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Abstract

The recent extensive application of next-generation sequencing has led to the rapid accumulation of multiple types of data
for functional DNA elements. With the advent of precision medicine, the fine-mapping of risk loci based on these elements
has become of paramount importance. In this study, we obtained the human reference genome (GRCh38) and the main DNA
sequence elements, including protein-coding genes, miRNAs, lncRNAs and single nucleotide polymorphism flanking
sequences, from different repositories. We then realigned these elements to identify their exact locations on the genome.
Overall, 5%–20% of all sequence element locations deviated among databases, on the scale of kilobase-pair to
megabase-pair. These deviations even affected the selection of genome-wide association study risk-associated genes. Our
results implied that the location information for functional DNA elements may deviate among public databases.
Researchers should take care when using cross-database sources and should perform pilot sequence alignments before
element location-based studies.

Key words: functional elements; sequence alignment; location deviation; precision medicine

Introduction
The rapid development of high-throughput sequencing tech-
nologies and the associated extensive applications has driven
biomedical research into the post-genomic era [1, 2]. Many
large-scale international cooperative projects have surveyed
the human genome [3], and the results of these studies
have deepened our understanding of human physiology and
pathology [4]. For example, the International HapMap Project
(HapMap) has facilitated genome-wide association studies
(GWASs) and human genome diversity research; these projects
have identified a wide range of genes causing complex diseases
and traits [5, 6]. In addition, the 1000 Genomes Project, a human
genome map based on large samples from multiple populations,
has further increased the depth and breadth of genome research
[7, 8], while The Cancer Genome Atlas (TCGA) and other large
projects are dedicated to genomic research focused on cancer
and other major human diseases [9, 10]. These projects have
explored genomic variation, modification, and expression in the
etiology of disease and have created conditions for increasingly
precise diagnosis and drug development [11, 12].

As genomic science has developed, hundreds of databases
have been created, each oriented to different types of DNA
sequence elements and/or specific research objectives [13]. The
total amount of sequence data generated by large-scale genome
projects has rapidly increased [14]. At present, DNA sequencing,
RNA sequencing and various databases (e.g. GenBank, miRBase,
ENCODE and dbSNP) and comprehensive platforms for sequence
searching and downloading (e.g. UCSC and Ensembl) [15–18] pro-
vide convenient resources and technical support for functional
genomics studies [19, 20].

Many recent studies have included several types of genomic
functional elements [21], and investigations of interacting
elements have become increasingly common. For example,
studies have investigated how microRNAs (miRNAs) target
mRNAs [22], how transcription factors and DNA interact [23],
or how DNA and long non-coding RNAs (lncRNAs) regulate
each other [24]. In addition, studies of polymorphisms and
their effects continue to be important. Indeed, single nucleotide
polymorphisms (SNPs) and single nucleotide variants (SNVs) are
considered useful biomarkers of disease risk, as these factors
affect the structures of coding and non-coding genes [25]. Preci-
sion medicine has promoted additional cross-omic approaches
[26, 27]. As most studies of multiple DNA elements depend
on location information acquired from sequence databases,

accurate functional element locations within a genome are of
great significance, especially for biological and medical studies
beyond bioinformatics.

In pilot studies, we found that mainstream databases (e.g.
GenBank, miRBase, ENCODE and dbSNP) differed slightly with
respect to functional element locations, although most of
these databases share the same reference genome [28–30].
These discrepancies may perhaps be ascribed to differences
in the sequence alignment algorithms, or to data submission
quality. However, these inconsistencies are inconvenient and
may mislead researchers whose studies rely on the precise
locations of functional elements. Therefore, it is necessary to
systematically compare DNA element locations from different
database sources.

Material and Methods
Human genome reference sequence acquisition and
processing

The human reference genome sequence GRCh38, submitted by
the Genome Reference Consortium (GRC) on 24 December 2013
[31], was downloaded from GenBank [15]. The reference genome
was about 3.4 Gb long and included 22 autosomes, a pair of sex
chromosomes and a mitochondrial DNA sequence. The mito-
chondrial DNA sequence was not included in our study. We
retained the sequence information for each chromosome and
stored these data in 24 independent files. We removed the
headers, blanks, spaces and newline characters from each chro-
mosome file and used the edited files to construct reference
genome libraries.

