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Abstract

Drug development is an expensive and time-consuming process; these could be reduced if the existing resources could be
used to identify candidates for drug repurposing. This study sought to do this by text mining a large-scale literature reposi-
tory to curate repurposed drug lists for different cancers. We devised a pattern-based relationship extraction method to
extract disease–gene and gene–drug direct relationships from the literature. These direct relationships are used to infer in-
direct relationships using the ABC model. A gene-shared ranking method based on drug target similarity was then proposed
to prioritize the indirect relationships. Our method of assessing drug target similarity correlated to existing anatomical
therapeutic chemical code-based methods with a Pearson correlation coefficient of 0.9311. The indirect relationships rank-
ing method achieved a significant mean average precision score of top 100 most common diseases. We also confirmed the
suitability of candidates identified for repurposing as anticancer drugs by conducting a manual review of the literature and
the clinical trials. Eventually, for visualization and enrichment of huge amount of repurposed drug information, a chord dia-
gram was demonstrated to rapidly identify two novel indications for further biological evaluations.
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Introduction

Drug development is a time-consuming, expensive and high-
risk process [1, 2], and this has led to the emergence of drug
repurposing (also known as drug repositioning or drug re-profil-
ing), which is the application of already approved drugs to new
diseases. The principal advantage of drug repurposing over

drug development is that approved drugs have already been
through several stages of clinical trials and, therefore, have
well-known safety and pharmacokinetic profiles [3]. A well-
known example is that of aspirin, which was originally used for
pain relief and has since been used to prevent cardiovascular
disease and cancer [4, 5]. Sildenafil, initially used to treat high
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blood pressure, has been repurposed to treat erectile dysfunc-
tion [6]. Thalidomide was originally used against nausea and to
ease morning sickness in pregnant women but failed because it
can cause Phocomelia syndrome. However, thalidomide has re-
cently been found effective for the treatment of dermatolo-
gical disorders, aphthous stomatitis, as well as multiple
myeloma [7, 8]. These repurposed drugs have demonstrated
that drug repurposing is a promising way to improve drug
discovery.

The identification of disease–gene, gene–drug and disease–
drug relationships is key to identifying and curating new candi-
dates for drug repurposing. Although there are databases [9–12]
that extensively curate the relationships between various bio-
medical entities, many other unidentified relationships may be
buried in the biomedical literature. As noted in a review and
two research articles [13–15], literature-based discovery (LBD) to
generate scientific hypotheses for finding new indications of
existing drugs seems to be a well-suited strategy. Andronis et al.
[13] reviewed various LBD approaches showing the detection of
hidden connection between biomedical entities is crucial and
suggested that visualization techniques could facilitate the de-
tection for scientists. Beyond the review work, Tari et al. [14]
used a declarative programming language, AnsProlog, to
achieve the automated reasoning for the incomplete informa-
tion of indirect relationships for drug indications. Furthermore,
Tari et al. [15] introduced several publicly available knowledge
resources such as chemical structures, side effects and signal-
ling pathways for identifying alternative drug indications.
Therefore, identification of otherwise hidden relationships by
text mining biomedical literature repositories could enable the
discovery of unidentified relationships for drug repurposing.

Under the assumption that extensive knowledge is hidden in
the large-scale literature, we sought to develop a relationship ex-
traction method for the purpose of drug repurposing. Conventional
approaches that focused on extracting the existing disease–drug
relationships could fail to find potential new disease–drug relation-
ships [16, 17]. In this study, we focused on extracting disease–gene
relationships and gene–drug relationships to discover hidden dis-
ease–drug relationships and found that useful indirect relation-
ships could be identified using this strategy. We developed a text-
mining-based ranking method to allow the detection of indirect re-
lationships that may facilitate the discovery of new candidates
supporting the curation for drug repurposing.

Specifically, the aim of this study was to design an intuitive
pattern-based learning method to extract relationships from
the biomedical literature along with a drug vector space-based
ranking method to identify the most promising potential drugs.

Materials and methods
Target document triage

PubMed comprises more than 24 million citations from
MEDLINE and other data sources of biomedical literature. We

downloaded the MEDLINE database (version 2014) for use as our
primary resource. As the database also contained articles that
were irrelevant to our work, we first sought to discard the litera-
ture that did not concern disease–gene, gene–drug and disease–
drug relationships.

