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Abstract

Numerous studies have shown that copy number variation (CNV) in lncRNA regions play critical roles in the initiation and
progression of cancer. However, our knowledge about their functionalities is still limited. Here, we firstly provided a
computational method to identify lncRNAs with copy number variation (lncRNAs-CNV) and their driving transcriptional
perturbed subpathways by integrating multidimensional omics data of cancer. The high reliability and accuracy of our
method have been demonstrated. Then, the method was applied to 14 cancer types, and a comprehensive characterization
and analysis was performed. LncRNAs-CNV had high specificity in cancers, and those with high CNV level may perturb
broad biological functions. Some core subpathways and cancer hallmarks widely perturbed by lncRNAs-CNV were revealed.
Moreover, subpathways highlighted the functional diversity of lncRNAs-CNV in various cancers. Survival analysis indicated
that functional lncRNAs-CNV could be candidate prognostic biomarkers for clinical applications, such as ST7-AS1,
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CDKN2B-AS1 and EGFR-AS1. In addition, cascade responses and a functional crosstalk model among lncRNAs-CNV,
impacted genes, driving subpathways and cancer hallmarks were proposed for understanding the driving mechanism of
lncRNAs-CNV. Finally, we developed a user-friendly web interface-LncCASE (http://bio-bigdata.hrbmu.edu.cn/LncCASE/) for
exploring lncRNAs-CNV and their driving subpathways in various cancer types. Our study identified and systematically
characterized lncRNAs-CNV and their driving subpathways and presented valuable resources for investigating the
functionalities of non-coding variations and the mechanisms of tumorigenesis.

Key words: lncRNAs; copy number variation; subpathway; cancer

Introduction
Cancer is a multi-factorial and heterogeneous disease that
involves a sequence of genetic variations that will perturb
downstream molecular networks to control cancer hallmark
processes, such as cell cycle, cell growth and apoptosis, and
further contribute to the initiation and progression of human
cancer. Perturbations of subpathway (structural sub-regions
within biological pathway), an important class of molecular
network, have been demonstrated to play critical roles in cancer.
Identification of genetic variations perturbing subpathways will
lead to a greater understanding of cancer pathogenesis.

Genetic variations are considered as driving events of cancer
development and progression. In recent years, researchers
mainly focused on genetic changes that occurred in protein-
coding regions, identifying hundreds of driving genes [1,
2], and developing computational methods for predicting
perturbed molecular networks to elucidate the effects of these
genetic variations. With the development of next-generation
sequencing, a large number of genetic variations in non-coding
regions have been discovered. Especially, accumulated studies
have demonstrated that genetic variations in long non-coding
RNA (lncRNA) regions such as single-nucleotide variations,
somatic mutation and copy number variations (CNVs) could
contribute to tumorigenesis. For example, a single-nucleotide
site variation (rs11655237) in lncRNA LINC00673 can form a
binding site for miR-1231, which affects the susceptibility of
pancreatic cancer [3]. Pan et al. [4] have identified a mutation
in lncRNA GAS8-AS1 as a driving variant of human thyroid
cancer. Northcott et al. [5] analyzed the genetic variations of
1000 medulloblastoma samples and revealed that lncRNA PVT1-
related structural variants were ubiquitous in different subtypes.
In particular, CNVs in lncRNA regions, some important genetic
structural variants [6], have been demonstrated to play critical
roles in the development and progression of human cancers.
The study of Hu et al. [7] revealed that the focally amplified
lncRNA FAL1 exhibits oncogenic activity, which is able to activate
many cancer-related protein-coding genes (CR-PCGs) such as
CDKN1A and p21, and further affect the dysregulation of cancer-
related function. However, the functional interpretation for
these lncRNAs-CNV on a large scale to understand their roles in
tumor development and growth is a challenging task [6].

Based on the notion that non-coding variations could impact
the regulation of PCGs [8], many investigators provided impor-
tant data resources and generated theoretical methods to under-
stand the function of lncRNA genetic variations and the patho-
genesis of complex diseases. For example, explanation of the risk
non-coding variations using genome-wide association studies
was based on PCGs located nearby in the genome [6]. Quanti-
tative trait loci methods were also general strategies for inter-
preting functions of non-coding variations and their linkages
to diseases [9]. However, the downstream perturbed biological
functions of these lncRNA genetic variations remain unclear. As
cancers can be classified as different types and subtypes [10],

it is crucial to investigate the commonalities and differences
of functions for these lncRNA genetic variations among various
cancer types. More recently, large-scale biomedical data includ-
ing multidimensional molecular profiles of tumor samples from
different tumor types generated by The Cancer Genome Atlas
(TCGA) project, lncRNA annotation data from GENCODE project
[11], biological molecular interaction networks and pathway data
resources provide unprecedented opportunities to uncover the
functions of these lncRNA genetic variations on a large scale and
to understand pathogenesis of human tumors further.

Here, we developed a computational method to systemat-
ically identify lncRNAs-CNV and their driving subpathways
by integrating multidimensional molecular profiles of 4802
tumor samples from 14 cancer types. Then, a comprehensive
analysis was performed. The properties of these lncRNAs-CNV
were characterized and found that lncRNAs-CNV exhibited high
specificity in cancers and those with high CNV level may perturb
broad biological functions. Some core subpathways widely
perturbed by lncRNAs-CNV in pan-cancer were identified.
An in-depth analysis of lncRNAs-CNV driving subpathway
associations revealed the diverse functional characteristics
of lncRNAs-CNV in cancer. Moreover, lncRNAs-CNV that are
survival-related were identified as potential oncogenic drivers.
Finally, we developed LncCASE, an online database to store
and retrieve all lncRNAs-CNV and their driving subpathways
in pan-cancer, which is available at http://bio-bigdata.hrbmu.
edu.cn/LncCASE/, providing additional information that can
facilitate the functional and mechanism studies of lncRNAs-
CNV in human cancers.

Materials and methods
Multiple omics data sets for lncRNAs and mRNAs
from TCGA

We obtained gene expression data (level 3), copy number data
(level 3), mutation data (level 2) as well as clinical data of 4802
tumor patients from these 14 cancer types in TCGA Data Por-
tal (https://tcga-data.nci.nih.gov/tcga). Besides, the expression
profiles of lncRNA for each cancer type were downloaded from
TANRIC [12]. The detailed sample information in each cancer
type at different omics levels and the distribution of their gender,
race and ethnicity were shown in Supplementary Table S1 and
Supplementary Figure S1. In addition, detailed processes were
shown in Supplementary Materials and Methods.

