
Integrating regulatory features data for prediction of

functional disease-associated SNPs
Shan-Shan Dong,* Yan Guo,* Shi Yao, Yi-Xiao Chen, Mo-Nan He,
Yu-Jie Zhang, Xiao-Feng Chen, Jia-Bin Chen and Tie-Lin Yang
Corresponding author: Tie-Lin Yang, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology,
Xi’an Jiaotong University, No.28 Xianning West Road, 710049, Xi’an, Shaanxi, P. R. China. Tel.: 86-29-82668463; E-mail: yangtielin@mail.xjtu.edu.cn
*These authors contribute equally to this work.

Abstract

Genome-wide association studies (GWASs) are an effective strategy to identify susceptibility loci for human complex
diseases. However, missing heritability is still a big problem. Most GWASs single-nucleotide polymorphisms (SNPs) are
located in noncoding regions, which has been considered to be the unexplored territory of the genome. Recently, data from
the Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics projects have shown that many GWASs SNPs in
the noncoding regions fall within regulatory elements. In this study, we developed a pipeline named functional disease-
associated SNPs prediction (FDSP), to identify novel susceptibility loci for complex diseases based on the interpretation of
the functional features for known disease-associated variants with machine learning. We applied our pipeline to predict
novel susceptibility SNPs for type 2 diabetes (T2D) and hypertension. The predicted SNPs could explain heritability beyond
that explained by GWAS-associated SNPs. Functional annotation by expression quantitative trait loci analyses showed that
the target genes of the predicted SNPs were significantly enriched in T2D or hypertension-related pathways in multiple
tissues. Our results suggest that combining GWASs and regulatory features data could identify additional functional suscep-
tibility SNPs for complex diseases. We hope FDSP could help to identify novel susceptibility loci for complex diseases and
solve the missing heritability problem.

Key words: complex diseases; machine learning; SNPs; regulatory feature data; missing heritability; FDSP

Shan-Shan Dong is currently working as a lecturer at Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life
Science and Technology, Xi’an Jiaotong University.
Yan Guo is currently working as an associate professor at Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life
Science and Technology, Xi’an Jiaotong University.
Shi Yao is a PhD student of the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology,
Xi’an Jiaotong University.
Yi-Xiao Chen is a PhD student of the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and
Technology, Xi’an Jiaotong University.
Mo-Nan He is currently working as an undergraduate student at Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of
Life Science and Technology, Xi’an Jiaotong University.
Yu-Jie Zhang is a postgraduate student of the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and
Technology, Xi’an Jiaotong University.
Xiao-Feng Chen is a PhD student of the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and
Technology, Xi’an Jiaotong University.
Jia-Bin Chen is a PhD student of the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and
Technology, Xi’an Jiaotong University.
Tie-Lin Yang is currently working as a professor at Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science
and Technology, Xi’an Jiaotong University.
Submitted: 4 May 2017; Received (in revised form): 26 June 2017

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

, 20(1), 2019, 26–32

doi: 10.1093/bib/bbx094
Advance Access Publication Date: 16 August 2017
Paper

Briefings in Bioinformatics

26

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/1/26/4083292 by guest on 10 April 2024

https://academic.oup.com/


Introduction

Using genomic information to provide new insights into
the disease pathophysiology is the goal of current genetic
studies. Genome-wide association studies (GWASs) are an ef-
fective strategy to achieve this goal, and many susceptibility
loci for human complex diseases have been identified by
GWASs [1]. However, missing heritability, which refers to
the fact that known susceptibility loci identified by GWASs
could only account for limited proportion of the observed
heritability of diseases, is still a big challenge for GWASs. True
association signals might be missed with the stringent
genome-wide significance threshold because of the modest
genetic effect size and inadequate statistical power [2, 3].
Therefore, new methods are needed to identify such
associations.