Predefined lexicon compiling
The Therapeutic Target Database (TTD; http://bidd.nus.edu.sg/
group/cjttd/) provides a great deal of information concerning
targets and their corresponding drugs and diseases [11]. Within
the context of our work, TTD is a more appropriate resource to
generate a list of relevant entity names because it contains suf-
ficient information regarding disease–drug relationships. We
gathered 2723 diseases, 3188 targets and 20 043 drugs from TTD
(see Supplementary Data for details), and these data were used
to generate a list of named entities for filtering the whole
MEDLINE database.

Irrelevant document filtering
Apache Lucene (http://lucene.apache.org/), a high-performance
search engine, was used to quickly search the large document
collection. We queried the whole MEDLINE database using the
Apache Lucene’s search libraries to remove the documents with
no mention of the disease, gene or drug entities identified using
the predefined lexicon. We collected 5.3 million disease-related
documents, 7.1 million gene-related documents and 5.5 million
drug-related documents. We only wanted to retain documents
that mentioned at least two different entities. These kept docu-
ments are therefore referred to as ‘target documents’. However,
relying only on the predefined lexicon to gather the target docu-
ments could lead to false negatives. We learned that capturing
true positives as accurate as possible is quite crucial for the de-
tection of indirect relationships though it also leads to a lower
recall in our experiment (Table 1). A paper of Tari et al. [15] ap-
pears to have better results for recall, whereas we particularly
aimed at the precision of prediction because of the huge
amount of citations used. As shown in Figure 1A, the docu-
ments expressing ‘(Disease\Gene)[(Gene\Drug)[(Disease\
Drug)’ defined our target documents. In total, we identified 5.4
million target documents.

Relationship extraction

In general, co-occurrence-based relationship extraction is a
straightforward approach although it may lead to the extraction
of incorrect relationships. In this study, we used a semantic pat-
tern-based relationship extraction method to improve the preci-
sion of our method owing to the importance of correct
relationships. Although the recall can be expected to be some-
what lower, the corpus was large enough (5.4 million) for tack-
ling this problem. As shown in Figure 1B, the relationship
extraction method includes the three stages discussed below.

Named entity recognition
Named entity recognition (NER) seeks to locate and classify
elements into predefined categories such as disease, gene or
drug, and it can be simply divided into rule-based, dictionary-
based and machine learning-based approaches. In this stage,
we developed a dictionary-based NER system that identifies
elements by matching the named entities extracted from the
predefined lexicon (Section Predefined lexicon compiling). The
named entities were then used to determine whether a sen-
tence contains enough information for being retained.

Table 1. Comparison of the effectiveness of four different methods
of relationship extraction (RE)

RE method Precision Recall

Abstract level 0.7666 0.2284
Sentence level 0.8521 0.1341
Our approach (all POS) 0.859 0.1041
Our approach (verb, adj and noun only) 0.8674 0.091
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Dependency tree parsing
Dependency grammar represents sentences with a syntactic
tree and focuses on the underlying relationships between words
[18]. In dependency grammar, verbs usually act as the structural
root of complete clauses that consist of a subject and an object.
Other words are either directly or indirectly dependent on the
root. The Stanford parser (http://nlp.stanford.edu/software/lex-
parser.shtml) is a natural language parser tool that was de-
veloped by the Stanford Natural Language Processing Group
[19]. It can be used to determine which words are the subject or
object in a sentence. For example, the sentence ‘Bills on ports
and immigration were submitted by Senator Brownback,
Republican of Kansas’ is converted to the root part ‘were sub-
mitted’, the subject noun part ‘Senator Brownback, Republican
of Kansas’ and the object noun part ‘Bills on ports and immigra-
tion’. Some studies have demonstrated that using the smallest
common subtree of the subject part and the object part for rela-
tion extraction could emphasize the local characteristics and

reduce noise of relations [20, 21]. In this study, we converted the
sentences of the target documents to the smallest common sub-
trees in dependency format (hereafter referred to as ‘triplet con-
tainers’) for distinguishing the root part, the subject noun part
and the object noun part of the sentences that contain two
named entities in different categories (i.e. disease, gene, drug).