Pathways and human protein–protein interaction
network data

The KGML files in KEGG database [13], containing protein–
protein interaction (PPI) and biochemical reaction information
of 281 pathways, were converted into undirected graphs as we
previously described [14].
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We obtained the PPI networks from HINT [15] (http://hint.
yulab.org) and HPRD [16] (http://www.hprd.org). By combining
edges in two databases, a relatively comprehensive PPI network
was accomplished. The final network consists of 70,406 unique
undirected interactions among 12,207 human proteins.

Collection of cancer hallmark gene sets and cancer
lncRNAs

We downloaded cancer hallmark gene sets from Gene Ontology
Consortium [17]. According to Plaisier et al. [18] there are 35
GO sets that could be categorized into 10 cancer hallmarks.
Cancer lncRNAs were collected from LncRNADisease [19] and
Lnc2Cancer [20] databases. In total, 65 cancer lncRNAs were
obtained.

Construction of copy number profiles based on
re-annotation strategy

We firstly downloaded lncRNA/PCG annotation data from the
GENCODE database [11]. We used the copy number re-annotation
method that was described previously in Akrami et al [21] to
construct copy number profiles of cancer. By mapping the chro-
mosome positions of segments to the genomic annotation data
of lncRNAs/PCGs, the copy number amplitudes of the segments
were designated to their overlapping lncRNAs/PCGs. Copy num-
ber amplitude of each lncRNA/PCG for each patient was deter-
mined by choosing the minimum amplitude of all overlapping
segments in samples of the patient. LncRNAs/PCGs who have
no overlapping segments in more than 50%/80% of patients
were deleted. Finally, copy number profiles of lncRNAs across 14
cancer types were constructed.

Identification of lncRNAs-CNV driving subpathways

In order to locate lncRNAs-CNV driving subpathways within
pathways, a step-by-step procedure was taken. First, signature
PCGs impacted by lncRNAs-CNV were identified. Second, the
driving extents of all PCGs in PPI network by lncRNAs-CNV were
quantified. Third, the most susceptible subpathways impacted
by CNVs of lncRNAs were located. Fourth, the statistical signifi-
cances of differences between subpathway activities of patients
with CNVs in lncRNA regions and patients without CNVs in
lncRNA regions were evaluated. LncRNAs-CNV driving at least
one subpathway in cancers were defined as functional lncRNAs-
CNV. The schematic workflow is shown in Figure 1. The detailed
processes for the identification are as follows.

Identification of signature PCGs impacted by lncRNAs-CNV

First, we discretized the copy number amplitudes of lncRNAs.
lncRNAs were classified into two groups depending on whether
they located on amplification or deletion peaks recognized by
inputting segmented copy number data to GISTIC 2.0 [22]. Based
on re-annotated copy number profiles, if the lncRNA locates on
amplification peaks, we defined that patients whose copy num-
ber amplitudes of this lncRNA is >0.1 were assigned to group of
patients with CNVs in lncRNA region and other patients were
assigned to control group. In contrast, if the lncRNA locates on
deletion peaks, patients whose copy number amplitudes of this
lncRNA is <−0.1 were assigned to group of patients with CNVs in
lncRNA region and other patients were assigned to control group.

The set of this threshold referred to default parameters of GIS-
TIC. Therefore, expression profiles were classified into the same
two groups. Genes whose expressions were both differently
expressed between two groups and correlated with lncRNA’s
copy number amplitudes, were collected as signature PCGs. A
differently expressed gene was required to fulfill two needs:
adjusted P-value (Benjamini method) calculated with DEGseq
package [23] was less than 0.05 and fold change was less than 1/4
or large than 4. While another two requirements of significant
correlation were set, including the value of Pearson correlation
coefficient less than −0.4 or larger than 0.4 and adjusted P-
value (Benjamini method) of correlation calculated with WGCNA
package [24] less than 0.05. As described above, 14 cancer types
were chosen because they contain both copy number data of
tumor samples and lncRNAs, which are located on amplification
or deletion peaks.

Quantifying the driving extents of PCGs by lncRNAs-CNV based on
global diffusion algorithm

In this study, we used the random walk with restart algorithm
[25], which simulates a random move from the seed node (s) to
their directly interacted neighbors or stay at the current node (s)
according to the probability transition matrix that was obtained
from the network topology, to quantify the driving extents of
PCGs. Next, for each lncRNA-CNV, all signature PCGs were set
as seed genes for random walk in integrated PPI network. The
formula was as follows:

pt+1 =
(
1 − x

)
Wpt + xp0

where W refers to the adjacency matrix of the PPI network, p0

is initial probability vector with all seed genes are set as 1 while
other genes are set as 0 and pt is the probability vector at time t.

x ∈
(
0, 1

)
represents the restart probability. We initially set x = 0.7,

according to a series of previous studies [26–28], some of which
have demonstrated the feasibility of x was defined as 0.7.

The final activity scores of PCGs output by random walk algo-
rithm were defined as the extents of the impact they received
from the corresponding lncRNA-CNV.

Locating the most susceptible subpathways within pathway

The PCGs with their final activity scores output by random walk
algorithm were mapped to 281 pathways. To magnify the dif-
ference between pathway genes, we modified the final activity
scores as follows:

Sn = 10
− log pn

where pn is the probability of gene n at steady-state and Sn is
the activity score of gene n. The activity scores of genes were
mapped to pathway genes as node weights.

Meanwhile, the intensities of interactions between every two
pathway genes were quantified. Here, we calculated Pearson
correlations of expression between every two genes, correlation
scores were normalized as follows:

Se = 1 −
∣∣∣Corij

∣∣∣

where Corij refers to expression correlation coefficient between
gene i and gene j and Se is the weight of edge e (make up of gene
i and gene j).