Functional DNA element sequence acquisition
and processing

Gene sequence acquisition and processing

We obtained data for 58 137 genes from Ensembl, including not
only protein-coding genes but also partial pseudogenes and non-
coding genes [32]. This gene set contained 19 786 clearly defined
protein-coding genes. The remaining genes were remapped
and used for the comparison of gene element locations among
databases. Each location data item contained an Ensembl gene
ID, associated chromosome, original genome location, gene
type and complete sequence (including 5′- and 3′-UTRs). FASTA
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Figure 1. DNA fragment selection and alignment for different functional elements.

format sequence libraries were created by removing blank lines
and newline characters.

Precursor and mature miRNA sequence acquisition and
processing

We downloaded 1881 precursor miRNA sequences and 2588
mature miRNA sequences from miRBase (Release 22) [16]. We
retained the miRBase ID, the original location and the sequence
information but removed empty lines and breaks. We then
transformed the RNA sequences into cDNA sequences and
constructed FASTA format libraries.

LncRNA sequence acquisition and processing

LncRNA sequences were downloaded from ENCODE (Release
27) [17]: 27 908 transcripts (in which U was been replaced by
T) encoding 15 778 lncRNA genes. LncRNA symbols, transcript
IDs, original locations and sequences were retained and used to
construct FASTA format libraries.

SNP-flanking sequence acquisition and processing

The SNP-flanking sequences of 324 709 505 SNPs were extracted
from the NCBI dbSNP database (Build 150) [18]. SNP ID, original
position, length of flanking sequence and allele information
were retained. Each SNP allele was represented by the associated
International Union of Pure and Applied Chemistry degenerate
code. We removed whitespaces and blank lines, changed all
lowercase letters into uppercase and then constructed FASTA
format libraries using the modified data. We also downloaded
SNP position information from HapMap and the 1000 Genomes
Project to compare deviations across databases.

Functional DNA element alignment and mapping

Alignment fragment selection

To ensure alignment specificity, the alignment fragment length
was set to 25 bp, which yielded a random probability of about
8.88 × 10−16. For long sequence elements, such as protein-coding

genes and lncRNAs, we used 25 bp from the head and tail of
each sequence as the alignment fragments. For short sequences,
such as precursor and mature miRNAs, the whole sequence was
aligned. For SNPs, we aligned 25-bp fragments of the up- and
down-stream sequences flanking each SNP loci. The details of
alignment fragment selection are shown in Figure 1.

Functional element sequence alignment

After reference genome sequence library construction, we used
Bowtie2 to align the functional elements [33, 34]. To generate
precise alignments, the Bowtie2 parameters used were ‘-f –score
-min L, 0, -0.3’. These settings ensured that the fragments were
completely mapped on the reference genome. The alignment
results indicated the associated chromosome, strand direction
(+/−) and the start/end positions. Due to the broad distribu-
tion of DNA variation, we sometimes selected different align-
ment fragments and constructed a second alignment in order
to increase location accuracy.

Functional element mapping

If both ends of a given sequence had consistent Bowtie2 align-
ments, the genome location of the elements could be calculated
directly. The genome position of the element located on the ‘+’
strand was defined as the 5′-25-bp start site to the 3′-25-bp end;
the genome position of the element located on the ‘−’ strand was
the converse. The SNP position was defined as the larger of the
two ends of the associated flanking sequence mapping results
minus 1. The miRNA position was identical to the Bowtie2 result,
and the mature miRNA was expected to be located within the
host pre-miRNA sequence. If a functional element had location
records in the associated source database, we compared these
with the alignment results. For spliced lncRNA sequences from
ENCODE, the coding DNA fragment location was recovered by the
start and end sites of different transcripts.

Functional element location filtering and analysis

Based on the chromosome, strand, location and sequence length
of each mapping result, we classified the obtained locations into
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Figure 2. Functional element mapping and classification process.

seven groups: Perfect Match (PM), Location Deviation (LD), Strand
Reversal (SR), Multiple Locations (ML), Chromosome Mismatch
(CM), Alignment Location (AL) and Mapping Failure (MF). Results
were classified as PMs when all the characters were consistent
with the information in the original database. The LD elements
were those where the chromosome and strand were consistent
between our results and the original database, but the element
location differed; location discrepancies inevitably affect sub-
sequent location-based analyses. SR elements were mapped
onto the opposite strand by our analysis versus the original
database. ML elements were recovered by our analysis in more
than one location on the genome. CM elements were mapped
on to a different genome by our analysis, in comparison to the
original dataset. This type of mismatch is important because cis-
acting elements target the same chromosome or DNA molecule,
while trans-acting elements target different chromosomes or
DNA molecules. Thus, discrepancies in chromosomal locations
among databases affect subsequent definitions of functional
components. AL elements were those mapped to the genome
by our analyses, but which were unmapped in the original
database; these new genetic locations will facilitate future analy-
ses. MF elements could not be mapped on the reference genome
by our analysis.