Trigger word learning
A triplet container, considered as a predicate argument struc-
ture (PAS), was shown to produce high-quality information
extraction results [22]. However, the lack of suitable and off-the-
shelf roots (hereafter referred to as ‘trigger words’) of triplet
containers has hindered the development of extraction of cor-
rect relations. The Comparative Toxicogenomics Database
(CTD; http://ctdbase.org/) currently contains >1 million chem-
ical–gene, gene–disease, chemical–disease relationships that
have been manually extracted from >100 000 documents [12].
We therefore collected trigger words by extracting the root parts

Figure 1. Overview of the method for identifying new candidates for drug repurposing by text mining the medical literature. (A) The entire MEDLINE collection is

reduced. (B) The remaining articles are analysed for recognizing biomedical entities and inferring drugs. (C) Inferred drugs are represented by drug vector spaces and

ranked by a drug prioritization. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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of the CTD relationships, which were also converted to the trip-
let containers. For example, a chemical–gene pair (C1305-
PARP1) was extracted from PMID: 15231658, and the document
states ‘. . . mouse cells lacking PARP-1 are extremely sensitive to
C-1305, a new topoisomerase II inhibitor’. By converting the
sentence to the triplet container, a trigger word ‘sensitive’ was
derived as it belongs to the root part. The parts of speech (POS)
of the trigger words were restricted to verb, adjective and noun,
which have been studied in some previous works [20, 23, 24].
We parsed 94 513 documents from CTD and obtained about
11 000 unique trigger words. However, the obtained trigger
words contained many words that were effectively noise. To
guarantee the reliability of the trigger words, only the 1896 trig-
ger words that appeared >10 times were used. Finally, we
manually filtered some noise words (e.g. common words, digits
and meaningless symbols) and retained the top 1000 most fre-
quently occurring trigger words (see Supplementary Data for de-
tails). In summary, we converted the sentences of the target
documents to triplet containers, and the relationships of the
triplet containers were extracted if the following requirements
were satisfied: (1) the subject part and the object part matched
the predefined lexicon; (2) the root part matched the trigger
words. We finally collected 114 381 disease–gene pairs, 176 219
gene–drug pairs and 88 573 disease–drug pairs from the target
documents (in which all the pairs are direct relationships). In
the next step, the pairs were used to find potential repurposed
drugs using the ABC model.

2.3 Repurposed drug prioritization

The ABC model has been successful in explaining how two rela-
tionships are linked by an intermediate for drug discovery [25,
26]. Specifically, from a direct disease–gene relationship and a
direct gene–drug relationship, one could infer an indirect dis-
ease–drug relationship. A drug in an indirect disease–drug rela-
tionship is one of the repurposed drugs for the disease, because
it is indirectly linked to the disease by common genes. By link-
ing 114 381 direct disease–gene relationships and 176 219 direct
gene–drug relationships, we inferred 1 812 775 indirect disease–
drug relationships based on the ABC model. However, many
indirect disease–drug relationships may be spurious. We there-
fore developed a drug vector space representation and a drug
target similarity ranking to prioritize the repurposed drugs.

Drug vector space model
We proposed a drug vector space to represent drugs by the link-
age of genes to calculate the similarity between two drugs.
Figure 1C shows the process that was used to transform drugs
into a bit vector representation; the values of elements of a drug
vector were determined based on connections to the linked
genes. Denoting the whole gene set as G¼ {g1, g2,. . ., gn} and the
whole drug set as D¼ {d1, d2,. . ., dm}, the gene–drug relationships
of the indirect disease–drug relationships with the same disease
can be represented by an n�m matrix with each element aij¼ 1
if gene gi links to drug dj; otherwise, aij¼ 0. As a consequence, a
drug dj can be represented by the vector [a1j, a2j,. . ., anj]. This
drug vector space representation could also reveal similarities
between drugs via clustering of drugs based on their linkage to
genes. For example, if two drugs are linked to most of the same
genes (i.e. their bit vectors are similar), this may imply that the
two drugs are similar and have the same mechanism of action
[27]. In this study, we prioritized repurposed drugs based on
their similarity to approved drugs using the drug vector space
model.