Then, PCST algorithm [29] was performed to mine subpath-
ways that contained pathway genes with more node collection
and less edge cost, which means the pathway genes located
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Figure 1. Schematic overview of method for identifying lncRNAs-CNV driving subpathways with transcriptional perturbations.

in subpathways need relatively higher node weights and edge
weights, indicating the subpathways were greatly influenced
and tightly connected regions impacted by CNVs of lncRNA.
The subpathway R’ = (N′, E’) from overall pathway R = (N, E) was
computed as follows:

min E’ ∈ E, N’ ∈ N(
E’,N’

)
connected

∑

e∈E’
Se −

∑

n∈N’
Sn

Evaluating the statistical significance of difference of subpathway
activities

Finally, for each lncRNA-CNV, we evaluated the activity scores of
its driving subpathways in tumor samples and constructed the
activity profiles of these subpathways. The subpathways activity
score Z was defined by the formula [30]:

Zkm = Gkm − Gm
σm

√
c

where Gkm is the averaged expression value of genes in sub-
pathway k in sample m, Gm is the averaged expression value of
all genes in sample m, σm is the standard deviation of expres-
sion of all genes in sample m, c is the number of genes in
subpathway k.

T-test was applied to assess difference of subpathway activ-
ities between group of patients with CNV in lncRNA regions
and control group. Subpathways with significantly differential
activities (adjusted P-value of t-test by Benjamini method <0.01)
were identified as driven subpathways for the corresponding
lncRNA-CNV.

Construction of lncRNA-CNV driving subpathway
association network

Subpathways may have overlapping genes. To reduce the redun-
dancy of those subpathways, we merged subpathways which
have a number of overlapping genes by creating a new subpath-
way which united all genes and structures in those subpathways.
Detailed steps were seen in the Supplementary Materials. Alto-
gether, 5184 new subpathways were obtained. The subpathways
for further analysis were new subpathways after merging.

For each cancer, an lncRNA-CNV driving subpathway asso-
ciation network was constructed by connecting all (lncRNA-
CNV)-subpathway associations identified above. Consequently,
we built 14 cancer type specific lncRNA-CNV driving subpath-
way association networks and also a comprehensive pan-cancer
network. These networks can reflect lncRNAs-CNV driving func-
tional events occurred in the corresponding cancer types, and all
lncRNAs in the association networks were functional lncRNAs-
CNV.

Results
Evaluation of the method for identifying lncRNAs-CNV
and their driving subpathways

To understand the function of genetic variations in lncRNAs, we
developed a novel computational method to identify lncRNAs-
CNV and their driving transcriptional perturbed subpathways in
human cancer. First, by lacking of copy number amplitudes of
lncRNAs, we introduced a way to obtain the data according to
re-annotation TCGA segmented genomic copy number data. We
constructed the lncRNA copy number profiles of 14 cancer types
using genome mapping approach based on fragmented copy
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number data from TCGA and genome annotation data of lncR-
NAs from GENCODE. Then, we identified signature genes and
evaluated global scores, the measure of lncRNAs-CNV affecting
on PCGs, based on network diffusion algorithm. Finally, the most
driving local regions within each entire pathway and their sig-
nificance of differences in subpathway activities were evaluated
(Materials and Methods). To evaluate the accuracy of our recalcu-
lated copy number amplitudes for lncRNAs, we recalculated copy
number amplitudes for PCGs using the same approach as lncR-
NAs. The correlations between recalculated copy number ampli-
tudes of PCGs and standard copy number profiles generated
by GISTIC 2.0 were assessed. Higher correlations were observed
comparing with correlations between randomly selected copy
number amplitudes for PCGs and standard copy number profiles
across all 14 cancer types (Supplementary Figures S2-S3). And
most of these correlations (up to 91%) were >0.8. These results
suggest the excellent accuracy of the re-annotation strategy in
quantifying the copy number amplitudes of lncRNAs.

We also evaluated the feasibility of parameter x = 0.7 for
quantifying the driving extents of PCGs by lncRNAs-CNV based
on random walk with restart method [25]. Firstly, we quantified
the driving extents of PCGs by lncRNAs-CNV across all 14
cancer types using the parameter x = 0.5 and 0.9, respectively.
Then, we re-identified lncRNAs-CNV driving subpathways
based on the above result respectively. Finally, we compared
subpathways identified for each lncRNA-CNV under x = 0.7
with those identified under x = 0.5 and 0.9 at entire pathway
level, respectively. In general, these subpathways identified
under different parameters exhibit a high degree of consistency
(Supplementary Figures S4-S5). This indicates that parameter x
has slight effects on the result. Thus, we set x as 0.7 according
to the selection in the previous studies [26–28].

In order to evaluate the accuracy of our method for iden-
tifying subpathways perturbed by lncRNAs-CNV in cancer, we
adopted two schemes based on PCGs and lncRNA overexpression
data, respectively (Supplementary Materials and Methods). As
a result, subpathways driven by genetic variations of CR-PCGs
identified by our method have relatively high functional consis-
tency with the gene sets that these CR-PCGs were annotated in
GO database, as most of semantic similarity values were higher
than 0.6 (Supplementary Figures S6-S7). Furthermore, we used
lncRNA PVT1 overexpression dataset to evaluate the accuracy
of our method in LIHC (Supplementary Materials and Methods).
Semantic similarity values between four PVT1 driving subpath-
ways in LIHC and differential expressed gene set from PVT1
overexpressed dataset were evaluated. Among these, three of
four values were higher than 0.6 and significantly higher than
random (Supplementary Figure S8). These results validated the
high accuracy of our method in identifying subpathways that
were driven by lncRNAs-CNV. This suggested our method can
accurately characterize the function of lncRNAs-CNV.

The lncRNA-CNV driving subpathway association
landscape across 14 cancer types

To systematically analyze and evaluate lncRNAs-CNV and
their potential tumorigenic roles, we constructed a landscape
which consisted of 14 (lncRNA-CNV)-subpathway association
networks (Supplementary Figure S9). In total, 294 696 asso-
ciations between 3912 lncRNAs-CNV and 5184 subpathways
were identified in all 14 cancer types. Among these cancer-
specific (lncRNA-CNV)-subpathway association networks, the
number of lncRNAs ranged from 50 to 1584, and the number

of subpathways ranged from 72 to 1432. The dissection of
the degree distribution of these networks found that they all
follow the power-law distribution and have scale-free properties
(Supplementary Figure S10), which was consistent with the
characteristics of most types of biological networks. In summary,
these global and previously uncharacterized lncRNA-CNV
driving subpathway association networks across diverse tumor
types can provide insights into the function of genetic variations
of lncRNAs in human cancer.