However, single nucleotide peptides in genomic sequences
might cause alignment failures at one or both fragment ends.
Thus, for all elements classified as MFs, we extracted, re-aligned
and re-classified a 25-bp fragment adjacent to the original frag-
ment. All elements that were still not accurately mapped were
considered the final MF group. All elements were classified into
one, and only one, group. A detailed flowchart of the classifica-
tion process is shown in Figure 2.

Multiple database location information comparison

Analysis of location deviation effects for GWAS

Genes associated with disease risk are primarily identified based
on linkages with disease-associated SNPs. It is thus vital that the
relative locations of SNPs and SNP-linked genes are accurate.
We randomly selected GWAS-identified risk loci and their
linked genes within 33 disease phenotypes in dbGAP (e.g. breast
neoplasm, coronary artery disease, diabetes, hypertension,
Parkinson’s disease and prostatic neoplasm) [35], setting the risk
threshold to 1.0 × 10−7. We calculated the distances between the
GWAS-identified SNPs and linked genes associated with disease
and compared these to the distances identified in our analyses.
We determined the potential effects of any location deviations
on the GWAS results.

SNP location deviations in three key SNP repositories

We explored the degree of location deviation for a given func-
tional element type among different data resources using SNPs
as an example. First, we selected SNPs from dbSNP that were
confirmed to be correctly located by our previous sequence
alignment, as well as all the CEU (Europe) SNPs in HapMap
and the 1000 Genomes Project. Using the SNP-ID, we compared
the locations of the SNPs shared between HapMap and dbSNP,
between HapMap and the 1000 Genomes Project and between
dbSNP and the 1000 Genomes Project. We then analyzed the
deviations in SNP location among these three data resources
based on the pairwise comparisons.

Next, we extracted the identified MF SNPs from HapMap. We
also obtained the minor allele frequencies (MAF) of CEU SNPs.
We used a hypergeometric cumulative distribution to calculate
the overrepresentation of rare SNPs (MAF < 0.01) in each subset
as follows [36–38]:

P = 1
m−1∑
i=0

(
M
i

) (
N − M
n − i

)
(

N
n

) ,

where N is the total number of SNPs in the HapMap CEU pop-
ulation; M is total number of MF SNPs; n is the total number of
rare SNPs (MAF < 0.01) in the HapMap CEU population; and m is
the number of MF SNPs with a MAF less than 0.01. Probability
P described the relationship between SNP allele frequency and
mapping failure.

Results
Gene sequence mapping and analysis

Among the 58 137 gene sequences from Ensembl, Bowtie2 align-
ment identified 52 408 bilateral sequences and 5729 unmapped
sequences. We compared the sequence length of each bilat-
eral sequence to the reference sequence and identified 1884
sequence length mismatches. We attempted to realign these
1884 sequences, as well as the 5729 unmapped sequences, using
adjacent 25-bp fragments. Across all elements, 85.34% locations
were PMs, and 9.85% were MFs (Figure 3A). The remaining ele-
ment locations (4.81%) were corrected by further subdivision and
were assigned to the ML, LD, CM or SR class. Figure 3B shows the
classification of protein-coding genes after Bowtie2 alignment.
These results indicate that, although the locations of most genes
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Figure 3. Functional element location situation distributions.

in most databases are accurate, some genes require remapping.
These inconsistencies may have serious impacts on follow-up
analyses.

Pre-miRNA and miRNA sequence mapping
and analysis

We found that 95.22% of the 1881 pre-miRNA sequences
obtained from miRBase were PMs, and ∼4.78% were corrected to
LDs or MLs (Figure 3E). None of the 1881 sequences was classified
as SRs, ALs or MFs. Of the 2588 human miRNA sequences in
miRBase, 94.51% were PMs, and ∼5.49% were corrected to LDs
or MLs (Figure 3F). None of the 2588 sequences was classified as
SRs, ALs or MFs.