As most single-nucleotide polymorphisms (SNPs) reported
by GWASs are located in intronic or intergenic regions [4], it was
challenging to understand their functional significance.
Strikingly, with the regulatory data from Encyclopedia of DNA
Elements (ENCODE) [5] and Roadmap Epigenomics Project [6],
researchers have found that GWASs SNPs usually lie within
regulatory elements, suggesting that they might be involved in
regulating gene expression [5, 7]. Finding the common regula-
tory features of susceptibility SNPs has provided new insights
into the biological link between SNPs and phenotypes in several
diseases, such as breast cancer [8] and prostate cancer [9].
In addition, we have previously found that promoters of
known susceptibility genes for complex diseases (such as obe-
sity [10] and osteoporosis [11]) shared similar regulatory
features, and prioritizing genes according to the features
could identify novel candidate susceptibility genes. However,
we only focused on promoters, and information of the
other regions was missed, as most susceptibility loci are
located in intergenic or intronic regions. This limitation
prompted us to find more powerful methods to predict novel
risk SNPs from the large amount of SNP data and complex regu-
latory features data.

Machine learning is concerned with developing computer al-
gorithms to assist humans in the analysis of large complex data
sets, and it has been widely used in the area of genetics and
genomics [12]. For example, it can be used to predict transcrip-
tion start sites [13], identify splice sites [14], promoters [15] and
enhancers [16]. Of note, using regulatory features data along the
genome, machine learning has been used to predict enhancer–
promoter interactions [17] and chromatin organization [18]. In
addition, recent studies have used machine learning to estimate
the effects of human genetic variants based on regulatory data
[19, 20], confirming that machine learning is applicable to inter-
pret regulatory features data for large amount of SNPs.
Currently, there is no attempt to predict novel susceptibility
variants for a specific complex disease using regulatory features
data.

In this study, we hypothesized that interpretation of the
functional features for known disease-associated variants with
machine learning may identify new susceptibility loci. Based on
this hypothesis, we developed a package named functional
disease-associated SNPs prediction (FDSP). FDSP is able to pre-
dict new susceptibility loci for complex diseases based on
known GWAS results and public regulatory data. To illustrate
the performance of FDSP, the real GWAS results and regula-
tory data for type 2 diabetes (T2D) and hypertension were
analyzed.

Methods
Pipeline of FDSP

Acquisition of labeled SNPs
The outline of FDSP is shown in Figure 1. SNPs with minor allele
frequency (MAF)� 0.01 in the European population were obtained
from the 1000 Genome project (Phase III, http://www.
1000genomes.org/) and 8 550 206 autosomal SNPs were obtained.
We only focused on the autosomal SNPs, as loci on the X chromo-
some may have different regulatory mechanism because of X-
chromosome inactivation. This total SNP set was consisted of
labeled and unlabeled SNPs. The labeled SNPs were consisted of
positive and negative SNPs. For the labeled positive SNPs, first,
we obtained index SNPs from the public SNP–trait association
databases: GWAS catalog (https://www.ebi.ac.uk/gwas/) [21] with
the threshold of P-value< 5�10�8. Owing to the low genomic
coverage of GWAS genotyping microarrays, risk-associated SNPs
are statistically more likely to be in linkage disequilibrium (LD)
with causal variants than to be causal themselves [22]. Therefore,
second, we obtained SNPs that were in strong LD (r2� 0.8) with
each index SNP using the 1000 Genomes Phase III data. The max-
imum distance for r2 calculation was set as 1000 kb. The compre-
hensive collection of all such SNPs was referred as the positive
SNPs. Referring to the methods reported by Zhou et al. [20], we
created four sets of SNPs with different distances to positive SNPs
to form the negative SNP set. The maximum distance in each
group was 40, 200, 1000 and 5000 kb, respectively. SNPs with simi-
lar MAF to the positive SNP were remained (MAF differ-
ence< 0.01). The full set, 80, 60 and 25% random subset of the
four groups of SNPs, was merged as negative SNPs. All negative
SNPs were filtered to remove overlap with positive SNPs. In the
final labeled SNP set, there were 20 negatives per positive.

Feature annotation
Functional annotation of all SNPs was carried out based on the
epigenomic data of T2D relevant cell lines (Supplementary

Figure 1. Schematic diagram of FDSP. Labeled positive SNPs were obtained from

the GWAS catalog database, and labeled negative SNPs were selected from the

whole SNP set according to the procedure described in the ‘Methods’ section. The

whole SNP set was constituted of SNPs with MAF over 0.01 from the 1000 Genome

project. All SNPs were annotated with epigenomic data of disease-related cell lines

from the ENCODE and Roadmap project, eQTL data in disease-related tissues from

the GTEx database (http://www.gtexportal.org/) and conservative genomic regions

identified by GERPþþ. The labeled SNPs were used to train the machine learning

model that predicted novel risk SNPs.