LncRNAs had high level CNV controlling broad
biological functions

We totally identified 3912 functional lncRNAs-CNV driving at
least one subpathways across 14 cancer types. Next, we sys-
tematically characterized these functional lncRNAs-CNV. They
mainly belonged to long intergenic non-coding RNA (lincRNA)
and antisense classes (Figure 2A). Dissection of the distribution
of these functional lncRNAs-CNV found that they tended to be
highly cancer type-specific, as up to 78.4% of these functional
lncRNAs-CNV were identified in only one cancer type and only
a small subset of them (0.5%) were detected in multiple can-
cers (>3 cancer types) (Figure 2B and Supplementary Figure S11).
The majority of these lncRNAs were observed in KIRC (24.8%)
or KIRP (40.5%), which were both originated from the kidney
tissue (Figure 2B). In addition, copy number deletion pattern of
these functional lncRNAs was widely observed in various cancer
types (Figure 2B). We constructed a circular chromosome map
to provide a global view of genomic location annotation of each
functional lncRNAs-CNV across 14 cancers, and the numbers of
cancer types that each lncRNA was implicated with were shown
(Figure 2C). We found that most of these lncRNAs distributed in
chr1, chr5, chr6, chr7, chr10 and chr14.

LncRNA expression has been widely explored, but an explo-
ration of the effects of genetic variations on lncRNA expres-
sion may provide an essential framework for understanding
the pathogenesis of tumors. Previous studies have shown that
DNA copy number influences gene expression across a wide
range of alteration patterns [31, 32]. Also, Kumar et al. [33] found
that there is a strong correlation between genetic variations
and expression levels of large intergenic non-coding RNAs (lin-
cRNAs) and that is tissue-dependent. Here, we examined the
association between copy number amplitudes and expression
of these functional lncRNAs-CNV. About 56% lncRNAs-CNV with
available expression data have significant correlation between
the copy number amplitudes and their expression levels across
various cancer types (Figure 2D). Specific topological character-
istics could reflect functional features of these lncRNAs-CNV
in human cancer. Functional lncRNAs-CNV with higher degrees
were more likely to be hubs driving many subpathways and had
widespread functions in human cancers. Therefore, the degrees
of these functional lncRNAs-CNV were dissected, and lncRNAs
with higher degrees in the lncRNA driving subpathway associa-
tion networks were found to have higher levels of copy number
amplitudes (Figure 2E) and lower levels of expression (Figure 2F)
in most cancer types. This was consistent with previous studies
that decreased gene expression may result from copy number
loss [34], which was the most prevalent CNV pattern of these
functional lncRNAs. This suggested that lncRNAs with high CNV
levels may perturb widespread biological functions. Finally, we
mapped experimentally validated cancer associated lncRNAs
obtained from reliable databases (Materials and Methods) to
the chromosome map, and 65 cancer lncRNAs were found to
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Figure 2. (A) Categories of functional lncRNAs-CNV in cancers. (B) A global map of functional lncRNAs-CNV in cancers. (C) Genomic locations of functional lncRNAs-CNV.

Each dot refers to an lncRNA. The blue/orange dots indicate lncRNAs located in copy number deletion/amplification regions, respectively. Cancer lncRNAs are filled

in black with stroke color remain unchanged. The dot tracks correspond to different cancer types. The histogram inside shows the number of cancers each lncRNA

appears in. (D) P-values of correlations between expression and copy number amplitudes of functional lncRNAs-CNV. (E) Copy number amplitudes of lncRNAs whose

degree ranked in bottom 10% (low degree) and top 10% (high degree) in cancer type-specific lncRNA-subpathway association networks. (F) Expressions of low degree

and high degree lncRNAs in cancer type-specific networks. (G) Proportions of cancer lncRNAs in cancers.

be involved (Figure 2C). For example, cancer lncRNAs such as
EGFR-AS1, ST7-AS1, CDKN2B-AS1 and DNM3OS are functional
lncRNAs-CNV in multiple cancer types (Figure 2C]. By comparing
the number of cancer lncRNAs involved in functional lncRNA-
CNV set with randomly chosen lncRNAs, we found that func-
tional lncRNAs-CNV tended to be related with cancer (Figure 2G
and Supplementary Figures S12-S13). Taken together, the above
results suggested that these identified lncRNAs-CNV may play
critical roles in human cancer.

Cancer hallmark analysis highlighted core
subpathways widely driven by lncRNAs-CNV
across cancers

To investigate the functions of lncRNAs-CNV in cancer, we
systematically analyzed transcriptional perturbed subpathways
driven by these lncRNAs. We found that most subpathways (74%)
were cancer specific, while only a small fraction of subpathways
were driven by these lncRNAs in multiple cancer types (Figure
3A). Further analysis found that majority of subpathways in
CESC, KIRC, OV and LUSC were cancer specific, and cancer
conserved subpathways tended to be observed in BLCA, BRCA,
GBM, LGG and STAD (Figure 3B).

Although the functional lncRNAs-CNV have widespread and
extremely complex functions in various cancer types, cancer-
related hallmarks provide a feasible way for understanding
remarkable diversity of lncRNAs-CNV driving subpathways
and thus uncovering functional roles of lncRNAs-CNV in
cancer. Here, we first calculated semantic similarity between
subpathways and cancer hallmark-related GO processes to
measure their functional similarities (Supplementary Materials
and Methods). As a result, 2357 of these subpathways were
functionally associated with cancer hallmarks, and majority of
them were associated with the hallmarks ‘tissue invasion and
metastasis’, ‘self sufficiency in growth signals’, ‘reprogramming
energy metabolism’ and ‘insensitivity to antigrowth signals’

(Supplementary Figure S14). This suggested that the above
cancer hallmarks may be universally perturbed by lncRNAs-
CNV across diverse types of cancers. We explored the degree
distribution of cancer hallmark-associated subpathways in
the pan-cancer network. A higher degree represents that the
subpathway was driven by more functional lncRNAs-CNV. We
found that subpathways associated with cancer hallmarks
‘genome instability and mutation’ and ‘reprogramming energy
metabolism’ have relative high degrees in the pan-cancer
network (Figure 3C). As CNVs in non-coding regions is an
important class of genome instability, this observation provided
further evidence that ‘genome instability and mutation’ was
a driving factor for the development of cancer. In addition,
the ‘reprogrammed energy metabolism’, especially glucose
metabolism, was required to satisfy anabolic demands [35] for
uncontrolled growth of cancer cells. It suggested that most
of functions impacted by lncRNAs-CNV were related with
reprogrammed energy metabolism and thus promoted cancer
progression. Nevertheless, subpathways related with the same
cancer hallmark exhibit varied degrees across cancers. For
example, subpathways related with ‘genome instability and
mutation’ showed high degree in BRCA, KIRP and LGG, while
subpathways related with ‘reprogramming energy metabolism’
showed high degree in KIRC (Figure 3D).

