
Identifying miRNAs, targets and
functions
Bing Liu, Jiuyong Li and Murray J.Cairns
Submitted: 11th August 2012; Received (in revised form): 27th September 2012

Abstract
microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal specificity factors
in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and further inferring miRNA
functions have been a critical strategy for understanding normal biological processes of miRNAs and their roles in
the development of disease. In this review, we focus on computational methods of inferringmiRNA functions, includ-
ing miRNA functional annotation and inferring miRNA regulatory modules, by integrating heterogeneous data
sources.We also briefly introduce the research in miRNA discovery and miRNA-target identification with an em-
phasis on the challenges to computational biology.

Keywords: miRNA; functional annotation; functional miRNA^mRNA regulatorymodules

INTRODUCTION
The genetic material of an organism, or genome [1],

plays a central role in encoding both the cellular

fabric and the regulatory machinery that controls

cell homeostasis and internal functions, such as

DNA replication and response to environmental sig-

nals. While the genome is encoded by DNA, the

complex biological processes derived from genome

involve a myriad of interacting and co-functioning

RNA molecules and diverse protein structures.

These co-functioning groups of molecules described

as gene regulatory modules are essential components

in biological systems. In order to understand the

composition of these modules and their roles in an

organism, detailed investigation of gene structures,

functions and activities must be determined within

individual cells and in various tissues throughout de-

velopment. However, since gene structure and func-

tion are relatively constant from one cell to another

or from one species to another, it is the patterns of

gene expression and its regulation or dysregulation

that have the greatest consequence in normal biology

and diseases.

While gene expressions can be influenced by

many factors, post-transcriptional gene regulation

involving microRNAs (miRNAs) is particularly

fascinating because of the breadth of their inter-

actions facilitated by their synergistic/combinatorial

relationships with target genes. miRNAs are charac-

terized by a growing class of �22 nt long
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non-protein-coding RNAs [2, 3]. They are ex-

pressed from longer transcripts encoded in animals,

plants, viruses and single-celled eukaryotes. miRNAs

are also an attractive topic for system modelling and

computer science because of their roles as guide

strands for mRNA degradation and translational in-

hibition to a large extent through the logic of com-

plementary base pairing [4].

Increasing evidence suggests that miRNAs are

pivotal regulators of development and cellular

homeostasis through their control of diverse biolo-

gical processes. miRNAs regulate target mRNAs and

make fine-scale adjustments to protein outputs.

Consequently, dysregulation of miRNA functions

can lead to human diseases. Recent studies have re-

ported differentially regulated miRNAs in diverse

cancer types, such as breast cancer [5], lung cancer

[6], prostate cancer [7], colon cancer [8], ovarian

cancer [9] and head and neck cancer [10].

miRNAs are also implicated in a number of neuro-

logical disorders including Alzheimer’s disease [11],

multiple sclerosis [12] and schizophrenia [13]. Thus,

identifying miRNAs, targets and their functional

regulatory networks are critical in understanding

normal biological processes of miRNAs and their

roles in the development of disease [14].

Great efforts have been made to discover miRNAs,

identify miRNA targets and infer miRNA functions

with both biological methods and computational

approaches in recent years. These endeavours have

drastically increased the amount of miRNA and

mRNA data at both expression and sequence

levels. However, it is unfeasible to explore all the

complexity and diversity of miRNAs and their targets

empirically with biological methods in a combinator-

ial matrix due to the laborious tasks involved.

Fortunately, computational methods shed lights on

biological research [15] as they facilitate experimental

validation by producing statistically significant

hypotheses from the large amount of biological

measurements.

In this review, we briefly address bioinformatics

approaches to miRNA discovery and target identifi-

cation with an emphasis on the challenges to com-

putational biology as these methodologies have been

extensively reviewed elsewhere [16–20]. More at-

tention will be devoted to computational methods

of miRNA functional annotation and inferring

miRNA regulatory modules (MRMs). This exciting

and challenging new development in integrated gen-

omics has been the potential to provide more robust

and tangible functional annotation of miRNA and

miRNA-associated gene networks.

miRNADISCOVERY
miRNAs were first identified through genetic ap-

proach in the Caenorhabditis elegans through research

investigating heterochronic mutants that affect

developmental timing. One of these genes, lin-4,

did not encode a protein but contained a small seg-

ment of homology to multiple motifs in the

30-untranslated region (30-UTR) of another hetero-

chronic gene lin-14 which does encode protein [21].

The lin-4 sequence was poorly conserved and for

some years this appeared to be an isolated case

until the discovery of another miRNA gene, again

in C.elegans, known as let-7. The broad conservation

among metazoans created significant excitement

about let-7 and the prospect of miRNA generally

that led to a rapid discovery process both through

molecular cloning and bioinformatic approaches

[22]. Both of these discoveries were also enhanced

by developments in our understanding of the bio-

chemistry of RNA interference and miRNA

biogenesis.

Briefly, we now know that miRNAs are initially

produced in the nucleus as long primary transcripts

(pri-miRNAs) by RNA polymerase II, typically

from their own non-coding gene or from the introns

of protein-coding genes. The pri-miRNAs fold into

hairpins, which bind to two members of the RNase

III families of enzymes, Drosha and Dicer. Drosha

forms the microprocessor complex with DGCR8 in

the nucleus and cleaves the primary transcript to lib-

erate the �70 nt miRNA precursor (pre-miRNA)

hairpin. After being exported to the cytoplasm by

exportin-5, dicer further processes the transcript to

produce the mature �20 bp miRNA/miRNA*

duplex. miRNA discovery approaches, both biolo-

gical and bioinformatics, have now yielded many

thousands of miRNAs. This process continues with

new miRNA appearing daily in various databases

and compiled officially as the miRBase (http://

www.mirbase.org/) [23], which is the primary

online repository for published miRNA sequence

and annotation (stored in miRBase database) as

well as for novel miRNA genes prior to publication

(stored in miRBase registry). Each entry in the data-

base represents a predicted hairpin portion of a

miRNA transcript with information on the location

and sequence of the mature miRNA sequence.
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With bioinformatic methods, putative miRNAs

are first predicted in genome sequences based on

the structural features of miRNA. These algorithms

essentially identify hairpin structures in non-coding

and non-repetitive regions of the genome that are

characteristic of miRNA precursor sequences. The

candidate miRNAs are then filtered by their evolu-

tionary conservation in different species. Known

miRNA precursors play important roles in searching

algorithms because structures of known miRNA are

used to train the learning processes to discriminate

between true predictions and false positives [16, 24].