Drug target similarity ranking
The key concepts of the method are depicted in Figure 1C. If a
drug is similar to an approved drug, then it may be a promising
repurposing candidate. The drugs of the indirect disease–drug
pairs of a given disease were split into two categories: approved
drugs AD (if indicated as the targeted drugs of the disease) and
repurposed drugs RD (if indicated as not the targeted drugs of
the disease). The records of the targeted drugs for a disease
were retrieved from TTD. The similarity of each repurposed
drug to approved drugs was quantified using the Jaccard index,
which measures the ratio of the sizes of the intersection of two
sets to their union, and was scored using a summation method
(some other methods such as maximum, geometric mean and
average were also tested as discussed in Section Drug repurpos-
ing evaluation) over all approved drugs to get a final value of
drug target similarity. We note that the binary drug vectors can
be thought of as indicator vectors of their respective sets (of
genes). Thus, the Jaccard index JI is

JI dp; dq
� �

¼
jdp \ dqj
jdp [ dj (1)

where dp denotes the bit vector [a1p, a2p,. . ., anp] of drug dp, and
dq denotes the bit vector [a1q, a2q,. . ., anq] of drug dq; the symbols
\ and [ are interpreted as bit-wise AND OR, respectively, and j�j
is the Hamming weight (number of 1s) of the vector. The repur-
posed drug score (RDS) for a given diseases s is then

RDSs RDð Þ ¼

Xk

c¼1
JI RD;ADcð Þ

n o
�min RDSsð Þ

max RDSsð Þ �min RDSsð Þ (2)

where k indicates the number of the approved drugs for dis-
ease s, ADc is the c-th approved drug in all of k approved drugs,
max(RDSs) and min(RDSs) represent the highest and lowest RDSs
of the given disease s, respectively.

Results

We designed evaluation methods to verify the accuracy of our
relationship extraction, drug similarity calculation and drug
repurposing assessment. Our relationship extraction evaluation
was used to verify whether the extracted relationship was reli-
able; the drug similarity evaluation was to verify whether the
drug vector space was suitable for calculating drug similarity;
and the drug repurposing evaluation was to verify whether our
drug target similarity ranking prioritized the repurposed drugs
in a suitable manner.

Relationship extraction evaluation

If our relationship information is incorrect, it could lead to un-
suitable drug repurposing owing to wrong inference of indirect
relationships. Our approaches were compared with co-occur-
rence methods at the abstract level and sentence level. The ab-
stract-level method treats two named entities in the same
abstract as a relationship. The method that works at the sen-
tence level only treats two named entities in the same sentence
as a relationship. In general, working at the sentence level was
more precise than working at the abstract level.

Precision and recall are often used for evaluating an infor-
mation retrieval system. Precision is defined as the number of
correctly retrieved relationships divided by the total number
of retrieved relationships. Recall is defined as the number of

Literature-based discovery of drug repurposing | 491

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/18/3/488/2453285 by guest on 09 April 2024

Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: more than ten times (
Deleted Text: )
Deleted Text: ,
Deleted Text: ,
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw030/-/DC1
Deleted Text: .
Deleted Text: .
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: 2.3.1 
Deleted Text:  
Deleted Text: in order 
Deleted Text: ,
Deleted Text: which 
Deleted Text: -
Deleted Text: -
Deleted Text: 2.3.2 
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: repurposed drug score
Deleted Text: 3. 
Deleted Text: ,
Deleted Text: actually 
Deleted Text: 3.1 
Deleted Text: due 
Deleted Text: to 
Deleted Text:  


correctly retrieved relationships divided by the total number of
correct relationships possible.

Our experimental data set was downloaded from the CTD
Web site, which describes curated relationships from docu-
ments. In total, 94 513 biomedical documents were collected
from which we randomly selected 10 000 biomedical documents
as our data set. We used 10-fold cross-validation to test the per-
formance of the methods. During the 10-fold cross-validation
process, the data set was equally divided into 10 splits (subsets),
with one subset used for testing and the remaining nine used
for generating the list of trigger words. Table 1 shows that our
approach has the highest precision (0.8674) of all methods
(ranging from 0.7666 to 0.8521).

Drug similarity evaluation

To verify whether our drug similarity method was feasible, we
investigated the correlation between the similarity computed
by the drug vector space model and the similarity calculated by
the anatomical therapeutic chemical (ATC) classification sys-
tem. The ATC classification system is used for the classification
of drugs and was considered as a ground truth in our study.
According to the organ on which the drugs act as well as their
therapeutic, pharmacological and chemical properties, they are
classified into several different groups at five different levels
and are assigned to the so-called ATC codes [28].