Next, we focused on conserved subpathways, which were
commonly impacted by functional lncRNAs-CNV in at least eight
cancer types. In total, only 88 (2%) subpathways were conserved
across various cancers, and 41 (46.6%) of them were related with
cancer hallmarks (Figure 3E). Further analysis found that these
41 core subpathways, which were both conserved and related to
cancer hallmarks, were originated from many oncogenic path-
ways such as cell cycle, mTOR signaling pathway, Notch signal-
ing pathway, PI3K − Akt signaling pathway and Rap1 signaling
pathway (Figure 3F). They were mainly related with six cancer
hallmarks including ‘insensitivity to antigrowth signals’, ‘limit-
less replicative potential’, ‘reprogramming energy metabolism’,
‘self sufficiency in growth signals’, ‘sustained angiogenesis’ and
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Figure 3. (A) Distributions of all subpathways in cancers. (B) Distributions of top 50% high-degree subpathways in cancers. (C) Degrees of cancer hallmark-related

subpathways in pan-cancer lncRNA-CNV driving subpathway association network. (D) Normalized degrees of two cancer hallmarks-related subpathways in cancer

type-specific networks. (E) Venn diagram of cancer hallmark-related subpathways and cancer conserved subpathways. (F) The 41 core subpathways with the number

of lncRNAs-CNV in 14 cancer types (top), their related cancer hallmarks (middle) and corresponding pathway names (bottom).

‘tissue invasion and metastasis’ (Figure 3F). This indicated that
many cancer specific lncRNAs-CNV may perturb common sub-
pathway regions and thus impact these cancer hallmarks across
various cancer types. In addition, our analysis also highlighted
the pivot roles of these 41 core subpathways which were widely
driven by lncRNAs-CNV in cancers.

Overall, the above analysis revealed that functional lncRNAs-
CNV may drive dysregulation of cancer hallmarks and thus
contribute to the initiation and progression of cancer.

Dissecting lncRNA-CNV driving subpathway
associations revealed the functional diversity of
lncRNAs-CNV across cancers

In the above analysis, we found that there were small subsets of
common lncRNAs-CNV identified in more than one cancer type.
An inspection of associations of lncRNAs-CNV in multiple cancer
types showed that these lncRNAs rarely impacted the same
subpathways in different cancers (Figure 4A). This indicated
that these common lncRNAs-CNV in different cancer types may
display varied functions because of the tissue-specific proper-
ties for lncRNA/gene expressions and molecular interactions. In
order to reveal the functional differences of lncRNAs-CNV more
precisely in cancer, we examined whether common lncRNAs-

CNV could drive different subpathway regions of the same entire
pathway in different cancer types. Firstly, we focused on func-
tional lncRNAs-CNV identified in at least four cancer types and
their perturbed pathways. In total, 18 lncRNAs-CNV driving 219
entire pathways that constituted 2434 lncRNA-pathway associ-
ations were dissected. We found that most of these associations
were cancer specific (Figure 4B).

Next, to exemplify how these common lncRNAs-CNV
impacted different functions, cancer lncRNA EGFR-AS1 that
presented in the most cancer types was examined. EGFR-AS1
functioned in four tumors including BLCA, STAD, HNSC and
LUAD. It was worth to note that there was hardly any (only one)
common subpathway driven by EGFR-AS1 shared by different
tumors (Figure 4C). In addition, most subpathways were driven
by EGFR-AS1 in LUAD (Figure 4C), which indicated that CNV
of EGFR-AS1 may perturb a wide range of biological functions
in this cancer type. We then dissected the function of EGFR-
AS1 across four cancer types. A total of 235 subpathways
were driven by EGFR-AS1 totally corresponding to 134 entire
pathways, 5 (the least) of which were disturbed in BLCA and
111 (the most) of which were disturbed in LUAD (Figure 4D).
A total of 135 (57.4%) of these pathways were associated with
six cancer hallmarks such as ‘tissue invasion and metastasis’
(Figure 4E). ‘Tissue invasion and metastasis’ was a common
associated hallmark for EGFR-AS1 in four cancer types and
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Figure 4. (A) The number of related subpathways of each lncRNA-CNV (left) and the number of common associations across cancers (=1 or ≥2) (right). Only cancer

lncRNAs whose driving subpathways replicated in more than one cancer type were shown. (B) lncRNA-CNV driving an entire pathway network. The network includes

functional lncRNAs-CNV and their driving subpathways corresponding pathways identified in four or more cancer types. The edge color represents the number of

cancer types that the associations presented in. (C) EGFR-AS1-subpathway driving association network among four cancer types. The fill colors of subpathways refer

to the categories of their corresponding pathways. (D) Venn diagram of EGFR-AS1 associated subpathways corresponding pathways among four cancer types. (E) The

corresponding pathways of EGFR-AS1 associated subpathways and their related cancer hallmarks in four cancer types. (F) Subpathways structures derived from two

pathways overlapped among four cancer types show in (D).

indicated the roles for promoting tumor development of CNV
of EGFR-AS1 across cancers. EGFR-AS1 has been demonstrated
to promote cell growth and metastasis in renal cancer [36]. More
importantly, ‘choline metabolism in cancer’ and ‘chemokine
signaling pathway’ were both commonly known cancer-related
pathways that were simultaneously driven by EGFR-AS1 across
all four cancer types (Figure 4D). Further dissection of the two
pathways found that EGFR-AS1 perturbed different subpathways
in various cancer types, and these subpathways were all related
with critical cancer biological processes such as cell cycle
progression, proliferation, cellular growth and differentiation,
apoptosis, angiogenesis and migration (Figure 4F). In particular,
two subpathways, subpathway_2539 and subpathway_179
within ‘choline metabolism in cancer pathway’, were driven
by EGFR-AS1 in HNSC and BLCA, respectively. The subpathway
(subpathway_179) disturbed in BLCA was a downstream region
of that in HNSC. In addition, subpathways within ‘chemokine

signaling pathway’ driven by EGFR-AS1 in STAD, HNSC and BLCA,
respectively, were also shown (Figure 4F). The above analysis
further revealed the functional diversity of lncRNAs-CNV across
different cancer types and also indicated that our proposed
method had the ability to depict functions of these lncRNAs-
CNV at more precise level.