Many algorithms, for example, miRScan [25],

miRSeeker [26], miRank [27], miRDeep [28],

miRDeep2 [29] and miRanalyzer [30], have been

proposed. Once predicted, experimental techniques

such molecular cloning, sequencing or hybridization

are typically used to validate the predictions.

These approaches have also led the discovery pro-

cess, with experimental methods particularly high-

throughput sequencing producing a small RNAs’

expression profile, which can be followed up by bio-

informatics to identify RNAs whose structures meet

the miRNA criteria. This approach is significantly

faster than the classic forward genetics used to iden-

tify novel miRNAs. Forward genetics was used to

discover the first known miRNA, lin-4, in C. elegans
in 1993 [21]. The advantage of directional cloning is

that it can be applied to any organism even when

little or no genomic information is available. With

the advance of next-generation sequencing (NGS),

deep sequencing has been also used to discover

miRNAs systematically at a phenomenal rate [28,

31], and predicted miRNAs from deep sequencing

have been incorporated into miRNA databases [23].

These biological approaches to miRNA discovery

have complemented discoveries made through com-

putational approaches, which predict miRNA from

genomic DNA sequence. Collectively very large

number of miRNAs have been identified and pre-

dicted in a very short time frame [24, 32]. The latest

miRBase, release 19, contains 21 264 hairpin precur-

sor miRNAs, expressing 25 141 mature miRNA

products, in 193 species [23]. Each upgrade refines

the prediction continually. Compared with release

18, miRBase were added 3171 more new hairpin

sequences and 3625 novel mature products, while

over 130 misannotated and duplicate sequences

have been deleted. This success in miRNA discovery

has rapidly led to an even more daunting challenge

in functional annotation, or in other words, what are

these molecules doing in cells and what are the

functional implications for their dysregulation in

pathophysiology of diseases? While these questions

have also been addressed both biologically and com-

putationally, the sheer magnitude of this task particu-

larly from an empirical perspective has driven

significant development in the bioinformatics of

miRNA-target prediction and systems-based analysis

of miRNA function.

miRNA-TARGET PREDICTION
In the absence of high-throughput biological

approaches to identify miRNA targets, many com-

putational methods, such as miRanda [33], mirSVR

[34], PicTar [35], TargetScan [36], TargetScanS [37],

RNA22 [38], PITA [39], RNAhybird [40] and

DIANA-microT [41], were developed relatively

quickly to identify putative miRNA targets. In

most cases, these algorithms were developed in con-

junction with a limited amount of empirical evi-

dence from a few experimentally validated target

sites for a small selection of miRNAs [42].

miRNAs target mRNAs through complementary

base pairing, in either complete or incomplete fash-

ion. It has been generally believed that miRNAs

bind to the 30-UTRs of the target transcripts in at

least one of two classes of binding patterns [17]. One

class of target sites has perfect Watson–Crick com-

plementarity to the 50-end of the miRNAs, referred

as ‘seed region’ which positions at 2–7 of miRNAs.

The seed region has been shown that it is sufficient

for miRNAs to suppress their targets without requir-

ing significant further base pairings at the 30-end of

the miRNAs. On the contrary, the second class of

target sites has imperfect complementary base pairing

at the 50-end of the miRNAs, but it is compensated

via additional base pairings in the 30-end of the

miRNAs. However, the 30-UTR boundaries are

not clearly defined in many species and it is still an

ongoing project to characterize the location, extent

or splice variation of 30-UTRs in a variety of species

[18]. In addition, it has been demonstrated that a

transcript can contain multiple target sites for a

single miRNA and a transcript can have target sites

for several miRNAs. The multiple-to-multiple rela-

tions between miRNAs and mRNAs lead to the

even more complex miRNA regulatory mechan-

isms. Regardless of the binding sites, the short

length of miRNAs lacks the power to be detected

significantly by most statistical techniques in standard
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sequence analysis, such as Karlin–Altschul statistics

[43]. Therefore, most algorithms apply the

cross-species conservation requirement to reduce

the number of false positives, despite some risk of

increasing false negatives as some miRNAs, such as

miR-430 [44], lack conserved targets. Overall, the

complex features of miRNA pose great challenges

on the computational approaches for miRNA-

target prediction.

Different miRNA-target prediction algorithms

predict targets with different techniques and criteria

including base pairing, target accessibility and evolu-

tionary conservation of target site. Table 1 gives

some basic features of the selected miRNA-target

prediction methods, while the comprehensive review

for these methods can be found in [33, 45–47].

The binding patterns and criteria used by

miRNA-target prediction algorithms generally have

great influence on the outputs and performance of

different algorithms. A small variation in the criteria

for selection can lead to large discrepancy in the pre-

diction [33]. However, each approach produce

widely different lists of predictions with significant

false-positive and false-negative rates [48]. In a

study using mass spectrometry to measure the

global impact of deletion of a single miRNA, hun-

dreds of proteins were found to respond, but the best

performing target prediction algorithms, TargetScan

[36] and PicTar [49], which restrict their predictions

primarily to conserved sites in 30-UTRs, were re-

ported to nevertheless have false-positive rates of

�68% [50]. Although the false-positive rate might

not be accurate because this work did not take into

account the indirect influence on proteins by knock-

ing down a miRNA, it demonstrated biologically

that all target prediction algorithms suffer high

false-positive errors.

Another assessment was conducted by Alexiou

et al. [51] who compared the performance for eight

widely used target prediction programs, including

EIMMo [52], miRanda [33], miRBase [53], PicTar

[49], PITA [39], RNA22 [54] and TargetScan 5.0

[36], for the human and mouse genome, using ex-

perimentally validated targets in Selbach et al. [55].

They found these algorithms have a precision of

�50% with a sensitivity that ranges from 6 to 12%.

These assessments arrived at similar while different

conclusions. One possible explanation could be

that the selected benchmark sets favour certain algo-

rithms while underestimating others, particularly

when the number of validated miRNA targets is

still relatively small. However, it highlights the prob-

lem of validating miRNA-target interactions at a

scale that is insufficient to provide an un-biased as-

sessment of the performance of miRNA-target pre-

diction algorithms.