For example, the drug metformin is first classified into one
of the 14 anatomical main groups—specifically group ‘A’, which
is for alimentary tract and metabolism. Subsequently, at the se-
cond level, metformin is classed as ‘10’ among the therapeutic
subgroups as it is a drug that is used to treat diabetes. The third
and fourth levels are the pharmacological subgroup and the
chemical subgroup, respectively. The classifications are ‘B’ for
the third level—indicating drugs used to lower glucose—and ‘A’
for the fourth level—indicating biguanides. Finally, the fifth
level indicates the chemical substance, which for metformin is
‘02’. Therefore, the whole ATC code for metformin is ‘A-10-B-A-
02’.

Cheng et al. proposed a drug therapeutic similarity for calcu-
lating drug similarity using the ATC code [29]. The i-th level
drug similarity (DSi) between two drugs dp and dq is defined as:

DSi dp; dq
� �

¼
ATCi dp

� �
\ ATCi dq

� �

ATCi dp
� �

[ ATCi dq
� � (3)

where ATCi(dp) and ATCi(dq) represent all ATC codes at the i-th
level of drug dp and drug dq, respectively. ATCi(dp)\ATCi(dq) de-
notes the number of identical ATC codes of dp and dq at all levels
up to the i-th level. ATCi(dp)[ATCi(dq) denotes the number of
unique ATC codes of dp and dq at all levels up to the i-th level.
The similarity between the two drugs dp and dq is then averaged
across all levels as follows:

SimilarityATC dp; dq
� �

¼

X5

i¼1
DSi dp; dq
� �

5
(4)

For example, for a drug pair with ATC code ‘A-10-B-A-02’
(metformin) and ‘A-10-B-F-01’ (acarbose), the first-, second- and
third-level codes are the same, but the fourth and fifth codes
are different. The ATC similarity is calculated as shown below:

SimilarityATC Metformin;Acarboseð Þ ¼
1
1þ 2

2þ 3
3þ 3

5þ 3
7

5
¼ 0:805

Table 2 shows a comparison of the correlations between the
proposed drug target similarity and the ATC code-derived simi-
larity. Several semantic similarities such as the Jaccard index,
the Dice coefficient, the cosine similarity and the overlap coeffi-
cient were taken into account to calculate the similarity be-
tween two drugs. Numbers obtained using the Jaccard index are
strongly positively correlated with ATC similarity (Pearson cor-
relation of 0.9311 and Spearman correlation of 0.9).
Furthermore, we tested the hypothesis that the shared target
genes of a pair of drugs might significantly co-express under
the conditions of treating the same disease cell line with these
two drugs. As shown in Supplementary Table S1, the higher
Jaccard index (>0.5) a pair of drugs reveals the more significant
correlation of gene expression signature and structure similar-
ity these two drugs manifest in treating the same particular dis-
ease. Therefore, the method using the Jaccard index could be
suitable for use in our drug vector space to calculate drug
similarity.

Drug repurposing evaluation

If a new indication for a drug is identified using our method and
is described in a later article (chronologically), it implies that the
indirect relationship has been validated and our method was
successful. The MEDLINE literature was split into two parts
based on the publication year: articles published before the cut-
off point and articles published after the cut-off point. The first
part was used as the analysis set for finding indirect relation-
ships using our approach, while the second part was used as a
validation set to assess the indirect relationships discovered
using the first set. Direct disease–drug relationships that were
present in the validation set but not in the analysis set were
treated as the candidates, which could be located by a success-
ful system. For example, as illustrated in Figure 2, the idea of
using magnesium to treat migraine was mentioned in 1990 and
not before. If an indirect relationship between migraine and
magnesium was found in the analysis set, this would show the
effectiveness of our methodology.

We used mean average precision (MAP) to evaluate our sys-
tem in drug repurposing ranking. The time frame of the valid-
ation set was set from 2008 to 2014 for our experiment because
6.5 years were suggested to be a suitable duration for evaluating
whether a repurposed indication is accurate [30].

Equation (5) was used to determine average precision, where
k is the rank in the sequence of repurposed drugs, n is the num-
ber of repurposed drugs and P(k) is the precision at position k in
the list; rel(k) is equal to 1 if a direct disease–drug relationship of
the repurposed drug at position k is found in the validation set,
and 0 otherwise. The MAP (6) for a set of diseases D is the mean
of the average precision scores.