Functional lncRNAs-CNV could be potential biomarkers
for cancer prognosis

The above analyses revealed that lncRNAs-CNV play diverse
roles in different cancer types and even subtypes. This
highlighted that they may serve as promising biomarkers to
classify subtypes with different clinical outcomes. To assess
the clinical relevance of these lncRNAs, we integrated the
clinical data and then performed survival analysis for each

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/2153/5618831 by guest on 19 April 2024



Characterization of functional lncRNAs-CNV 2161

Figure 5. (A) The percentages of survival-related functional lncRNAs-CNV in 14

cancers. (B–D) K-M plots of CNV samples and control group samples for ST7-AS1,

CNKN2B-AS1 and EGFR-AS1 in various cancer types, respectively.

of them across 14 cancer types (Supplementary Materials and
Methods). As a result, we totally identified 1093 (28%) survival-
related functional lncRNAs-CNV in all 14 cancer types, and most
of them were discovered in LGG, KIRC and LIHC (Figure 5A).
The proportions of survival-associated lncRNAs-CNV exhibited
large difference even in cancer subtypes from the same tissue
origin. Previous research showed that the copy number and
expression of lncRNA FAL1 were correlated with clinical outcome
in ovarian cancer [7). Here, we also examined the expression
correlation of these survival-associated lncRNAs-CNV and
categorized them into six groups (Supplementary Figure S15).
About 23% lncRNAs-CNV, which are significantly related to
survival, have significant correlation between their expression
and CNV. Detailed information in 14 cancer types, respectively,
was shown in Supplementary Figure S15, indicating that some
lncRNAs-CNV contribute to tumorigenesis and might affect their
expressions.

Further exploration of these survival-associated lncRNAs-
CNV found that some experimentally validated cancer lncRNAs
were also included. For example, ST7-AS1 was identified as a
survival-associated lncRNA in LGG (Figure 5B) and has been
demonstrated to be differentially expressed in apoptosis glioma
cells induced by agents [37]. CDKN2B-AS1 has been confirmed
to play a critical role in the pathological processes of multiple
cancers [38, 39]. Specifically, the CNV status of CDKN2B-AS1
could distinguish patients into two groups with different clinical
outcomes in both kidney tumor subtypes including KIRC and
KIRP (Figure 5C). Furthermore, another cancer lncRNA EGFR-AS1
was significantly prognostic related with the two cancer types
including LUAD and HNSC, which were originated from two
distinct tissues (Figure 5D). Interestingly, we also found that the

three cancer lncRNAs-CNV mentioned above were consistently
associated with poor prognosis of patients in the corresponding
cancer types. This observation provided further evidence for
conclusion that functional lncRNAs-CNV were important drivers
to promote the development of cancer. Taken together, our anal-
ysis indicated that the driving roles of functional lncRNAs-CNV
and their potential clinical usages as prognosis biomarkers in
cancer.

(LncRNA-CNV)-gene-subpathway-cancer hallmark
cascade responses and a functional crosstalk model for
elucidating their driving effect in cancer

Genetic variations in lncRNA regions such as CNVs could
induce the expressions alteration, then disturb corresponding
subpathways and cause dysregulation of the cancer hallmark
related processes. Consequently, the initiation and progression
processes of tumor were activated. To explore how these func-
tional lncRNAs-CNV contribute to the pathogenesis of cancer,
a series of (lncRNA-CNV)-gene-subpathway-cancer hallmark
cascade responses were proposed, and several cancer lncRNAs-
CNV were further analyzed. LncRNA ST7-AS1 with CNVs driving
dysregulation of downstream cancer genes such as CDK6, MET,
MMP9 and CFTR and further disturbed transcriptional activities
of subpathway_145 that was located in cAMP signaling pathway
and associated with ‘tissue invasion and metastasis’ in LGG and
LUAD (Figure 6A). It was worthy to note that ST7-AS1 has been
demonstrated to be closely associated with human glioma [37].
The impacted genes downstream were also associated with the
development of glioma, especially for invasion and metastasis.
For example, it has been demonstrated that CDK6 can be
regulated by lncRNAs and impact proliferation, invasion and
migration of glioma cells [40]. MET is a cancer gene associated
with the proliferation and invasion in glioma [41]. Up-regulation
of MMP9 could promote glioma cell migration and invasion
[42]. In addition, ST7-AS1 perturbed subpathway_145 that was
also closely related with the biological processes of cancer
including proliferation, apoptosis and cell migration (Figure 6B
and Supplementary Figure S16). These analyses suggested that
lncRNA-CNV ST7-AS1 is likely to play important roles in cancer
progression, especially for the invasion and metastasis. Simi-
larly, lncRNA CDKN2B-AS1 may drive subpathway_126 in GBM
and KIRC (Figure 6A). Subpathway_126 located within chronic
myeloid leukemia pathway and associated with reprogramming
energy metabolism hallmark (Figure 6A), impacted critical
processes including cell cycle progression, proliferation and
survival (Figure 6C and Supplementary Figure S17). CDKN2B-AS1
has been experimentally validated to influence cell proliferation,
invasion and migration of human glioma cells [43] with help
of energy metabolism reorganization. These above analyses
can provide novel insights to understand the functions of
lncRNAs-CNV and the pathogenesis of cancer based on these
lncRNAs-CNV driving subpathway associations identified by our
method.

To further explore the roles of lncRNAs-CNV in cancer,
we then dissected the genetic variation association pattern
between lncRNAs-CNV and genes within their driving sub-
pathways. A general analysis of genetic variation heatmap
(Figure 6D) revealed that in some cases, the genetic varia-
tions of lncRNAs and genes within their driving subpath-
way appeared to be mutually exclusive. This indicated that
the development of cancer can be driven by either the
genetic variations of lncRNAs or their functionally associated
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Figure 6. (A) Five (lncRNA-CNV)-gene-subpathway-cancer hallmark cascade responses. Heat map combinations include information about copy number of five

cancer lncRNA, expression of lncRNA-related genes and subpathway activity. Columns represent patients in corresponding cancer types: the first row of each

combination represents copy number amplitude of lncRNA and the second row represents discretized copy number data of lncRNA. Beneath subpathway names

are their related cancer hallmark names. (B) Subpathway structure of subpathway_145 consistent with layout in KEGG database. CR-PCGs are in italics, with

the percentages of CNVs or somatic mutations in LGG and LUAD, respectively. Genes in red are drug targets. (C) Subpathway structure of subpathway_126.