Despite their limitations, these programmes have

been broadly adopted and their prediction of

miRNA targets in a broad spectrum of species has

been prepared for genome data and stored in data-

bases for download or query by biologists or medical

scientists, in some cases with very limited under-

standing of how they were derived. Some of these

databases provide additional features that provide

some further insight into the strength and conserva-

tion of the putative interaction. For example,

TargetScan searches for the presence of conserved

8mer and 7mer sites that match the seed region of

each miRNA as well as predicts non-conserved sites.

Since version 6.0, TargetScan has extended context

score contributions to include seed-pairing stability

and target-site abundance and all 30-UTRs from

RefSeq rather than just the longest UTR from

each gene.

Recently, some novel biochemical approaches

have been developed for miRNA-target identifica-

tion, providing an extensive insight into the

miRNA-binding sites. For example, Chi et al. [56]

developed a technique, known as high-throughput

sequencing of RNA isolated by crosslinking immu-

noprecipitation (HITS-CLIP), to identify direct

miRNA targets. This technique was applied to

mouse brain [56] and C. elegans [57]. Consequently,

compelling data have been generated on the location

of miRNA-binding sites within both the 30-UTR

and coding region, allowing the genome-wide inter-

action maps for specific miRNA to be depicted with

a high specificity and low false discovery rate com-

pared with previous computational methods [56]. A

modified HITS-CLIP, termed photoactivatable

ribonucleoside-enhanced crosslinking and immuno-

precipitaion (PAR-CLIP) [58], is able to deliver

more efficient ultraviolent crosslinking which in

turn improves RNA recovery up to 1000-fold com-

pared to its predecessor. It can also achieve more

precise localization of binding sites between the

RNA and protein [58].

By analysing HITS-CLIP/PAR-CLIP data, alter-

native modes of miRNA-target recognition have

been identified. Ellwanger et al. [59] demonstrated

that most conserved miRNAs interact with target

sites endowed with short seed matches (6mer seeds)
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and a substantial fraction (40%) of all functional

target sites are not conserved. In contrast, common

miRNA-target prediction algorithms focus mainly

on conserved seed of length seven or eight.

Furthermore, Chi et al. [60] demonstrated that over

15% of Ago–miRNA interactions with G-bulge sites

in mouse brain cannot be explained by canonical

seed match, suggesting a novel mode of miRNA-

target recognition. These analyses provide a qualita-

tive change in our understanding and assessment of

miRNA–mRNA regulation, which in turn may

transform the miRNA prediction algorithms in the

near future.

INFERRING miRNA FUNCTIONS
As many miRNAs have been identified, and a large

number of miRNA targets have been predicted,

research has quickly shifted to inferring miRNA

functions, which generally include functional anno-

tation and inferring miRNA regulatory mechanisms

in specific biological conditions. We will review the

methods of inferring miRNA functions in this

section.

miRNA functional annotation
The most straight-forward approach of miRNA

functional annotation is through functional

enrichment analysis using the miRNA-target genes

(Figure 1). This approach assumes that miRNAs have

similar functions to their target genes given a large

amount of knowledge of genes have been accumu-

lated in the last few decades. Therefore, it is practical

to assign the functions, which are significantly en-

riched with the targeted genes, to miRNAs. When a

list of miRNA targets is available well-developed

gene functional annotation resources such as

DAVID [61] and WebGestalt [62] can be easily

used to assign the functions of the target mRNAs

to the group of miRNAs. Functional annotation

for miRNAs gives great insights into the general

functions of miRNAs. For the first time, enabled

the mysteries of miRNA functions to be revealed

in large scale.

Similarly, miRGator [63], miRDB [64], miRò

[65], MAGIA [66] and FAME [67] have been de-

veloped with target prediction an built-in functional

annotation. These are freely accessible databases with

user-friendly web interfaces providing miRNA func-

tional annotation with the similar strategy (Table 2).

miRGator [63] infers miRNA functions from a list of

target genes predicted by miRanda, PicTar and

TargetScanS. As an option, the list of target genes

can be the union or intersection of prediction from

these three programmes. Statistical enrichment test of

target genes in each term is carried out for Gene

Ontology (GO), pathway and disease annotations.

miRDB [64] uses MirTarget2 [68] for miRNA-

target prediction using a machine learning method

(support vector machines), with public microarray

data sets. This method also adopts the Wiki model

for functional annotation, which is an open environ-

ment allowing anyone with internet access to make

contributions. miRò [65] associates miRNAs with

phenotypes by integrating miRNA annotation and

target databases, such as miRBase, miRNA Atlas,

TargetScan, PicTar and miRecords, with multiple

online biological knowledge databases including

Gene and Nucleotide Database (GND, http://

www.ncbi.nlm.nih.gov), GO and Genetic Associa-

tion Database (GAD, http://geneticassociationdb.

nih.gov, a database of human genetic association stu-

dies of complex diseases and disorders). Validated

data are highlighted in the databases indicating the

most significant associations. MAGIA [66] supports

multiple algorithms of miRNA-target prediction,

such as miRanda, PITA and TargetScan, and mul-

tiple statistical methods to infer the relationship be-

tween miRNA–mRNA pairs and biological

processes or diseases. Different from other methods,

FAME [67] annotates miRNA functions by

incorporating the expression profiles of miRNAs/

mRNA with the miRNA-target prediction. It uses

a co-expressed subset of miRNA-target genes,

which were considered to be the designated target set

based on the parameters extracted from TargetScan,

such as context score, for functional enrichments.

Few other tools, such as miR2Disease [69] and

miReg [70], manually curate annotation of

miRNA functions and focus on the association

with human diseases based on literature. They have

a very limited scale due to the current knowledge

about miRNAs. All these tools are similar in the

strategy for functional annotation while they differ

in the databases involved and enrichment methods

used.

miRNA functional annotation heavily relies on

the miRNA-target prediction as most of the appro-

aches are based on the predicted targets. As discussed

above, the target prediction varies greatly among dif-

ferent algorithms and with even a small change to

parameters used by the algorithms. Furthermore,
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some evidence had shown that miRNAs may target

mRNA outside of the 30-UTR. Mature miRNAs

can alter the expression of genes by binding to the

50-UTR [71, 72]. Other regions, known as extended

seed and delta seed regions, also contribute to the

target selection [73]. Obviously, most prediction al-

gorithms will miss those targets because they focus

on the 30-UTR [17]. Moreover, it is possible that the

target sites for different miRNAs in the same 30-

UTR indicate that the mRNAs are regulated by

tissue-specific or development-specific miRNAs

[17]. It is not reasonable to group them together

for the functional annotation. Therefore, more

sophisticated methods are expected to infer

miRNA functions.

