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Abstract

Although there has been great progress in cancer treatment, cancer remains a serious health threat to humans because of
the lack of biomarkers for diagnosis, especially for early-stage diagnosis. In this study, we comprehensively surveyed the
specifically expressed genes (SEGs) using the SEGtool based on the big data of gene expression from the The Cancer
Genome Atlas (TCGA) and the Genotype–Tissue Expression (GTEx) projects. In 15 solid tumors, we identified 233
cancer-specific SEGs (cSEGs), which were specifically expressed in only one cancer and showed great potential to be
diagnostic biomarkers. Among them, three cSEGs (OGDH, MUDENG and ACO2) had a sample frequency >80% in kidney
cancer, suggesting their high sensitivity. Furthermore, we identified 254 cSEGs as early-stage diagnostic biomarkers across
17 cancers. A two-gene combination strategy was applied to improve the sensitivity of diagnostic biomarkers, and hundreds
of two-gene combinations were identified with high frequency. We also observed that 13 SEGs were targets of various drugs
and nearly half of these drugs may be repurposed to treat cancers with SEGs as their targets. Several SEGs were regulated by
specific transcription factors in the corresponding cancer, and 39 cSEGs were prognosis-related genes in 7 cancers. This
work provides a survey of cancer biomarkers for diagnosis and early diagnosis and new insights to drug repurposing. These
biomarkers may have great potential in cancer research and application.

Key words: pan-cancer; cSEGs; biomarkers; diagnosis; two-gene combination

Introduction
Cancer is a major public health problem worldwide that seri-
ously threatens human life [1]. Late-stage diagnoses and limited

time for treatment are the main reasons for the low survival
rates from cancer [2]. Therefore, the early and accurate detection
of cancer is very important for clinical diagnosis. At present,
cancer biomarkers, which can be used not only in diagnosis
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but also in prognosis and therapy, are in the spotlight as one
solution. However, current cancer biomarkers usually lack speci-
ficity and sensitivity [3]. For example, Alpha Fetoprotein (AFP), a
gold standard for the diagnosis of liver cancer, is widely used in
cancer diagnosis; however, it is not only specific to cancer but
also occurs in patients with chronic hepatitis infection [4, 5]. In
addition, human epidermal growth factor receptor-2 (HER2/erbB-
2), an established marker of breast cancer, is also overexpressed
in other cancers including ovarian, lung, gastric and oral cancers
[6, 7]. These examples demonstrate that many cancer genes are
expressed in various tissues and/or diseases [8]. Thus, there is
still a challenge and urgent need to identify new markers with
high sensitivity and specificity for cancer diagnosis.

Specifically expressed genes (SEGs) are expressed only in a
small number of specific tissues. Thus, SEGs are of naturally
high specificity and sensitivity [9]. Previous studies revealed
that many diseases are associated with SEGs, suggesting SEGs
may serve as biomarkers for disease diagnosis [10]. Many SEGs
have been reported to play important roles in corresponding
tissues, such as CDH17 in the colon and SOX2 in the brain [11].
In addition, many diseases are related to tissue-specific genes,
and thousands of genes affect hundreds of diseases in more
than 70 tissues [10]. Luckily, a great deal of expression data has
been gathered for various cancer types and normal tissues and
stored in databases, such as The Cancer Genome Atlas (TCGA)
and Genotype–Tissue Expression (GTEx). This has made it pos-
sible to analyze cancer SEGs [12, 13]. We also constructed tools
to perform expression analysis, such as the Gene Set Cancer
Analysis (GSCALite) [14] and Gene Expression Display Server [15].
Recently, we published a method called SEGtool that detects
SEGs automatically and self-adaptively with high specificity and
sensitivity in RNA-Seq data [16]. To date, several SEG databases
have paid attention to SEGs and their functions, such as the
TissGDB [17], PaGenBase [18] and HOMER [19]. More recently,
we published the SEGreg database based on SEGs identified by
SEGtool and combined their miRNA and transcription factor
(TF) regulation in each cancer and normal tissue [20]. However,
there is still a lack of studies on cancer-specific SEGs (cSEGs)
for biomarker identification, especially for early-stage cancers.
Increasing the amount of research on cSEGs will be very impor-
tant for improving cancer diagnosis.

In this study, based on our SEGtool and SEGreg, we identified
cSEGs that were highly expressed in only one cancer type using
TCGA cancer transcriptome data. In addition, we obtained a
list of single-gene markers and two-gene markers for cancer
diagnosis and even early-stage diagnosis. Moreover, based on
cSEGs, we propose some potential drugs for cancer treatment.
This research may provide novel cancer biomarkers in cancer
diagnosis and therapy.