(D) Columns in heat maps represent patients in corresponding cancer types: the first row of each heat map represents discretized copy number data of

lncRNA, while other rows in green represent CNVs or somatic mutations of selected genes of subpathways. Patients without any genomic alterations are not

shown.

genes and also supported that the functional associations
between lncRNAs-CNV and their driving subpathways do
exist.

As most lncRNAs-CNV drove different subpathways, we also
found that there were lncRNAs (e.g., CDKN2B-AS1 and EGFR-
AS1) disturbing the same subpathways in cancers (Figure 6A).
This indicated that these lncRNAs-CNV may function in a coop-
erative pattern to drive transcriptional perturbations of sub-
pathways and further the dysregulation of cancer hallmarks
in the complex biological systems. Thus, we here proposed a
cancer hallmark related functional crosstalk model for system-
atically understanding the driving function of lncRNAs-CNV
in human cancers (Figure 7). Notably, cancer hallmark related
subpathways driven by CDKN2B-AS1, LINC00942, C1QTNF9B-
AS1 and DNM3OS, respectively, had functional crosstalk among
the internal and external subpathway sets in cancers (Figure 7).
This suggested that these four lncRNAs-CNV may function as
synergistic drivers in KIRC. The above analysis indicated that
our proposed cascade response and functional crosstalk model
can provide insights into how intermolecular and functional
relationships dictate tumorigenesis. Taken together, identifica-
tion and exploration of the genetic variation lncRNAs and driv-
ing subpathways are important for understanding the function
of lncRNAs, which facilitate the comprehension of pathologi-
cal mechanism and development of lncRNA-based therapy of
cancer.

LncCASE: a web interface for exploring lncRNAs-CNV
and their driving transcriptional perturbed
subpathways across cancer types

To facilitate the usage of (lncRNA-CNV)-subpathway association
resource, we developed LncCASE (LncRNAs with Copy num-
ber Alteration affecting Subpathways in cancErs) (http://bio-
bigdata.hrbmu.edu.cn/LncCASE/), an online database which col-
lected all significantly dysregulated (adjusted P < 0.05) subpath-
ways before merging with their associated lncRNAs-CNV across
cancer types. In total, LncCASE documents 566 425 entries of
associations between 4115 lncRNAs-CNV and 17 455 subpath-
ways among 14 cancer types. Except for the information about
names/IDs of cancer type, lncRNA and subpathway, each entry
consists of pathway that the subpathway derived from, the
number of genes included in the subpathway, the statistics for
estimating difference of the subpathway activities and visualiza-
tion of the subpathway structure.

LncCASE provides a user-friendly interface. The quick search
enable users to filter entries with one keyword of interest, such
as a lncRNA (name or ensembl ID), cancer type (full name or
abbreviation) or pathway name. Also, an advanced search is
provided in ‘Search’ page for more specific requirements. The
users can input interested lncRNA, cancer type and pathway at
the same time to obtain desired associations. In ‘Browse’ page,
all lncRNAs, cancer types and pathways in LncCASE are arranged
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Figure 7. A cancer hallmark-related functional crosstalk network model among lncRNAs and subpathways across cancers. Only cancer lncRNAs with significant

survival P-value (P < 0.05) in specific cancer type and subpathways, which have related hallmarks, are shown. Connection between lncRNAs is defined that their driving

subpathway clusters have significant overlaps compared with two randomly selected subpathway clusters but with same numbers of genes respectively. Subpathways

with significant overlapped genes (hypergeometric test: P adjust <0.01) are considered to have crosstalk. Inside square frames are top five most active subpathways

impacted by lncRNA, names of subpathways in picture are their corresponding pathway names. Beside the frames are pie charts that show hallmark distributions of

all lncRNA associated subpathways.

in order, respectively, for users to query. Besides, subpathways
are listed under each pathway entry they derived from. The
search and browse results can be freely downloaded. Further-
more, ‘Help’ page contains detailed guidance for users.

With the increasing amount of lncRNA and multi-dimensional
molecular profiles of cancer cohorts, we will continuously
update the website in terms of the coverage of lncRNAs, the
types of genetic variation, the number of cancer types, etc. In
addition, to further facilitate the utility of the website, we will
consider to improve the subpathway visualization function and
to add genomic visualization tools in the future.

Conclusion and discussion
Recently, genetic variations in lncRNAs have attracted more
and more attention, as they have been demonstrated to play
critical roles in the development of human cancers. However,
interpreting the functions of these genetic variation lncRNAs on
a large scale is still a challenge. In this study, a systematical iden-
tification and characterization of lncRNAs-CNV and the driv-
ing subpathways were performed, providing a comprehensive
resource for studying the functions of genetic variation lncRNAs
and the pathogenesis of human cancer.

We firstly provided a computational method to identify
lncRNAs-CNV driving subpathways by integrating genomic

and transcriptomic data in human cancer. The copy number
level of lncRNAs was re-annotated to construct lncRNA-CNV
profiles. And the high reliability and accuracy of our method in
identifying lncRNAs-CNV and their driving subpathways were
demonstrated. Furthermore, our method could also be applied
to other types of genetic variation lncRNAs.

Then, the method was applied to 14 cancer types, and a
comprehensive characterization of these lncRNAs-CNV and
their driving subpathways were performed. Dissecting global
properties of functional lncRNAs-CNV found that they were
cancer specific. The copy number amplitudes of lncRNAs-
CNV were significantly associated with their expression in
cancers, which provides further evidence for the functionality
of our identified lncRNAs-CNV at expression level. Dissecting
the network topology properties of lncRNAs-CNV revealed
that lncRNAs have high-level CNV controlling broad biological
functions. Moreover, we also found that functional lncRNAs-
CNV tended to be related with cancer. These results revealed
lncRNAs-CNV played critical roles in cancer, which high-
lighted the importance of function prediction and analysis
for them. The analysis of subpathways driven by lncRNAs-
CNV across cancer types discovered some core subpathways
widely driven by lncRNAs-CNV in different cancer types. These
functional regions may help to yield potential drug target
candidates. Further analyses of the associations between
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lncRNAs-CNV and subpathways uncovered the functional
diversity of lncRNAs-CNV across cancers and also demonstrated
the advantage of subpathway for functional analysis of
lncRNAs-CNV. Survival analysis of functional lncRNAs-CNV
highlighted their potential for clinical usages as prognostic
biomarkers and suggested their driving roles in cancer. These
analyses can help to elucidate the functions of lncRNAs-CNV
and will deepen our understanding of the pathogenesis of
cancer.