LncRNA transcript sequence mapping and analysis

Of the 27 908 lncRNA sequences in ENCODE, Bowtie2 alignment
mapped 24 556 bilateral sequences, while 3352 sequences were
MFs. We compared the Bowtie-derived lengths to the sequence
lengths in ENCODE and identified 490 sequence length mis-
matches. We attempted to realign these 490 sequences, as well
as the 3352 MFs, using additional 25-bp sequence fragments. Of
the 3842 realigned sequences, 85.81% were PMs, 32 (0.11%) were
CMs, 41 (0.15%) were SRs, 197 (0.71%) were LDs and 337 (1.21%)
were MLs (Figure 3C).

SNP position mapping and analysis

The Bowtie2 alignment of the sequences flanking the 324 709 505
SNPs obtained from dbSNP recovered 324 613 893 bilateral

alignments and 95 612 unmapped sequences. We compared the
sequence length of each bilateral result derived from Bowtie2
to its reference sequence and identified 62 285 116 sequence
length mismatches. We realigned these 62 285 116 sequences, as
well as the 95 612 MFs. Of the realigned sequences, 75.20% were
PMs, 19.21% were MFs and ∼5.59% were corrected to LDs, MLs,
CMs, ALs or SRs (Figure 3D).

Location deviations of risk SNPs and susceptible genes
in GWAS

In the corrected gene and SNP location datasets, all risk-
associated SNPs from dbGaP, in all disease phenotypes, were
located on the same chromosome as their linked genes. In
subsequent comparisons, the location deviation was considered
‘0’ if the SNP was located exactly within the range of its linked
gene. For all other SNPs, we calculated the shortest distance
between the SNP and either end of the gene. These distances
were divided into three categories: less than 100 kb, between
100 kb and 1 Mb and more than 1 Mb (Table 1). We found that
0%–31.67% of the risk-associated SNPs were located more than
100 kb from the original risk-associated gene, which exceeds the
extent of linkage disequilibrium blocks.

Location deviation of SNPs among data resources

The results of the pairwise comparisons among HapMap, dbSNP
and the 1000 Genomes Project were sorted by deviation degree.
We then constructed a 100% stacked column chart of the num-
ber of SNP location deviations between any pair of databases
(Figure 4). We found that many (36.36%) of the SNPs shared
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Table 1. Location deviation of GWAS risk SNPs and linkage genes in dbGaP. The first column of the table shows disease phenotypes in dbGaP.
Other columns represent the percentage of different location deviation distribution

Phenotype 0 (%) x ≤ 100 Kb (%) 100 Kb–1 Mb (%) x > 1 Mb (%)

Anatomy category 44.76 23.57 27.62 4.05
Bacterial infections and mycoses 8.91 89.11 1.98 0.00
Behavior and behavior mechanisms 51.04 21.68 23.78 3.50
Behavioral disciplines and activities 58.82 17.65 23.53 0.00
Biological marker 56.24 25.00 15.63 3.13
Body weight and measure 54.17 24.11 18.30 3.42
Cardiovascular disease 54.34 31.76 12.90 1.00
Chemical and drugs category 59.63 25.75 12.78 1.84
Congenital, hereditary, and neonatal diseases and abnormalities 46.30 31.48 22.22 0.00
Diagnostic techniques and procedures 57.74 23.10 16.54 2.62
Digestives system disease 42.34 40.05 15.82 1.79
Disorder of environment origin 52.63 26.32 21.05 0.00
Endocrine system disease 51.13 40.81 7.30 0.76
Eye diseases 57.44 37.44 5.12 0.00
Female urogenital diseases and pregnancy complications 46.66 36.00 16.67 0.67
Hemic and lymphatic disease 56.63 32.53 9.64 1.20
Immune system disease 42.19 50.90 6.33 0.58
Laboratory techniques and procedure 62.16 29.34 7.72 0.78
Male urogenital disease 41.56 38.68 18.93 0.83
Mental disorders 54.18 26.69 17.13 2.00
Musculoskeletal diseases 44.32 36.36 18.18 1.14
Neoplasms 55.45 30.51 12.83 1.21
Nervous system diseases 46.65 43.10 9.62 0.63
Nutritional and metabolic disease 54.10 24.46 19.88 1.57
Otorhinolaryngologic disease 45.00 45.00 10.00 0.00
Parasitic diseases 0.00 100.00 0.00 0.00
Pathological conditions, signs and symptoms 55.17 22.13 20.40 2.30
Physical examination 54.50 22.97 19.22 3.31
Physical phenomena and processes 58.21 12.69 27.61 1.49
Respiratory tract diseases 46.95 45.22 7.83 0.00
Skin and connective tissue diseases 41.06 52.21 6.37 0.36
Stomatognathic diseases 40.00 45.71 14.29 0.00
Virus diseases 80.00 20.00 0.00 0.00
Others 54.27 36.11 8.53 1.09

between HapMap and dbSNP had location deviations >1 Mb, as
did many of the SNPs shared between HapMap and the 1000
Genomes Project (Figure 4C and A). These discrepancies may
have been due to the different release of the reference genome
used by HapMap. However, even though dbSNP and the 1000
Genomes Project use the same version of the reference genome,
many SNP location deviations were still identified between these
databases (Figure 4B).