Predicting new risk loci for complex diseases | 27

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/1/26/4083292 by guest on 10 April 2024

Deleted Text: is 
Deleted Text: due to
Deleted Text: Since 
Deleted Text: were 
Deleted Text: since 
Deleted Text: -
Deleted Text: s
Deleted Text: s
http://www.1000genomes.org/
http://www.1000genomes.org/
Deleted Text: a total of 
Deleted Text: 8,
Deleted Text: &hx00A0;
Deleted Text: 550,
Deleted Text: &hx00A0;
Deleted Text: 206 
Deleted Text: since 
Deleted Text: due to
Deleted Text: firstly 
Deleted Text: -
https://www.ebi.ac.uk/gwas/
Deleted Text: <italic>P</italic> 
Deleted Text: Due 
Deleted Text: s
Deleted Text: secondly 
Deleted Text: &hx2009;kb
Deleted Text: &hx2009;kb
Deleted Text: &hx2009;kb,
Deleted Text: &hx0025;
Deleted Text: &hx0025;,
Deleted Text: were 
http://www.gtexportal.org/


Table S1) from the ENCODE [5] and Roadmap Epigenomics
Project [6], expression quantitative trait loci (eQTL) data in T2D-
relevant tissues (Supplementary Table S2) from the GTEx data-
base (http://www.gtexportal.org/) and conservative genomic
regions identified by GERPþþ [23]. All T2D-relevant tissues/cells
can be classified into six types according to their source tissues,
including adipose, brain, immune cells, liver, muscle and pan-
creas. The epigenomic data included transcription factor bind-
ing sites (TFBSs), chromatin segmentation states, histone
modification marks and DNase I hypersensitive sites (DHSs).
For each SNP, an epigenomic or conservative feature was
labeled 1 if the SNP overlaps with the feature and 0 otherwise.
The eQTL feature was labeled 1 if the SNP affects the expression
of at least one gene (P< 0.01) and 0 otherwise.

Model generation, evaluation and optimization
FDSP automatically tested four widely used machine learning
algorithms, including single decision tree (C5.0), soft inde-
pendent modeling by class analogy (CSimca), random forest
(RF) and support vector machines with class weights
(svmRadialWeights) to build prediction models. All these algo-
rithms were implemented in the ‘caret’ package in R (version
3.3.2). For all labeled SNPs, different features may be highly cor-
related with each other, resulting in redundant information. To
address this problem, a correlation matrix was built to remove
redundant features. Before training models, highly correlated
features (jrj> 0.7) were removed. The remained features were
used to estimate feature importance values. The labeled SNPs
were then randomly divided into training and testing sets ac-
cording to the proportion of 8:2. Cross-validation was carried
out when dividing the labeled SNP set into training and testing
set. Next, all models were built by using 5-fold cross-validation
with the training set. To correct the imbalance problem, we
used the upSample function in the caret package to randomly
sample (with replacement) the positive class to be the same size
as the negative class. The testing set was further used to evalu-
ate the performance with F1 score [24]. To obtain the best subset
of features, we used the recursive feature elimination method
as follows:

1. Train the model on the training set using all features
2. Calculate model performance
3. Calculate feature importance and ranking
4. For each subset size Si, do
5. Keep the Si most important variables
6. Train the model on the training set using Si features
7. Calculate mode performance
8. Recalculate the ranking for each feature
9. End

10. Calculate the F1 score for the Si features
11. Determine the appropriate number of features
12. Use the model corresponding to the optimal Si

Finally, the best performing subset was used to generate the
prediction model, and the model was used to predict new sus-
ceptibility SNPs. For the predicted positive SNPs, to facilitate fu-
ture validation experiments, we further ranked them according
to the score S, which was defined as follows:

S ¼
Xn

i¼1

Ci � log2 FCi:

Where n is the total number of features used in the final ma-
chine learning model, Ci is the annotation status (0 or 1) of the

feature i and FCi is the fold change of the proportion of feature i
when compared the labeled positive SNPs and the labeled nega-
tive SNPs.