In recent years, several methods have been proposed to help
researchers for investigating the functions of lncRNAs. For exam-
ple, Jiang et al. [44] predicted the functions of lncRNAs based
on their co-expressed PCGs using gene set enrichment analy-
sis method. Zhou et al. [45] developed ‘LncFunNet’ method to
integrate ChIP-seq, CLIP-seq and RNA-seq data to predict and
annotate the function of lncRNAs in mouse skeletal muscle cells.
However, these strategies were mainly based on lncRNA expres-
sion. There is still a lack of effective method for the functional
interpretation of lncRNAs with genetic variations. To fill this gap,
we developed a novel computational approach, which mainly
focused on lncRNAs-CNV. Our study has some unique aspects.
First, multiple-omics data were integrated and the topological
structures of pathways were also considered in our method. Sec-
ond, our study focused on subpathways that can help us explain
the functions of lncRNAs-CNV from a more precise and in-depth
perspective. Third, we also provided a landscape of lncRNAs-
CNV and their driving subpathways across 14 human cancer
types. In all, we not only proposed an effective method, but also
performed a systematic analysis, uncovering some important
knowledge about genetic variation lncRNAs that deepened our
understanding of their roles and the pathological mechanism in
cancer.

We should also point out that our method can be improved in
the following aspects. First, it only focused on CNVs in lncRNA
regions. Adding other types of genetic variation could improve
the applicability of method. LncRNA has a complex spatial struc-
ture, and the mechanism involved in expression regulation is
diverse and complex. In future works, taking into account the
structure and integrating other types of sequencing data such
as ChIP-seq and CLIP-Seq would provide better understanding of
the complex mechanism and a more comprehensive prediction
of the functions of lncRNAs-CNV. Furthermore, individuals from
more cancer types and races will be integrated and analyzed in
our future research.

In this study, we identified the driving subpathways of each
lncRNA-CNV based on the notion that lncRNA with genetic
variations may alter gene expression and further disturb the
activities of related pathways [a cascade response: (lncRNA-
CNV)-gene-subpathway], providing explanations of the func-
tions and driving mechanisms for lncRNAs-CNV. Furthermore,
we combined all cascade responses into a cancer hallmark-
related functional crosstalk framework, as the development
of cancer is caused by coordinated cascade responses of
multiple lncRNAs-CNV and crosstalk among their perturbations
subpathways, to systematically understand the functions of
lncRNAs-CNV and the pathogenesis of cancer. Finally, a free,
web-accessible database called LncCASE (http://bio-bigdata.
hrbmu.edu.cn/LncCASE/), which stores all lncRNAs-CNV and
their driving subpathways identified in our study and also
provides visualization of subpathway structures, is presented
to facilitate the researches of cancer biology.

In addition, genomic imprinting is required for normal devel-
opment, and the disturbance of which also play important roles
in tumor [46, 47]. Experiments have confirmed that lncRNA

participates in the process of imprinting genes with a variety
of modes of action including promotion of chromatin com-
partmentalization, transcriptional occlusion and collision-based
mechanisms, etc [48]. Furthermore, a well-known lncRNA H19
has been demonstrated to regulate the expression of members in
an imprinted gene network including 16 co-expressed imprinted
genes [49, 50]. CNV in the lncRNA region may affect the expres-
sion of lncRNA molecules and then regulate the expression of
downstream genes from multiple different modes of action,
and thus could participate in the process of gene imprinting.
Here, we explored the imprinted gene process influenced by
lncRNAs-CNV. Firstly, we obtained the curated human imprint-
ing genes from the MetaImprint database [51] and then identi-
fied lncRNAs-CNV driving subpathways that were enriched with
imprinting genes using Hypergeometric test (P < 0.05). Totally,
2777 lncRNAs-CNV were related with the processes of gene
imprinting, including H19. We found that the CNV level of H19
was significantly correlated with its expression, and H19-CNV
regulated two gene imprinting related subpathways including
subpathway_95 (a merged region within inflammatory mediator
regulation of TRP channels, GnRH signaling pathway, salivary
secretion and bile secretion pathways) and subpathway_2879 (a
region within SNARE interactions in vesicular transport path-
way) in HNSC. Based on our method, H19-CNV could impact the
expression of its driving signature gene TRIM21 and thus dis-
turb these two subpathways. Further exploration of the driving
cascade found that expression of H19 could regulate the expres-
sion of transcription factor E2F1 [52, 53] in cancer. Interestingly,
TRIM21 is also the predicted downstream target of E2F1 from
the harmonizome database [54]. Thus, we could infer that the
potential mechanism for H19-CNV involved in the process of
gene imprinting is that: the CNV of H19 impact its expression,
then regulate the expression of E2F1 and its downstream target
gene (s), and further influence the process of gene imprinting
(Supplementary Figure S18). The above analysis indicates that
our method could provide guidance for further disclosure of the
modes of action of lncRNAs-CNV in cancer.

In summary, we presented an integrative computational
method to systematically identify widespread lncRNAs-CNV and
their driving subpathways with transcriptional perturbations
across cancer types. The proposed method and analyses
extended the existing knowledge of lncRNAs and provided
a new perspective to investigate functions of non-coding
genetic variations, which can help to reveal the mechanism of
tumorigenesis and discovery new therapeutic targets of cancers.

Key Points
• This study provided a strategy to identify lncRNAs-

CNV and their driving transcriptional perturbed sub-
pathways based on multi-omics data of cancer and
the lncRNA-CNV driving subpathway association land-
scape in pan-cancer was constructed.

• A comprehensive characterization and analysis of these
lncRNAs-CNV revealed their high specificity in cancers
and highlighted their potential for clinical usage as
prognostic biomarkers.

• Some core subpathways and cancer hallmarks widely
perturbed by lncRNAs-CNV were revealed.

• Dissecting lncRNA-CNV driving subpathway associa-
tions revealed the functional diversity of lncRNAs-CNV
across cancers.
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• Cascade responses and a functional crosstalk model
were provided to understand the driving mechanism
of lncRNA-CNV. And a user-friendly web resource to
explore associations between lncRNAs-CNV and their
driving subpathways in cancers was constructed.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/
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