Inferring miRNA regulatory
mechanism
In order to gain global and yet specific insights into

the functions of miRNAs in a broad layer of

post-transcriptional control, methods beyond

Figure 1: A framework of miRNA functional annotation.
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searching for the base pairing between miRNAs and

mRNAs have been proposed. In the last few years,

many studies have been conducted to infer the

miRNA regulatory mechanisms by incorporating

target prediction with other genomics data, such as

the expression profiles of miRNAs and mRNAs.

Largely, the inference of miRNA regulatory

mechanism can be regarded as a question of data

integration in the functional analysis of miRNAs.

Few data sets are available for inferring miRNA

regulatory mechanism, such as (i) miRNA-target in-

formation from target prediction algorithms or

miRNA-target databases, (ii) sample-matched ex-

pression profiles of miRNAs and mRNAs from

microarray experiments or NGS techniques and

(iii) biological conditions or diseases related with dif-

ferent samples.

miRNA-target information from target prediction

algorithms or miRNA-target database provides a

way to build the potential relationships between

miRNAs and mRNAs. Several miRNA-target data-

bases, such as TargetScan [36], PicTar [35], TarBase

[74], miRecords [75] and miRWalk [76], store com-

putationally predicted miRNA targets as well as few

biologically validated ones. The miRNA-target in-

formation is usually presented as a table where each

row indicates a target pair of miRNA and mRNA.

Besides miRNA and its target mRNA, other infor-

mation, such as the sequence of miRNA/mRNA,

the binding score between miRNA and mRNA and

number of conserved and non-conserved sites, may

be also presented in each row depending on the

miRNA-target prediction algorithms used.

For the expression profiles of miRNAs/mRNAs,

they are usually organized as 2D tables where the

columns are samples from different biological condi-

tions and the rows are miRNAs/mRNAs. Each cell

of the table is an expression value of certain

miRNA/mRNA in a sample either from microarrays

or estimated from NGS techniques. Microarray tech-

nology is a powerful method for routine studies of

selected target sequences, while NGS data enable a

more detailed inspection on gene diversity because it

allows wider applications as well as provides better

sensitivity, accuracy and dynamic range than micro-

arrays. It is worth noting that in general there is good

concordance between the platforms [77, 78] particu-

larly in terms of the biological interpretation [79]. In

general, the expression profiles are subjected to a

series of pre-processing, such as background subtrac-

tion and normalization, before they can be further

used for a variety of downstream analysis.

Table 2: Tools for miRNA functional annotation

Tool Target databases Use
expression

Knowledge databases Link Reference

DAVID N/A No GO, KEGG, BioCarta, GAD,OMIM
Disease, PPI, etc.

http://david.abcc.ncifcrf.gov/ [61]

WebGestalt N/A No GO, KEGG, IPI, Pathway Commons,
Wikipathways, MGI, SGD, MSigDB,
NCBI dbSNP

http://bioinfo.vanderbilt.edu/
webgestalt/

[62]

miRGator miRanda, PicTar and
TargetScanS

No GO, KEGG/GenMapp/BioCarta,
Disease Ontology

http://genome.ewha.ac.kr/
miRGator/

[63]

miRDB MirTarget2 Yes Wiki model http://mirdb.org/miRDB/ [64]
miRoØ miRanda, PITA and

TargetScan
Yes NCBI Gene Database, NCBI

Nucleotide Database, GO,GAD
http://ferrolab.dmi.unict.it/

miro/
[65]

MAGA miRanda, PITA and
TargetScan

Yes Through DAVID APIs http://gencomp.bio.unipd.it/
magia/start/

[66]

FAME TargetScan Yes Experimentally verified
miRNA-pathway and
miRNA-process associations

http://acgt.cs.tau.ac.il/fame/ [67]

miR2Disease N/A No Manually curated database containing
1939 relationship between 299
human miRNAs and 94 human
diseases

http://www.mir2disease.org/ [69]

miReg N/A No Manually curated database containing
47 human miRNAs, 85 proteins, 115
upstream regulators, 165 targets, 38
diseases, 295 reactions and 70
biological processes

http://www.iioab-mireg.
webs.com/

[70]

Not applicable,N/A.
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Each sample is usually related with a biological

condition, such as cancer or normal, which provides

the class information when inferring the function of

miRNAs. Microarray experiments and NGS are

commonly designed in a comparative fashion in

which the samples are extracted from different bio-

logical conditions in order to find biological differ-

ences among conditions. It is critical information for

guiding inference of miRNA functions. This infor-

mation is usually a class label tagged to each sample.

Depending on what information is involved, we

classify the computational methods of inferring

miRNA regulatory mechanisms into two categories:

(i) predicting MRMs, that is, to identify a group of

co-expressed miRNAs and mRNAs, either at the

sequence level [80] or by integrating sequence and

expression profiles of miRNAs and mRNAs [81–84]

and (ii) inferring functional miRNA–mRNA regu-

latory modules (FMRMs), which are regulatory net-

works of miRNAs and their target mRNAs in

specific biological processes [85–88]. MRMs suggest

a broader control of miRNAs to mRNAs in terms of

general functions, while FMRMs focus on more

detailed miRNA regulatory mechanism in specific

biological conditions. Figure 2 illustrates the general

framework of inferring MRMs/FMRMs.

Predicting MRMs
The first attempt of predicting MRMs was con-

ducted by Yoon and De Micheli [80] who modelled

the miRNA co-target relationship with the graph

theory. In this approach, a MRM is defined as a

special bipartite graph, named biclique, where two

sets of nodes are connected by edges. Every node of

the first set representing miRNA is connected to

every node of the second set representing mRNAs

by edges with similar weights. The weights of edges

correspond to the miRNA–mRNA binding strength

inferred from target prediction algorithms, such as

the methods described in Lewis et al. [36] and John

et al. [33] where the strength of miRNA-target bind-

ing can be quantified. The biological observation, in

which the strength of each binding is not too strong

or weak but modest and similar when multiple bind-

ing sites exist on a target from Lai [89], is formulated

in the method. Potential miRNA-target relation-

ships are first constructed as weighted bipartite

graphs based on the sequence binding between

miRNAs and mRNAs. Then, a graph-mining

method is proposed to discover bicliques in which

all the edges have similar weights in the given

bipartite graphs. Statistically significant MRMs are

selected by calculating the probability of finding a

module by chance. This is the first method that ex-

plicitly searches for the multiple-to-multiple rela-

tionships among miRNAs and their target genes.