The hypergeometric cumulative distribution test showed
that, in general, the MF SNPs were overrepresented among the
SNPs with low MAF (MAF < 0.01; P < 3.45 × 10−6). This indicated
that lower frequency SNPs were more likely to be false-positive
errors. This may be because lower frequency SNPs/SNVs in
a given population are sometimes presented as singletons,
resulting in insufficient research and an absence of double-hit
experimental confirmation.

Discussion
The accurate location of genomic functional elements, especially
across multiple element types, is important for biomedical
research [39]. In this study, inconsistent location information
was identified by the realignment of functional element
sequences from various databases to the reference genome.

For gene sequences from Ensembl, the overall location accu-
racy was 85.34%. Notably, protein-coding gene location consis-
tency was 92.86%, probably due to the depth and breadth of
the available global research on coding genes. Nevertheless,
the observed 7.14% of coding genes with inconsistent locations
was symptomatic of the potential problems across mainstream
databases.

The location accuracy of miRNAs and pre-miRNAs in
miRBase was about 94.51% and 95.22%, respectively. This high
accuracy might be due to the short length of these sequences,
as well as their relative rarity. Compared to other RNA types,
miRNAs have received much research attention, which also has
improved location reliability. Sustained attention to fewer than
2000 miRNAs has led to a relatively full understanding, which
has improved reliability. As the average lengths of miRNAs
and pre-miRNAs are only 21 bp and 80 bp, respectively, these
sequences can be easily mapped onto the genome. However,
random alignment errors may also be produced.

Only 85.81% of the lncRNAs from ENCODE were classified
PMs, far less than the percentages of PM protein-coding genes
and pre-mRNAs. This difference might be explained by the
rapid increase in the numbers of lncRNAs recognized in recent
years due to next-generation sequencing (NGS). In addition,
effective classification, nomenclature and sequence submission
criteria are lacking for lncRNAs, obviously impacting data
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Figure 4. Location deviations of SNP among dbSNP, 1000 Genomes Project and HapMap. A. Location comparison between HapMap and 1000 Genomes Project; B. Location

comparison between dbSNP and 1000 Genomes Project; C. Location comparison between dbSNP and HapMap. Four squares with different colors in each core represent

the location deviation of SNP between diverse resources. The bar of inside circle shows the proportion of location deviation on each chromosome. The external circle

of each subgraph shows 24 chromosomes.

standardization. Here, we obtained reliable locations for some
lncRNAs using sequence alignments and mapping. These
locations might be useful for lncRNA functional analyses and
biological annotation.

The location accuracy for SNPs from dbSNP was only about
75.20%. In addition, relatively few SNPs were PMs. These location
problems might have been due to the low frequency of some
SNPs in the human population. Therefore, we performed a
hypergeometric cumulative distribution test on the MF and
low-frequency SNPs in HapMap. We found that MF SNPs are
overrepresented among the low-frequency SNPs (MAF < 0.01
and P < 3.45 × 10−6), suggesting that SNP frequency affects
alignment-derived locations.

dbSNP is a comprehensive database of variation, which
accepts data from public projects and private research orga-
nizations. More recently, HapMap and the 1000 Genomes Project
have been developed. Most groups submitting to these databases
use NGS, which generates many SNPs and SNVs [40]. However,
the diverse methods of data submission used by the various
groups have given rise to many data consistency problems, such
as a lack of data validation and low-quality data.

When comparing and analyzing data from different sources,
we identified a certain degree of deviation both between GWAS
disease-risk SNPs and their linked genes and between SNPs and
their associated lncRNAs. We also found data source differences
in the genomic locations of the same types of functional DNA
elements. Some of these deviations were caused by differences
in the release version of the reference genomes used by the
databases when locating functional elements. However, even
when the reference genome version was the same, relatively
minor deviations were still observed, due to differences in other
important steps, such as data preprocessing, alignment strategy
and parameter setting.