Real data analysis

Acquisition of labeled SNPs
We applied FDSP to analyze the GWAS results and regulatory
data of T2D. With P-value< 5� 10�8, 73 autosomal SNPs associ-
ated with T2D in the European population were extracted from
GWAS catalog (Supplementary Table S3). To avoid overfitting in
the validation process, we excluded eight SNPs from the
Finland-United States Investigation of NIDDM Genetics
(FUSION) study, and 65 index SNPs were used in subsequent
analyses. Of these 65 SNPs, only 4 SNPs mapped to coding
exons, with 58 mapping to introns or intergenic regions. The
rest three SNPs mapped to 30 untranslated region (UTR), 50 UTR
and downstream region, respectively. Using the LD cutoff of
r2� 0.8, we identified 1769 SNPs in LD with the 65 SNPs. By con-
sidering SNPs in LD with the risk-associated SNPs, the number
of SNPs mapping to coding exons increased from 4 to 18, and
the number of SNPs mapping to intron and intergenic region
increased from 37 to 1122 and 21 to 450, respectively. These
1769 SNPs were used as positive risk SNP set, and the negative
SNPs were selected using the 1000 genome data accordingly.

Feature annotation
After removing redundant features, 1207 features were re-
mained, including 202 transcription factor (TF) binding profiles,
33 DHSs profiles, 315 histone mark profiles, 639 chromatin
states, 17 eQTLs and conservative feature information. The
URLs of all features are listed in Supplementary Table S4.

Model generation, evaluation and optimization
Four algorithms were used to get the appropriate prediction
model. The performance of the RF algorithm was generally bet-
ter than others, and the best performance of RF was obtained
with the top 60 informative features (Supplementary Figure S1).
As shown in Table 1, the best feature numbers for C5.0, CSimca,
RF and svmRadialWeights were 60, 300, 60 and 1207, with the
best F1 score of 0.8768, 0.6812, 0.9213 and 0.8449, respectively.
Therefore, we chose the RF algorithm to predict novel risk SNPs
subsequently.

For each feature used in the final model, we performed
Fisher’s exact test to check whether it is significantly overrepre-
sented or underrepresented in labeled positive SNPs when com-
pared with the labeled negative SNPs. The Benjamini–Hochberg
method was used to correct the multiple testing problems. Rank
order of the features in the final prediction model is shown in
Supplementary Figure S2A. The feature of TFBSs, DHSs and evo-
lutionary conserved region was not included in the model. As

Table 1. Performance of different machine learning algorithms for
T2D

Measure C5.0 CSimca RF svmRadialWeights

Number of features 60 300 60 1207
Sensitivity 0.9591 0.5793 0.9736 0.9368
Specificity 0.9681 0.994 0.9852 0.967
Accuracy 0.9677 0.9742 0.9847 0.9655
F1 score 0.8768 0.6812 0.9213 0.8449

Note: C5.0, decision tree; CSimca, soft independent modeling of class analogy;

RF, RF; svmRadialWeights, support vector machines with class weights.
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shown in Supplementary Figure S2B, the eQTL effects from nine
tissues (including subcutaneous adipose, five brain tissues,
whole blood, muscle and pancreas) were all significantly en-
riched in labeled positive SNPs. As shown in Supplementary
Figure S2C, among the chromatin states, labeled positive SNPs
are significantly enriched with the state of ‘weak transcription’,
and this signature is shared in 12 cell lines. Consistently, deple-
tion of the ‘quiescent/low’ or ‘weak repressed polycomb’ chro-
matin state was found in seven cell lines. As shown in
Supplementary Figure S2D, among all of the histone marks, en-
richment of monomethylation of lysine 20 on histone H4
(H4k20me1) and dimethylation of lysine 79 on histone H3
(H3k79me2) was both found in four cell lines. Enrichment of tri-
methylation of lysine 36 on histone H3 (H3k36me3) was de-
tected in three cell lines, while enrichment of acetylation of
histone H3 at lysine 27 (H3k27ac) was only detected in CD20þ.
Depletion of the trimethylation of lysine 9 on histone H3
(H3K9me3) repressive mark was found in three cell lines.
Depletion of the trimethylation of lysine 27 on histone H3
(H3k27me3) was found in eight cell lines. Significant depletion
of H2AZ was detected in two cell lines. As shown in
Supplementary Table S1, all these cells are derived from five tis-
sues closely related to T2D, including 3 adipose cells, 2 brain
cells, 11 immune cells, 2 liver cells and 3 muscle cells.