The limitation is that it models the miRNA

co-target relationship at the sequence level only,

thus the miRNA regulatory patterns at the expres-

sion level are not characterized.

Recent methods have integrated the analysis of

expression profiles of miRNAs and mRNAs in

Figure 2: A framework of inferring MRMs/FMRMs.
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conjunction with the predicted miRNA targets.

Most of the integrative methods of MRM discovery

are based on the assumption that miRNA negatively

regulate their target mRNAs to the effect that an

inverse relationship should exist between the expres-

sion of a specific miRNA and its targets.

Huang et al. [81, 90] applied the Bayesian network

(BN) parameter learning to infer miRNA–mRNA

interactions using both the miRNA–mRNA

sequence binding information and the sample-

matched expression profiles of miRNAs and

mRNAs. An initial network representing the puta-

tive target relationships between miRNAs and

mRNAs is constructed according to the target infor-

mation predicted for sequence binding. Then the

observation, miRNAs down-regulate their target

mRNAs, is encoded in the network at the expression

level. It models the expression of a mRNA, which is

assumed to follow a Gaussian distribution, as the

negative of a sum of weighted expression values of

their regulator miRNAs. The Gaussian BN param-

eter learning is used to infer the likelihood of

miRNAs regulating target mRNAs at the expression

level. This method explicitly encodes the inverse ex-

pression patterns between miRNAs and their target

mRNAs in the interaction network. Furthermore,

this model searches for co-expressed miRNAs and

mRNAs which are presumed to function together.

Thus, this model can potentially detect co-functional

miRNAs and mRNAs besides refine miRNA-target

predictions at the expression level.

Joung etal. [82] proposed a probabilistic method to

integrate the miRNA-target binding information

and expression profiles of miRNAs and mRNAs

for MRMs. In this method, a MRM is defined as a

group of miRNAs and mRNAs with coherent ex-

pression patterns in terms of 3D, miRNA–mRNA,

miRNA–miRNA and mRNA–mRNA, across all

biological conditions. Two heterogeneous data

sources, miRNA-target prediction scores based on

target binding and the sample-matched expression

profiles of miRNA and mRNA, are integrated to

extract the coherent miRNA–mRNA modules. To

describe the coherence of miRNA–mRNA modules

in the above 3D, the means of Pearson’s correlation

coefficients between all miRNA or mRNA pairs are

aggregated with the mean binding scores of all

miRNA–mRNA pairs. It is characterized by a fitness

function in which a co-evolutionary learning and

estimation-of-distribution algorithms are used to

mine the optimal groups of miRNAs and mRNAs,

which give the best fitness scores in an iterative fash-

ion. Thus, this method allows detection of correlated

miRNA–mRNA modules from multiple data

sources by using a balanced fitness function. It was

demonstrated with a human cancer data set and two

miRNA–mRNA modules found, which are highly

correlated with respect to their expression and bio-

logical functions.

Tran et al. [83] proposed a rule-based learning

method to predict MRMs. It is based on an assump-

tion that genes regulated by the same miRNAs show

similar expression profiles. This method first utilizes

the miRNAs and their targets, which were predi-

cated by PicTar, to construct miRNA–mRNA rela-

tionships at the sequence level. This target

relationship is denoted as a target binary matrix

where rows are mRNAs and columns are

miRNAs, and the element of the matrix is 1 if the

miRNA in the column targets the mRNA in the

row, otherwise 0. For each mRNA expression

value in the given data set, this method calculates

the Pearson’s correlation coefficients between it

and every other mRNA. The level of correlation is

then denoted as ‘Similarity’ or ‘Dissimilarity’ using a

pre-set arbitrary threshold. This similarity informa-

tion is added to the target binary matrix as an extra

column to construct a regulatory decision table,

which is then fed into a CN2-SD [91], a rule induc-

tion method. The CN2-SD searches the regulatory

decision table for a set of 1 in the columns with

‘Similarity’ denoted at the rows. That is, a group of

correlated mRNAs co-targeted by a group of

miRNAs. The Pearson’s correlation coefficients are

further calculated for miRNAs output from

CN2-SD, and only highly correlated miRNAs are

maintained for final MRMs. This procedure is re-

peated for every mRNA to find all MRMs in the

given data sets. This method was demonstrated with

a public data set. Several MRMs with high correl-

ation in expression patterns of miRNAs and mRNAs

were found. They also showed that the mRNAs

included in the same modules share similar biological

functions. However, it is not completely true that

genes regulated by the same miRNAs show similar

expression profiles, which was used as the basic as-

sumption for this method. Thus, it can be misleading

and many potential MRMs may be missed.

Peng et al. [84] developed an approach from both

Yoon’s [80] and Tran’s [83] methods. In this work,

MRMs are bicliques where miRNAs co-target

mRNAs predicted at the sequence level while the
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miRNAs and mRNAs are negatively correlated at

the expression level. At the expression level,

pair-wise correlations between the differentially ex-

pressed miRNAs and mRNAs are calculated with

Pearson’s correlation across all matched samples. A

correlation threshold is determined by a desired false

detection rate, which is the percentage of miRNA–

mRNA pairs out of the total number of selected

pairs that would have the same or better correlation

just by chance. By applying this threshold, a 2D cor-

relation matrix is constructed where elements stand

for the miRNAs in columns negatively correlated

with the mRNAs in rows. In parallel, for the same

set of miRNAs and mRNA, a 3D miRNA-target

matrix is built by examining if miRNA–mRNA

pairs match in the seed region. Then, a miRNA–

mRNA regulatory matrix is constructed by multi-

plying the binary correlation matrix with the

miRNA-target matrix in the dot product fashion.

The miRNA–mRNA regulatory matrix is further

represented as bipartite graphs in which a fast search-

ing algorithm is used to enumerate all the bicliques.

The statistically significant bicliques are the final

MRMs through a permutation test. This method

was applied to a data set of human liver biopsy sam-

ples for hepatitis C virus study and identified 38

MRMs that were associated with the hepatitis C

virus infection.