In our study, we download reference genome sequences from
UCSC. After fragment alignment using Bowtie2, the genome
location of each element was calculated. We categorized 222
genes, 103 lncRNAs and 58 PCGs as LDs and categorized 207
genes, 101 lncRNAs and 55 PCGs as PMs. This difference might be
due to the constant updating of the database. We also identified
86 genes, 16 lncRNAs and 14 PCGs at different locations on the
same chromosome and strand, consistent with our previous
results (e.g. ENSG00000273610: chr1, +, 21 987 481–21 987 777 and
chr1, +, 22 010 650–22 010 946). We also identified extra matching
positions during the mapping process (e.g. ENSG00000268993:
chr1, −, 121 142 051–121 142 438; chr1, −, 206 160 889–206 161 276;

and chr1, −, 143 929 995–143 930 382). The LD gene, PCG and
lncRNA sequences were compared to the reference genome
using BLAST. BLAST showed that 105 genes, 51 lncRNAs and
34 PCGs were PMs, while 86 genes, 9 lncRNAs and 9 PCGs had
different locations on the same chromosome and strand. These
latter genes, lncRNAs and PCGs were also identified by our
Bowtie2 analysis. However, since Bowtie2 identified an addi-
tional seven lncRNAs and five PCGs, Bowtie2 might be more
suitable for mapping short fragments to reference genomes.

In our study, we found that many participants in an SNP–
gene linkage relationship in GWAS are disturbed by gene and
SNP location deviations in the dbGaP database. To universalize
our study, we used the GWAS catalog database to perform a
further study, by comparing the mapping results from the dbGaP
and GWAS catalog. In this process, we mainly focused on pro-
static neoplasms, breast neoplasms, colorectal neoplasms, lung
neoplasms, ovarian neoplasms and stomach neoplasms, which
have been identified as SNPs with the most risk. In the dbGaP
database, we found 460 SNPs and 383 genes, while in the GWAS
catalog database, there were 581 SNPs and 594 genes. For the
mapping results, we found that there were 18 and 19 genes that
couldn’t match the accuracy position for the dbGaP and GWAS
catalog, respectively. The results showed that there were some
errors in gene mapping due to gene location deviation in both
the risk SNP genotype and phenotype databases. By comparing
with the result of the UCSC and Ensembl gene location analysis,
we infer that some of the information stored in the database has
been revised with the update of data release, while information
has not been updated in time for other databases.

As described above, for the six diseases (prostatic neoplasms,
breast neoplasms, colorectal neoplasms, lung neoplasms, ovar-
ian neoplasms and stomach neoplasms), we performed the SNP
and gene alignment, from the dbGap and GWAS catalog, and
found many mismatches between risk SNPs and their capture
genes (Supplementary Table S1). For example, the original loca-
tion of MIR4752 (ENSG00000264703) in Ensembl is on chromo-
some 19, +, 54 282 109–54 282 180, but our alignments show that
its real location is chromosome 19, +, 54 629 392–54 629 463, and
the horizontal shift is 347 283 bp. In the prostatic neoplasm’s
genome-wide association study, the identified risk SNP rs103294
(chromosome 19, 54 293 995) is adjacent to the original location
of MIR4752 (with the distance of 11 815 bp). However, the re-
alignment location of MIR4752 is obviously beyond (335 397 bp)
the scope of linkage disequilibrium to rs103294. This means that
the candidate for prostate cancer risk microRNA mir-4752 may
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not be the real risk factor, based on the theory of gene associa-
tion study. The similar samples also exist in breast neoplasms,
colorectal neoplasms and ovarian neoplasms.

Our results suggest that the functional DNA element
sequence and location information deviates among public
databases, reminding researchers to be careful when using
cross-database sources. In particular, sequences should be
realigned first, especially in element location-based studies.

Key Points
• Relatively unneglectable discrepancies/deviations are

noted when performing a comprehensive analysis of
location alignments in functional DNA elements across
several sequence repositories.

• A degree of up to 20% location deviations is detected in
different scales of kilobase- to megabase-pair location
alignment analysis.

• The GWAS candidate gene mapping is affected by SNP
location deviations in a large part of disease and phe-
notype studies.

• A sequence alignment work strongly suggested before
disease phenotype studies, especially for element
location-based studies.
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Supplementary data are available online at https://academic.
oup.com/bib.
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