a) indicates that the number of GCN
layers has little impact on the model performance, which may be
attributed to the multichannel attention module. The deepening
of the GCN layer will make the node lose the diversity of fea-
tures, but the multichannel attention can make the model focus
on more important features and reduce the impact of useless
features. In this paper, the number of GCN layers is set to 2.

Embedding size

The embedding size of nodes in GCN is an important factor
of MMGCN, which can directly affect the performance of the
model. In this comparison, we changed the embedding size in
{32,64,128,256}. As can be seen from Figure 4(b), within a certain
range, the larger the embedding dimension, the higher the AUC
value. Besides, the convergence rate of the model is similar
under different embedding dimensions, which can prove that
our model has good stability. In this paper, the embedding size
is set to 256.

Number of filters

The number of filters in the CNN determines the final feature
dimension of miRNA and disease node. After calculating the
final feature, the model will carry out the subsequent matrix
completion task. From Figure 4(c), it can be found that the model
with different number of filters produces little fluctuation in
results and does not affect the convergence speed of the model.
In this paper, the number of filters is set to 128.

Learning rate

Learning rate is a parameter controlling the step size of gradient
descent, and its value is related to whether the algorithm can
obtain the optimal solution. A large learning rate will cause the
model to be unstable and unable to converge. Conversely, a small
learning rate may make it easily stuck in a poor local minimum
and converge slowly. Figure 4(d) shows that there is an optimal
value for the initial learning rate, thus in this paper, we set the
learning rate to 0.001.

Case studies

In this section, we conduct two case studies to demonstrate the
effectiveness of our MMGCN in predicting novel associations
between diseases and miRNAs and the applicability to new
diseases.

In the first case study, we focus on predicting potential
miRNA–disease associations using our method. In particular,
we use MMGCN with all the known miRNA–disease associations
from HMDD V3.2 as the training dataset to make the predic-
tion. Three diseases are selected, namely, breast neoplasms,
lymphoma and esophageal neoplasms, for each disease, we
prioritize the top 10 candidate miRNAs based on the predicted
association scores. As shown in Table 5, we list the top 10
predicted miRNAs associated with the above three diseases,
and almost all of them are confirmed by independent external
databases dbDEMC [50].

Besides, to illustrate the applicability of MMGCN to new
diseases, that is, diseases with no known associated miRNAs,
we carry out the second case study on Lung Neoplasms. The
known associations with the Lung Neoplasms are all removed
from HMDDV3.2 so that it can be regarded as a new disease.
After implementing MMGCN and ranking the candidate miRNAs
of Lung Neoplasms according to their association scores, 10 out
of the top 10 predicted Lung Neoplasms-related miRNAs are
confirmed by HMDD V3.2(shown in Table 6).

The results present in the above two case studies show that
MMGCN can achieve excellent predictive performance. It can not
only discover new associations, but is also reliable in predicting
miRNAs associated with new diseases.

Conclusion
In this study, we propose a novel multiview-based graph
neural network approach MMGCN, for predicting potential
associations in miRNA–disease networks. MMGCN can not only
effectively make use of known associations to predict potential
associations, but also adaptively extract useful information from
multiple similarity views to enhance prediction performance.
Experimental results on two datasets show that in most
cases MMGCN outperforms state-of-the-art models under
5-fold cross-validation. Moreover, subsequent experiments
demonstrate the effectiveness of different modules of our model.
Case studies also verify the ability of MMGCN in finding new
associations between diseases and miRNAs and its applicability
to new diseases.

However, there is still some work that requires further
research. First, the experiment in different view fusion shows
that the structural information of the similarity network
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Figure 4. Parameter analysis of MMGCN.

Table 5. The top 10 associated miRNAs for breast neoplasms, lymphoma and esophageal neoplasms predicted by MMGCN based on known
associations in HMDD V3.2 database. The prediction results are verified in dbDEMC

Cancer No.
Confirmed

Top 10 prediction

Rank miRNA Evidence Rank miRNA Evidence

Breast
neoplasms

10 1 hsa-mir-19b-2 dbDEMC 6 hsa-mir-99b dbDEMC
2 hsa-mir-186 dbDEMC 7 hsa-mir-211 dbDEMC
3 hsa-mir-181a-1 dbDEMC 8 hsa-mir-454 dbDEMC
4 hsa-mir-615 dbDEMC 9 hsa-mir-138-1 dbDEMC
5 hsa-mir-6838 Unconfirmed 10 hsa-mir-28 dbDEMC

Lymphoma 10 1 hsa-mir-34a dbDEMC 6 hsa-mir-146b dbDEMC
2 hsa-mir-29a dbDEMC 7 hsa-mir-15b dbDEMC
3 hsa-mir-223 dbDEMC 8 hsa-mir-27a dbDEMC
4 hsa-mir-106b dbDEMC 9 hsa-mir-125b-1 dbDEMC
5 hsa-mir-145 dbDEMC 10 hsa-mir-148a dbDEMC

Esophageal
neoplasms

10 1 hsa-mir-17 dbDEMC 6 hsa-mir-23b dbDEMC
2 hsa-mir-29a dbDEMC 7 hsa-mir-142 dbDEMC
3 hsa-mir-222 dbDEMC 8 hsa-mir-15b dbDEMC
4 hsa-mir-200b dbDEMC 9 hsa-mir-23a dbDEMC
5 hsa-mir-18a dbDEMC 10 hsa-mir-125b-1 dbDEMC

between miRNAs and diseases significantly affects the learned
feature representation, which further affects the final pre-
diction result. How to collect a variety of valuable biological
information to build more effective miRNA and disease similar

networks is a topic worth studying in the future. Second,
further research is also needed on integrating different bio-
logical information more reasonably and improving prediction
performance.
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Table 6. The top 10 associated miRNAs for lung neoplasms predicted by MMGCN based on known associations in HMDD V3.2 database. All
known associations contain lung neoplasms in HMDD V3.2 database are removed before the prediction process. The prediction results are
verified in HMDD V3.2

Cancer No.
Confirmed

Top 10 prediction

Rank miRNA Evidence Rank miRNA Evidence

Lung
neoplasms

10 1 hsa-mir-146a HMDD 6 hsa-mir-146b HMDD
2 hsa-mir-155 HMDD 7 hsa-mir-221 HMDD
3 hsa-mir-21 HMDD 8 hsa-mir-210 HMDD
4 hsa-mir-150 HMDD 9 hsa-mir-34a HMDD
5 hsa-mir-126 HMDD 10 hsa-mir-223 HMDD

Key Points
• MiRNAs play significant roles in the development of

human complex diseases.
• There are still challenges in accurately determining

potential associations between miRNA and disease by
using multisource data.

• In this paper, we designed a Multi-view Multichannel
Attention Graph Convolutional Network (MMGCN) to
predict potential miRNA–disease associations.

• The experiments verified the superior performance
of MMGCN and showed the effectiveness of multi-
ple views in the prediction of miRNA and disease
association.

Data availability

Our work can be download in https: //github.com/Txinru/
MMGCN

Supplementary data

Supplementary data are available online at https://academi
c.oup.com/bib.
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