New susceptibility SNP prediction
A total of 8 513 057 unlabeled SNPs were subjected to prediction
using the RF model, and 15 204 novel potential T2D-associated
SNPs were obtained (Supplementary Table S5) with the detec-
tion rate of about 0.18%. The ranking scores for each predicted
SNPs were also listed in the last column of Supplementary
Table S5. The number of SNPs mapping to coding exons was
238, and the number of SNPs mapping to intron and intergenic
region was 10 326 and 2 583, respectively. The distribution of the
predicted SNPs along the genome is similar to that of the
labeled positive SNPs (Supplementary Figure S3). These SNPs
could be captured by 5496 tag SNPs.

Predicted SNPs may explain additional heritability
To check whether the predicted SNPs are independent from the
published 65 index SNPs or the labeled negative SNPs, we calcu-
lated r2 between each predicted SNP and all index SNPs or
labeled negative SNPs on the same chromosome based on the

1000 genome data from the European individuals. For each pre-
dicted positive SNP, the biggest r2 was kept. As shown in Figure
2A, over 90% predicted positive SNPs were in extremely weak
LD (r2< 0.1) with the published GWASs SNPs. Similarly, >80% of
the predicted positive SNPs were in weak LD with the labeled
negative SNPs. Therefore, the predicted positive SNPs cannot be
represented by the published GWASs SNPs or the labeled nega-
tive SNPs.

To investigate whether the predicted SNPs could explain
additional heritability, SNP-based heritability of T2D was esti-
mated using GCTA-GREML [25]. Data from the Database of
Genotypes and Phenotypes (dbGaP) with the accession number
of phs000867.v1.p1 were used, including 919 T2D cases and 787
controls. All subjects were independent individuals recruited
from Finland. To facilitate the investigation of all predicted
SNPs, we used the IMPUTE2 program [26] to impute genotypes
of SNPs that based on the 1000 genome data (version 3). The
prevalence of diabetes was estimated as 8.5% in Europe, with
over 90% of T2D [27]. Therefore, the European T2D prevalence
was set as 7.65%. We performed z tests to compare h2

g estimates
from index SNPs with h2

g estimates from index SNPs and the tag
SNPs of predicted positive SNPs. As shown in Figure 2B, pre-
dicted SNPs significantly increased the proportion of explained
heritability (P< 0.05).

Considering the results of the heritability calculation may be
affected by the number of the predicted positive SNPs, we first
calculated the null expected h2

g on the basis of the fraction of
the genome represented by the tag SNPs of the predicted posi-
tive SNPs in the heritability estimates. As previously described
[28], h2

null ¼h2
index SNPs þ x� (total h2

g � h2
index SNPs), where x is the

proportion of the genome covered by the tag SNPs of the pre-
dicted positive SNPs. z tests were also performed to compare h2

g

estimates from index SNPs and predicted variants with the null
expected heritability estimates. As shown in Figure 2B, the her-
itability explained by predicted positive tag SNPs and index
SNPs was significantly higher than the null expected.

Second, to confirm whether the increase in heritability was
specific to the predicted positive SNPs, we also compared pre-
dicted positive tag SNPs with random predicted negative SNPs.
We selected 1000 random subsets with the same number of pre-
dicted positive tag SNPs. As shown in Supplementary Figure S4,
tag SNPs of the predicted SNPs explain significantly more herit-
ability than the random negative SNPs.