Recently, Zhang et al. [92] proposed a method to

infer MRMs by integrating miRNA-target predic-

tions, expression profiles of miRNA and mRNA

and the topological structures of protein–protein

interactions (PPIs). This method uses the miRNA-

target predictions as the basic structures, while the

expression profiles of miRNA and mRNA are applied

on the structures to find the co-expressed miRNAs

and mRNAs, then PPIs are further used to refine the

structures. A novel machine learning method sparse

network regularized multiple non-negative matrix

factorization (SNMNMF) was developed in this

work to integrate three heterogeneous data sources.

They tested this method on a data set of ovarian

cancer samples, and 49 significant MRMs were iden-

tified, where the miRNA modules are enriched with

miRNAs clusters in their chromosomal locations and

the gene modules are enriched with known function

gene sets.

The above methods (Table 3) aim at exploring

general miRNA–mRNA regulatory modules by

integrating miRNA-target prediction on sequence

with expression profiles of miRNA and mRNA or

other data sources. They have archived variant suc-

cesses on different trial data sets. However, they

identify groups of co-expressed miRNAs and

mRNAs without considering the biological condi-

tions of the samples. Therefore, no implications re-

garding the functions of MRMs in specific biological

conditions can be identified. The functions of MRMs

in terms of biological processes usually are unclear

until a functional enrichment analysis is conducted

by querying the identified target genes against the

GO or other similar annotation databases [80, 83].

Those biological conditions are very important in

biological experimental design, and hence, some

conditionally related MRMs may be omitted if we

do not take into account the conditions. This ques-

tion, however, is of great interest in understanding the

biological pathways of MRMs in more detail.

Inferring FMRMs
In order to resolve the limitation of MRMs and gain

understanding of miRNA functions in specific bio-

logical processes, the concept of FMRMs [85] was

proposed. FMRMs explicitly characterize how

groups of miRNAs regulate their target mRNAs

and how they co-act together to form pathways in

complex regulatory networks for specific conditions.

Many methods have been proposed to infer FMRMs

(Table 4) since then.

Liu et al. [85] proposed an approach to infer

FMRMs by combining graph theory and association

rule mining. This method consists of two steps at

both sequence and expression levels. At the sequence

level, putative miRNA regulatory networks are con-

structed as bipartite graphs where a connection is

made between a specific miRNA and its predicated

target mRNAs based on the miRNA-target predic-

tions algorithms or target databases. A fast biclique

searching algorithm, modular input consensus algo-

rithm (MICA) [93], is then applied to enumerate all

bicliques given the bipartite graphs. At the expression

level, association rule mining is used to discover the

significant associations between specific biological

conditions and the inverse expression patterns of

miRNAs and mRNAs on all enumerated bicliques.

Finally, the association relationships among

miRNAs, mRNAs and conditions are merged to

be the final FMRMs. This method was demonstrated

on a publicly available prostate cancer data set where

two modules are identified. Those modules are

associated with cancer and normal conditions,
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respectively. This study was the first published work

to explicitly discover FMRMs.

Joung etal. [86] used a generative model to predict

FMRMs adopted from the Author-Topic model

[94] which was proposed initially in information re-

trieval. This method models the miRNA–mRNA

regulatory mechanism as hierarchical steps in which

the FMRMs are defined as functional clusters of

miRNAs and target mRNAs involved in the same

biological processes. In this generative model, the

expression value of an mRNA is regarded as the

number of times an event of the mRNA expressed

in a sample. Each mRNA has events of its expression

in a specific condition that is likely to be associated

with its regulator miRNAs given by miRNA-target

predictions. A hierarchical generative process hy-

pothesizes that a miRNA is sampled from a multi-

nomial distribution over FMRMs, and then the

sampled miRNA is used to sample mRNAs which

have a multinomial distribution over conditions. An

approximate method, Gibbs sampling, is used to

infer the parameters of the generative model,

which can characterize FMRMs. This method inte-

grates data sets, including miRNA-target informa-

tion and expression profiles of mRNAs. It

predicted several biological processes related to

miRNA–mRNA modules on an Arabidopsis data

set. The drawback of this method is that it does

not use the expression profiles of miRNAs. Thus,

the regulatory relationships of miRNAs and

mRNAs largely rely on the miRNA-target informa-

tion predicated at the sequence level.

Liu et al. [87] proposed a BN-based method to

identify complex miRNA–mRNA interactions for

FMRMs, named Bayesian network with splitting-

averaging (BNSA). They demonstrated that the

conventional BNs are not able to identify all the

interactions potentially existing in the data. Thus,

BNSA was proposed to discover all possible

miRNA–mRNA interactions, including the subtle

ones undetectable for conventional BNs. This

method integrates miRNA-target information, sam-

ple-matched expression profiles of miRNA and

mRNA, and sample categories. In order to capture

Table 3: Summary of methods for inferring MRMs

Method Data sources miRNA-
target
database
used

Differential
gene analysis

Key features Availability of
software

References

Yoon and De
Micheli

miRNA-target binding
information

TargetScan N/A Sequence level method; searching
for bicliques with modest or
similar binding strength of
miRNAs and mRNAs.

Upon request [80]

Huang et al. Sample-matched expression
profiles of miRNA and
mRNA, and miRNA-target
prediction

Any No BN parameter learning-based
method; the inverse patterns of
expression between miRNAs and
mRNAs are encoded in the
network.

GenMiRþþ, http://
www.psi.toronto.
edu/genmir/

[81, 90]

Joung et al. miRNA-target prediction
scores and the
sample-matched
expression profiles of
miRNA and mRNA

miRBase No A machine learning method to
capture co-expressed miRNAs
and mRNAs.

Upon request [82]

Tran et al. miRNA-target prediction
and the sample-matched
expression profiles of
miRNA and mRNA

PicTar No A rule-based method to capture
groups of mRNAwith similar
expression patterns targeted by
groups of miRNAwith similar
expression patterns.

Upon request [83]

Peng et al. miRNA-target prediction and
the sample-matched
expression profiles of
miRNA and mRNA

Any Yes Combination of Yoon’s and Tran’s
methods.