AveP ¼

Xn

k¼1
P kð Þ � rel kð Þ

n
(5)

Table 2. A comparison of the correlations between the proposed
drug target similarity and the ATC code-derived similarity

Sematic similarity Pearson correlation Spearman correlation

Jaccard index 0.9311 0.9
Dice coefficient 0.8625 0.7143
Cosine similarity 0.8577 0.8857
Overlap coefficient 0.5707 0.7364
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MAP ¼

XjDj
d¼1

AveP dð Þ
jDj (6)

We identified 790 disease names in the target documents and
calculated the MAP scores of the top 1%, 25%, 50%, 75% and 100%
potential repurposed drugs (ranked by the RDS) for each disease.
As shown in Figure 3, we obtained the most accurate ranking re-
sults (MAP of 0.1864) when using the summation method that
combines all the diseases in the top 1%. When we reduced the 790
diseases to the 100 most frequently mentioned diseases, the MAP
score of top 1% potential repurposed drugs using the summation
method increased from 0.1864 to 0.3706 as shown in Figure 4.

Discussion

We have evaluated our system by using the MEDLINE database to
select five different cancer diseases as examples. A drug treemap
was prepared for selecting various repurposed drugs of a specific
disease as illustrated in Figure 5. The candidates for drug repur-
posing identified in our study include celecoxib for treating ovarian
cancer (RDS¼ 0.9535) or breast cancer (RDS¼ 0.9709), raloxifene for
treating prostate cancer (RDS¼ 0.9938), erlotinib for treating colo-
rectal cancer (RDS¼ 0.9232) and rapamycin for treating leukaemia
(RDS¼ 0.9613). Moreover, we have compiled the repurposed drugs
(RDS> 0.8) of several diseases for further studies (the repurposed
drug lists are available in the Supplementary Data). The lists
described the repurposed drugs, which were considered as high-
potential new drugs of different diseases and the original

indications of those repurposed drugs. The repurposed drug lists
curated by our work could facilitate the screening of more than a
thousand potential drugs of a disease of interest.

Literature review

Table 3 shows the details of five indirect disease–drug relation-
ships identified by our methodology. Evidence for the suitability
of the identified repurposed drugs is discussed below.

Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor.
Kim et al. showed that combining celecoxib with paclitaxel
might be an effective treatment for ovarian cancer [31] because
celecoxib may regulate paclitaxel-induced apoptosis in ovarian
cancer cell line OVCAR-3 via down-regulation of nuclear factor
kappa B and Akt activation (PMID: 24520227). Taurin et al. dem-
onstrated the potential for selective estrogen receptor modula-
tors to be used for the treatment of castrate-resistant prostate
cancer [32]. They used poly(styrene-co-maleic acid) micelles to
encapsulate raloxifene and increase its efficiency (PMID:
24689036). Li et al. [33] indicated that co-administration of erloti-
nib and rapamycin—inhibitors of epidermal growth factor re-
ceptor and mammalian target of rapamycin, respectively—can
inhibit the growth of colorectal carcinoma cells (PMID:
22552366). Li et al. [34] also demonstrated that rapamycin plus
celecoxib could induce cell cycle arrest and apoptosis, and de-
crease the expressions of mammalian target of rapamycin, 4E-
BP1 and p70S6K; this led to improved effectiveness against
chronic myelogenous leukaemia cells (PMID: 24682932).
Preclinical results published by Kumar et al. [35] indicated that

Figure 2. Overall design of method for evaluating our drug repurposing assessment.

Figure 3. MAP score calculated using four different methods across different

fractions of 790 diseases. A colour version of this figure is available at BIB online:

https://academic.oup.com/bib.

Figure 4. MAP score calculated using four different methods across different

fractions of 100 diseases. A colour version of this figure is available at BIB online:

https://academic.oup.com/bib.
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co-administration of tamoxifen with celecoxib is a potential
treatment of breast cancer owing to its suppression of vascular
endothelial growth factor and vascular endothelial growth fac-
tor receptor 2 expression (PMID: 23731702).

ClinicalTrials.gov review

ClinicalTrials.gov (https://clinicaltrials.gov/) is a large database
that describes medical studies and clinical trials involving
human volunteers. It is a useful resource because, before any
trial, the use of the drugs has to be approved by the Food and
Drug Administration (FDA). This gives clear indications of the
safety of the drugs in question.