Figure 2. (A) Distribution of the LD measurement r2 between the predicted T2D-positive SNPs and the published GWASs SNPs or labeled negative SNPs. For each pre-

dicted positive SNPs, r2 values were calculated between it and any other index SNPs or labeled negative SNPs. The biggest r2 for each predicted positive SNP was kept

for the summary plot. (B) Narrow-sense heritability (hg2 6 standard error) explained by index SNPs, null expected and index SNPsþpredicted tag SNPs for T2D

(*P<0.05).
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Functional annotation of the predicted positive SNPs
The annotation results showed that all predicted positive SNPs
were located in at least one histone modification region in at
least one cell line (Figure 3A). In total, 1020 SNPs were located in
TFBSs, 13 552 SNPs may affect gene expression with P<0.01 in
the GTEx data in at least one T2D-related tissue, 2092 SNPs were
located in DHSs and 753 SNPs were located in conservative
regions.

Characterization of the genes that might be affected by the predicted
positive SNPs
Using the eQTL data for nine eQTL tissues among the top 60 fea-
tures from the GTEx database, we obtained the genes that might
be affected by the predicted positive SNPs with the cutoff of
P< 0.01. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis for the eQTL target genes of the
predicted positive SNPs was carried out by using hypergeomet-
ric distribution test. The Benjamini–Hochberg method was used
to correct the multiple testing problems. In each tissue, back-
ground genes were set as all protein-coding genes that might be
affected by any SNP with the P-value <0.01. As shown in Figure
3B, after multiple testing corrections, pathways enriched with
eQTL target genes of the predicted positive SNPs were detected
in five tissues. Of note, the type I diabetes mellitus pathway
showed significant enrichment in three tissues, and the insulin
secretion pathway was also detected in pancreas (adjusted
P¼ 0.043). Other pathways were mostly associated with the im-
mune system, such as antigen processing and presentation,
graft-versus-host disease, allograft rejection, cytokine–cytokine
receptor interaction, etc.

Application of FDSP to hypertension
To further confirm the reliability of FDSP, we applied our pipe-
line to hypertension. In total, 57 index SNPs (Supplementary
Table S6) were obtained from the GWAS catalog database. In
total, 2086 labeled positive and 41 720 labeled negative SNPs
were then generated. Hypertension-relevant cell lines are listed
in Supplementary Table S7, and eQTL tissues are listed in
Supplementary Table S8. All features can be obtained from the
URLs listed in Supplementary Table S9. After removing redun-
dant features, 1046 features were remained, including 145 TF
binding profiles, 46 DHSs profiles, 292 histone mark profiles,
544 chromatin states, 18 eQTLs and conservative feature

information. According to the model generation, evaluation and
optimization results, the RF model performed best with the F1
score of 0.8881. A total of 84 809 positive SNPs were predicted.
To check whether the predicted SNPs could explain additional
heritability of hypertension, data from dbGaP with the accession
number of phs000297.v1.p1 were used, including 1487 cases and
1366 controls. Individuals without evidences of hypertension
(systolic blood pressure, SBP< 140 and diastolic blood pressure,
DBP< 90, and no mention of using any antihypertensive drugs)
were defined as controls. Individuals with evidences of hyperten-
sion (SBP> 140 or DBP> 90 and reported using any antihyperten-
sive drugs) were defined as cases. The results showed that the
predicted positive SNPs could also explain additional heritability
of hypertension (Figure 4A and Supplementary Figure S5).
Pathways enriched with eQTL target genes of the predicted posi-
tive SNPs were detected in three tissues, including subcutaneous
adipose, hippocampus and putamen basal ganglia. These path-
ways were associated with the immune system, including cyto-
kine–cytokine receptor interaction, allograft rejection, graft-
versus-host disease and viral myocarditis.

Discussion

GWASs have identified many susceptibility loci for complex dis-
eases. However, it is still challenging to find the missing heredi-
tary. The ENCODE [5] and Roadmap Epigenomics Project [6]
provide rich sources of regulatory features data, reminding us
that integration of the regulatory features data and GWASs re-
sults may lead to the identification of new susceptibility SNPs.
In this study, we proposed a pipeline, named FDSP, to predict
new susceptibility SNPs for complex diseases. We applied this
pipeline to T2D and hypertension, and the predicted SNPs could
explain additional heritability. Moreover, functional analyses of
the novel SNPs suggested that they are potentially associated
with T2D or hypertension, implicating the efficiency of finding
missing heritability of complex diseases by machine learning
with regulatory features data.