Upon request [84]

Zhang et al. miRNA-target prediction,
expression profiles of miRNA
and mRNA, and topological
structures of PPI

MicroCosm Yes A computational framework
integrating expression profiles
of miRNA/mRNA, PPI,
DNA^protein interaction and
miRNA^mRNA targeting.

http://zhoulab.usc.
edu/SNMNMF/

[92]

Not applicable,N/A.
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all possible interactions, this method groups expres-

sion profiles of miRNAs and mRNAs together

according to their sample category and then learns

BN structures on the expression profiles of miRNA

and mRNA in each category, respectively. The

miRNA-target information acts as a constraint to

guide the structure learning, whereby the miRNAs

represent the parent nodes while the mRNAs are the

descendant nodes. The edges linking the parent

nodes to descendant nodes can only be those defined

in the miRNA-target predictions. Interaction net-

works learned on each category are then integrated

by BN averaging procedure. To avoid statistically

insignificant results due to the small size of data

sets, it uses bootstrapping to achieve reliable infer-

ence and integration. This method was demonstrated

on NCI-60 data sets [95] and used to characterize the

FMRMs towards epithelial to mesenchymal transi-

tion (EMT). The results show that this method

captured all possible types of miRNA–mRNA inter-

actions, including both negatively correlated and

positively correlated miRNA–mRNA pairs, from

the data in terms of EMT. For the first time, it

demonstrated that positively correlated expression

patterns of miRNA–mRNA also widely exist

in the data besides negatively correlated ones

(Figure 3). Many interactions are of tremendous

biological significance according to pathway analysis.

Some discoveries have been validated by previous

research, such as miR-200 family that negatively

regulates ZEB1 and ZEB2 for EMT. Some are

consistent with the literature, and many novel inter-

actions are statistically significant and worthy of

further investigation and validation.

Nunez-Iglesias et al. [96] proposed a method to

infer FMRMs by correlation tests with permutation.

This method calculates the expression correlations

between miRNAs and predicted target mRNAs

with permutation tests, across all given samples

(globally) and on case and control samples (locally).

The correlation coefficients are then standardized,

thus scores how well the miRNAs are concordant

with mRNAs globally and locally. Then the

miRNA–mRNA pairs are identified by searching

for the highest difference in the scores between

case and control sample. The identified miRNA–

Table 4: Summary of methods for inferring FMRMs

Method Data sources miRNA-target
database use

Differential
gene analysis

Key features Availability of software Reference

Liu et al. miRNA-target predictions,
expression profiles of miRNA
and mRNA, and sample
information

Any Yes A rule-based method; searching
for bicliques with inversed
miRNA^mRNA pairs
associating with biological
conditions.

Upon request [85]

Joung et al. miRNA-target prediction and
expression profiles of mRNA

Any No A hierarchical clustering method
to identify the co-expressed
miRNAs/mRNAs.

Upon request [86]

Liu et al. miRNA-target predictions,
expression profiles of miRNA
and mRNA, and sample
information

Any Yes A BN structure learning-based
method; sample information is
incorporated into the
network.

BNSA, upon request [87]

Nunez-Iglesias
et al.

miRNA-target predictions,
expression profiles of miRNA
and mRNA, and sample
information

Any Yes The miRNA^mRNA pairs are
identified by searching for the
highest difference in the
standardized correlation of
miRNAs and mRNAs
between case and control
sample.

Upon request [96]

Bonnet et al. Expression profiles of miRNA
and mRNA, and sample
information

N/A No A two-step method: (i) two-way
clustering identify the tight
clustered genes in all
conditions and (ii) a fuzzy
decision tree model is applied
to each cluster to identify the
regulation programs.

LeMoNe, http://bioinfor-
matics.psb.ugent.be/
software/details/LeMoNe

[97]

Liu et al. Expression profiles of miRNA
and mRNAwith or without
miRNA-target predictions

Any No A probabilistic graphical model
based on Corr-LDA.

Corr-LDA, upon request [88]

Not applicable,N/A.
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mRNA pairs merge to be the final FMRMs that

have the differential power in different biological

conditions. This method again identified that both

negative and positive correlations widely exist in the

expression of miRNAs and their target. Functional

analysis further suggests that positively correlated

miRNA–mRNA pairs have equally important func-

tions as the negative ones.

In contrast to the above methods, Bonnet etal. [97]

proposed to infer FMRMs using expression profiles of

miRNA and mRNA only. Their method involves

two steps. In the first step, it searches the mRNA

expression profile for sets of tight clusters, which are

groups of genes consistently clustered together under

the different biological conditions. A Gibbs sampling

approach is used to cluster the expression profiles in

directions of both genes and conditions simultan-

eously. Multiple clustering solutions are generated

by Gibbs samplers with a range of configurations.

Then, a set of tight clusters is produced by averaging

multiple clustering solutions. In the second step, this

method assigns a set of regulators including miRNAs,

transcription factors or signal transducers, to each tight

cluster. This assignment is learned using a fuzzy deci-

sion tree model. In this model, the clustered condi-

tions of each module output from the first step are first

linked together with a hierarchical decision tree

where each node of the tree is a split of two sets of

conditions corresponding to the under- or

over-expressed levels of mRNAs. Then, regulators

are assigned to each node of the tree using a probabil-

istic score reflecting how well the expression levels of

the regulator match the mRNA expression levels

defined by the split value. In order to avoid

over-fitting, multiple condition clusters are gener-

ated. Thus, there are multiple decision trees and mul-

tiple regulators assigned for each node of each

hierarchical tree. Finally, FMRMs are extracted by

an ensemble approach which is used to capture the

regulators most frequently assigned to each condition,

given a set of tight clusters of mRNAs. The algorithm

was initially designed to infer the gene regulatory

modules, and the open-source software package is

named LeMoNe. Different from inferring the gene

regulatory modules, miRNAs are assigned as candi-

date regulators in LeMoNe. This method demon-

strated that FMRMs can be inferred from

expression profiles of miRNA and mRNA only.

Some researchers have suggested that algorithms

that do not consider known targets, may avoid bias

[36, 37, 98]. Thus, this method potentially avoids this

problem incurred by miRNA-target predictions.