Clinical trials are classified into one of five categories by the
FDA. Phase 0 is the first-in-human trial to explore if and how a
new drug may work. Phase 1 is designed to evaluate the safety
and side effects in a small group of 20–100 individuals. Phase 2
studies are used to gather preliminary data regarding the effect-
iveness and safety of the drug in a group of 100–300 partici-
pants. Phase 3 is designed to assess the effectiveness and safety
in combination with other drugs in large groups of 1000–2000
patients. Phase 4, also known as post-marketing, occurs after
FDA approval and is designed to gather extra information about
a drug’s safety and effectiveness in the long term.

Table 4 shows our repurposed drug candidates in the
ClinicalTrials.gov database and confirms the suitability of our
methodology. Celecoxib and carboplatin have been examined in
heavily pre-treated patients with recurrent ovarian cancer
(NCT01124435). An early phase 0 trial examines raloxifene in
the management of castrate-resistant prostate cancer
(NCT01050842). This trial is investigating the co-administration
of bicalutamide and raloxifene to treat hormone-refractory
prostate cancer. Erlotinib is another targeted agent that is under
assessment as part of a multi-component treatment option for
colorectal cancer (NCT00116506). Rapamycin is being investi-
gated as a means of preventing graft versus host disease use fol-
lowing stem cell transplantation in patients with acute
lymphoblastic leukaemia (NCT00795886). The COX-2 inhibitor
celecoxib is being investigated as a potential breast cancer treat-
ment in a randomized controlled phase 2 trial (NCT01695226).

Visualization of new indications with repurposed drugs

As thousands of repurposed drugs and corresponding new indica-
tions had been revealed by text mining in this study, a single plot
is required to integrate and summarize all heterogeneous informa-
tion, e.g. drugs, diseases and repurposed relationships. To facilitate

Figure 5. Drug Treemap for visualizing the repurposed drugs (RDS>0.8) of leukaemia. The RDS of a repurposed drug determines the area size of a block. Drugs with the same ori-

ginal indication are grouped. The original indications (from TTD) of marked groups are (A) ‘organ rejection’; (B) ‘bacterial infections’; (C) ‘HIV infection’; (D) ‘multiple myeloma’;

(E) ‘rheumatoid arthritis’; (F) ‘fungal infections’; (G) ‘cancers’; (H) ‘hypercholesterolemia’. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Table 3. The indirect relationships determined using the ABC model

Disease Drug Intermediate

Ovarian cancer Celecoxib Cyclooxygenase-2
Prostate cancer Raloxifene Estrogen receptor
Colorectal cancer Erlotinib Epidermal growth factor receptor
Leukaemia Rapamycin Mammalian target of rapamycin
Breast cancer Celecoxib Vascular endothelial growth factor

Table 4. The suitability of our repurposed drug candidates verified
using ClinicalTrials.gov

Identifier Condition Intervention Phase

NCT01124435 Ovarian neoplasms Celecoxib 2
NCT01050842 Prostate cancer Raloxifene 0
NCT00116506 Colorectal cancer Erlotinib 2
NCT00795886 Acute lymphoblastic leukaemia Rapamycin 2
NCT01695226 Breast cancer Celecoxib 2
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the discovery of new potential indications for old drugs by screen-
ing of thousands of repurposed among multiple diseases, we
uniquely adopted a chord diagram (Figure 6) to visualize the both
potential 16 drug candidates and 11 diseases (indications) informa-
tion in the same figure that illustrates the repurposed drugs tran-
siting from one original indication to new indication(s)
(Supplementary data). Among these candidates shown in the
Figure 6, the intended use of a drug in a particular cancer is most
likely repositioned to treat another cancer. This is understandable,
and consistent with that, most of the cancers possess common
drug targets in the same molecular pathways of different tissues.
Intriguingly, two disease–drug relationships were rapidly revealed
with less connectivity that might indicate potential repurposed
drugs for advanced literature reviews. One demonstrates that
Lymphoepithelioma-like carcinoma of the urinary bladder, a type
of rare bladder cancer, is infiltrated with abundant of lymphocytes
by over-expressing CD20 [36], which is the drug target of
Ofatumumab. The other is that Tamoxifen might slow cognitive
decline in human studies [37] and prevent memory loss in amyl-
oidosis mouse model [38], a typical animal model of Alzheimer’s
disease. These two aforementioned repurposed drug–new indica-
tion relationships might show novel insights, and be worthy to be
further validated by biological experiments.