In addition to population-level association or linkage stud-
ies, researchers have also spent effects to unravel the compre-
hensive genetic basis of diseases using genome sequence data
or gene network information. For example, Guan et al. [29] pro-
posed an approach by interrogating high-throughput genomic
data in model organisms to functionally associate genes with

Figure 3. (A) Diagram of the annotations results for the predicted T2D susceptibility SNPs. All SNPs were annotated with at least one histone modification in at least

one cell line. (B) Pathway enrichment analysis results of the genes affected by different genotypes of the predicted positive SNPs for T2D.
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diseases. Vanunu et al. [30] used gene network propagation to
associate genes with diseases. Further, Krishnan et al. [31] de-
veloped a complementary approach based on a human brain-
specific gene network to predict autism risk genes. However,
these methods were all gene-level candidate prediction
approaches, and SNP-level prediction methods are still lacking.
Here, we proposed a SNP-level prediction pipeline, which might
identify new susceptibility loci for complex diseases through in-
terpreting the regulatory features for known disease-associated
variants.

Among the features used in the T2D trained model, we
observed that labeled T2D SNPs are significantly enriched with
chromatin states of transcription and histone modification of
H3k27ac, H3k36me3, H3k79me2 and H4k20me1. H3k27ac is the
hallmark of active enhancers [32]. Both H3k36me3 and H3k79me2
are elongation-associated histone marks. H4k20me1 is associated
with transcriptional activation [33]. In addition, depletion of the
chromatin states of quiescent/low state and histone modification
of H3K9me3, H3K27me3 and H2AZ were also observed in labeled
positive SNPs. H3K9me3 and H3K27me3 are all marks of tran-
scriptional repression [34, 35], and H2AZ is also related to poly-
comb silencing [36]. Therefore, labeled positive SNPs were
generally enriched with regulatory features of transcriptional ac-
tivation and depleted with features of transcriptional repression.
Consistently, labeled positive SNPs were also enriched with eQTL
effects, suggesting that although most known positive SNPs were
not located in the exonic region, they may be involved in gene
regulation through affect the regulatory features. The enrichment
or depletion was observed in multiple cell lines, which might be
as expected, as T2D is a complex disease, and many tissues are
involved in the progression of T2D.

We predicted potential novel susceptibility SNPs for T2D and
hypertension. Heritability calculation results confirmed that the
predicted SNPs may explain additional heritability. Pathway
analyses found that T1D and immune system-related pathways
were enriched with eQTL target genes of T2D-predicted SNPs in
multiple tissues. The immune system is a key mediator in the
development of T2D [37, 38]. For hypertension, immune sys-
tem-related pathways were also found to be enriched with
eQTL target genes of the predicted SNPs in multiple tissues. The
immune system plays important roles in the initiation and
maintenance of hypertension [39]. Therefore, the results con-
firmed that predicting novel susceptibility SNPs for complex
diseases with our pipeline is effective.

Limitations of our study should be addressed. When we test
our pipeline in T2D and hypertension, we only used cis-eQTL re-
sults in the annotation of the eQTL feature without considering
the trans-eQTL effects. Trans-eQTL is also an important feature
for SNPs. Owing to the high density of our test SNPs, it is time
and storage costing to get the whole-genome trans-eQTL re-
sults. However, if researchers who want to use FDSP have the
trans-eQTL results, they can easily add this feature in the anno-
tation process.

In summary, through integrating regulatory features and
GWASs data, we developed FDSP to predict new susceptibility
loci for human complex diseases. Application of FDSP to T2D
and hypertension data demonstrated the effectiveness of our
pipeline. We hope that FDSP could provide new insights into
the identification of additional susceptibility SNPs for complex
diseases.

Key Points

• GWASs are an effective strategy to identify susceptibil-
ity loci for human complex diseases. However, missing
heritability is still a big problem.

• We developed a pipeline to predict novel disease-
associated variants through integrating regulatory fea-
tures data and GWASs results.

• We applied our pipeline to predict novel susceptibility
loci for T2D and hypertension, and the results con-
firmed the reliability of our pipeline.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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