A method proposed by Liu et al. [88] allows more

flexible choices where expression profiles of miRNA

and mRNA are used to infer FMRMs with or without

integrating the miRNA-target predictions. This

Figure 3: A FMRM identified by BNSA from analysis of schizophrenia subjects. It shows that miRNAs may up/
down regulate their target mRNAs, either direct or indirect. Up-regulated miRNAs are coloured in red and
down-regulated miRNAs are coloured in green.Up-regulated mRNAs are coloured in yellow, while down-regulated
mRNAs are coloured in blue.
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approach is a probabilistic graphical model based on

correspondence latent Dirichlet allocation (Corr-

LDA) [99], in which FMRMs are defined as latent

variables governing the expression values of miRNA

and mRNA which in turn are associated with a variety

of biological functions. Given k-latent FMRMs pre-

sented in the samples, this method models miRNAs

and mRNAs as observations generated from a prob-

abilistic process over the k-FMRMs. Therefore, each

sample is a random mixture of miRNAs and mRNAs

associated with k-modules. By inferring the probabil-

ity distributions of the latent variables, this method

captures the likelihood that samples, miRNAs and

mRNAs, are associated with functional modules. A

Gibbs sampling method was developed to infer the

parameters of this model. Under this model,

miRNAs can be associated with any functional mod-

ules, while mRNAs may only be associated with the

modules that produce the miRNAs. In effect, it cap-

tures the hierarchical notion that miRNAs are gener-

ated under specific FMRMs, and mRNAs are

regulated by the miRNAs in the given FMRMs.

This model was applied to a mouse mammary data

set. It effectively captured several biological process-

specific modules involving miRNAs and their target

mRNAs. Furthermore, without using prior target

binding information, the identified miRNAs and

mRNAs in each module show a large proportion of

overlap with predicted miRNA-target relationships,

suggesting that expression profiles of miRNA and

mRNA are crucial for both target identification and

discovery of FMRMs.

CONCLUSIONSANDOUTLOOKS
miRNAs have been recognized as pivotal factors in

defining the specificity and sensitivity of post-

transcriptional gene silencing. Identifying miRNA,

their target genes from genome and further inferring

their functions and regulatory mechanisms are critical

in understanding biological processes of organisms

and may shed light on deciphering their roles in

the pathophysiology of disease.

While some validated miRNAs and their target

genes have been collated in databases, such as

TarBase [100] and miRecords [75], these in no

way reflect the diversity and abundance of potential

miRNA regulatory influences. It is unfeasible to ex-

plore empirically all the possibilities in this combina-

torial matrix due to the laborious tasks involved. As

such, a complete understanding of miRNA functions

and their precise regulatory mechanisms remain

elusive.

After many miRNAs have been identified and

their targets have been predicted, research interests

are moving to identify the functions of miRNAs and

their regulatory mechanisms. However, characteriz-

ing these aspects represents a significant challenge

because of complex and subtle features of miRNA

and RNA-induced silencing complex which

miRNAs might associate with. To gain global and

yet specific insights into the functions and evolution

of a broad layer of post-transcriptional control, it is

particularly useful to integrate miRNA and miRNA

sequence and expression profiles and compare these

data with other comparative genomic information

[17]. High-throughput technologies, such as micro-

array, mass spectrometry and especially the newly

developed NGS, have provided tremendous poten-

tial for profiling variant molecules at several levels

with unprecedented resolution, depth and speed.

These features of technologies bring new bioinfor-

matics opportunities as well as challenges.

In this review, we focused on the computational

methods of inferring miRNA functions at miRNA–

mRNA level and provide an introduction of miRNA

discovery and miRNA-target prediction. The con-

cepts applied by these methods can be largely re-

garded as integration of heterogeneous data sources

in functional analysis of miRNAs. Depending on the

data sources involved, we classify these methods into

three categories: miRNA functional annotation,

inferring MRMs and inferring FMRMs. Several

methods have been proposed in the last few years.

Some methods have been released and free for use,

while others are available on request.

How effective these algorithms are at present is still

difficult to determine with such a limited selection of

data sets without extensive biological validation.

Complex features of miRNAs make functional anno-

tation and regulatory mechanisms even harder to

evaluate, particularly different algorithms focus on

slightly different aspects of miRNA–mRNA inter-

actions. The selection of methodology will be de-

pendent on the available information. If a list of

miRNAs is the only available information, we are

limited to miRNA functional annotation. If the

miRNA-target prediction and the expression of

mRNAs are available, then Jong et al.’s [86] method

based on Author-Topic model is probably the most

appropriate. If expression profiles of both miRNA

and mRNA are available, it is possible to go further
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and infer the biological specific FMRMs through

BNSA [87] or Corr-LDA [88]. While these methods

are not directly comparable, they can complement

each other.

We are a long way from understand miRNA

regulatory mechanisms on a large scale. The meth-

odologies discussed in this review have the capacity

to infer miRNA regulatory mechanism with

miRNA-target predictions and expression profiles

of miRNA and mRNA. Biological discovery has

suggested that miRNA regulation can degrade

mRNAs as well as inhibit protein translation.

Although one-third of mRNAs repressed in the

translation process display detectable destabilization,

more are repressed without detectable changes in

mRNA levels [50]. Thus, the global impact on pro-

tein outputs had not yet been determined in great

detail. Furthermore, transcription factors also play

important roles in translation. They may co-regulate

genes with miRNAs. Exploration of the wiring of

miRNA regulatory relationships together with

known protein–protein interaction data, phenotypic

data, transcriptional regulatory interactions and other

functional genomics data may help to further eluci-

date the function of miRNAs at a system-wide level.

Fortunately, some work falling in these categories is

emerging [101–103]. In summary, it may be that by

integrating genome-wide computational and experi-

mental data we have the unprecedented opportunity

to study functions and evolution of a broad layer of

gene regulatory control mediated by miRNAs.

Key Points

� DiscoveringmiRNAs, identifying their targets and further infer-
ring miRNA functions have been a critical strategy of under-
standing normal biological processes of miRNAs and their roles
in the development of disease.

� The complexities of miRNAs pose great challenges on discover-
ing their functions and regulatory mechanisms, while computa-
tional methods greatly advanced our understanding in miRNA
functions by integrating heterogeneous data sources.

� To reveal the functions ofmiRNAs, computationalmethods have
been proposed to (i) annotate functions of miRNAs through
their target mRNAs, (ii) identify the co-expressed miRNA/
mRNAs groups (MRM) and (iii) infer the FMRMs.

� By integrating genome-wide computational and experimental
data,wehave theunprecedentedopportunity to study functions
and evolution of a broad layer of gene regulatory control
mediatedbymiRNAs.
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