Miscellaneous

We wanted to determine potential repurposed drugs for specific
diseases. Each indirect relationship consists of a disease–gene
and gene–drug relationship. We presented the results of five

candidates for drug repurposing—celecoxib (ovarian and breast
cancer), raloxifene (prostate cancer), erlotinib (colorectal cancer)
and rapamycin (leukaemia)—and directly validated their suit-
ability using literature and clinical trial data. Some results were
consistent with the results obtained by Gupta et al. in an earlier
work [39]. In short, our system may hasten the identification of
candidates for drug repurposing.

Our system has room for improvement since the success of
the system is highly dependent on the lexicon being sufficient.
In future work, we will improve named entity recognition and
mention normalization algorithm of biomedical entities.
Additionally, because this work ignored aliases, important dis-
ease–drug relationships may have been missed. For example,
acetylcholinesterase (AChE) is an important target for
Alzheimer’s disease treatment. However, as our lexicon does
not include the synonym AChE, our rankings will be adversely
affected. Therefore, a comprehensive lexicon is required for
higher precision. Many tools for the normalization of gene and
disease targets have been developed [40–42] and using these
would remove issues related to named entity synonyms thereby
making our drug space model more effective.

Different types of intermediate terms lead to different re-
sults in drug repurposing, and our work used target and bio-
marker as the intermediate term. Target identification is
important in drug repurposing and determines whether a drug
may have a new indication. Biomarkers are often measured and
evaluated to examine pharmacologic responses to a therapeutic
intervention. However, many intermediate terms can be used
for assessing candidacy for drug repurposing. Wu et al. used

Figure 6. The wheel of drug repurposing driven by text-mining approach. A chord diagram was shown to illustrate the relationships between original and new indica-

tion(s) for 16 different repurposed drugs that only have been indicated for treating one disease. Eleven diseases with hundreds of repurposed drugs are enriched to be

depicted in a single plot with a global visualization for drug repurposing. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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shared genes, shared biological processes, shared pathways and
shared phenotypes as features to establish indirect relation-
ships [43]; we could also adopt such approaches in our system.

Additionally, our study does not consider the possibility of
negative relationships that could lead to false positives. For ex-
ample, nicotine places in the top 30 results for relationships to
lung cancer; however, it is obviously a cause of, and not a solu-
tion to, lung cancer [44]. Several studies have investigated the
detection of negative regulation events in the literature [45–47].

In the future, we could use machine learning-based and rule-
based methods that differentiate trigger words and related
treatment words to exclude false positives.

Conclusion

This study aimed to use text-mining technology to identify po-
tential candidates for drug repurposing in the large-scale bio-
medical literature. To achieve our aim, we used a PAS pattern
and learning of predicates using CTD-curated literature to ex-
tract relationships. This method had a precision score of 0.8674.
We also proposed a similarity-based ranking method wherein
each indirect relationship was ranked using a drug similarity
assessment based on the ABC model.

Text mining is useful for investigating drug repurposing. We
can investigate the growth of a repurposed drug over time and
this, along with newly curated relationships or approved drugs,
can be used to improve the effectiveness of our text mining
strategies.

Key Points

• We developed a new text-mining approach that
encompasses a pattern-based relationship extraction
method and a gene-shared ranking method for meas-
uring drug similarity. To confirm the robustness and
accuracy of our approach, these two methods were
further evaluated using CTD database and ACT code,
respectively.

• The indirect relationships between drugs and new in-
dications, not co-occurred in the same paper but re-
vealed by ABC model, were of particular interest and
inferred as new candidates for drug repurposing and
subsequently validated as direct relationships by
chronologically evaluating later published papers.

• The suitability of new candidates (repurposed drugs)
were scientifically reviewed according to PubMed litera-
ture and resources of clinicaltrial.gov. These huge
amount of evidenced-based repurposed drugs with their
corresponding new indications was comprehensively
integrated and summarized by a single plot, i.e. chord
diagram, which was first used to demonstrate the wheel
of drug repurposing driven by text-mining approach.

Supplementary Data

Supplementary data are available at http://tinyurl.com/phapjcd.
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