Materials and methods
Data description

In this study, transcriptome data (RNASeq2 level III RSEM data),
after adjusting batch effects, were from the PanCanAtlas page
(https://gdc.cancer.gov/about-data/publications/pancanatlas)
[21] and clinical information across 33 cancer types was
obtained from the TCGA portal (https://tcga-data.nci.nih.gov/
tcga/). In total, we obtained a gene expression matrix of 9744
cancer samples and 727 paracancerous tissue samples from
the TCGA portal. There are 24 cancer types with both cancer
and paracancerous tissue samples. In addition, we downloaded
the transcripts per million normalized gene expression data

of 55 normal tissues from the GTEx portal (http://gtexportal.
org). Then, we merged different parts of some sub-organs or
sub-tissues. For example, adipose-subcutaneous and adipose-
visceral (omentum) were merged into adipose tissue. In another
example, brain-anterior cingulate cortex (BA24), brain-caudate
(basal ganglia), brain-cerebellar hemisphere, brain-cerebellum,
brain-cortex, brain-frontal cortex (BA9), brain-hippocampus,
brain-hypothalamus, brain-nucleus accumbens (basal ganglia),
brain-putamen (basal ganglia), brain-spinal cord (cervical c-1)
and brain-substantia nigra were merged into brain tissue. Finally,
we obtained the expression matrices of 30 tissues. The number
of tumor and paracancerous samples for each cancer type is
shown in Table S1.

Identification of SEGs and cSEGs

We used R package ‘SEGtool’ to identify SEGs (default param-
eters, P-value <0.05) in TCGA and GTEx data [16]. Specifically,
we applied the replicating-value integration, a built-in function
of SEGtool, to calculate the expression of each gene in 57 can-
cer and paracancerous tissues. Then, we integrated the gene
expression of 33 cancer tissues and 24 paracancerous tissues
into an input matrix. Although SEGtool can detect genes with
specifically high and low expression, we only used the SEGs with
high expression in this study for further investigation.

cSEGs are SEGs that are highly and specifically expressed in
only one cancer type but not expressed in all paracancerous and
normal tissues. To obtain cSEGs, we first used the GTEx data to
identify SEGs in each normal tissue, and only 19 TCGA cancer
types could be matched with GTEx normal tissues (Table S2).
Among them, 15 solid tumors have cSEGs and another 4 cancers
have no cSEGs.

Calculation of high expression frequency

To measure the sensitivity of a SEG, we calculated its frequency
of high expression, which is the ratio of samples having the
SEG. Considering that the ‘replicate score’ of gene expression
was used in SEG detection in the above procedures, to measure
whether the SEG(s) were generally highly expressed in samples,
we examined the distribution of the expression profile for each
SEG. We calculated the number of non-redundant samples in
which the expression value of the SEG(s) was more than 0.8× the
corresponding ‘replicate score’, and the ratio of these samples
to total samples was called the frequency of high expression of
SEGs. Chi-square test was applied to evaluate the significance of
two-gene combinations.

Identification of early-stage markers

First, we obtained the sample cancer stages (T1, T2, T3 and
T4) according to the clinical information of each sample and
constructed an expression matrix for the T1–T4 stages in 23
cancers with stage data, 10 cancers without stage data and 24
paracancerous tissues. Then, we selected SEGs in each cancer
stage using SEGtool and the T1 stage SEGs but not normal and
paracancerous tissue SEGs were regarded as early-stage cSEGs.
The early-stage cSEGs may be also highly expressed in T2–T4
stages of that cancer, so that would not affect our results. Finally,
we screened markers for early-stage diagnosis from those early-
stage cSEGs by screening those that had a frequency of high
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expression of >50%. We also calculated the frequency of high
expression of two genes and selected a list of two-gene markers.

Definition of two-gene markers

For a two-gene marker, if one of two genes is highly expressed
in a sample, then the sample is regarded as a highly expressed
sample of the two-gene marker. The ratio of the highly expressed
sample of the two-gene combination was calculated by the num-
ber of highly expressed samples to divide the total number of
samples. In other words, for a certain cancer type that contains
N cancer samples, if Gene1 has N1 highly expressed samples (the
sample set as S1) and Gene2 has N2 highly expressed samples
(the sample set as S2), then the high expression frequency of the
two-gene marker (Gene1 and Gene2) is (S1∪S2)/N. In this study,
the two-gene markers were expected to be more sensitive than
single-gene markers, and the Chi-square test was employed to
evaluate the power of the two-gene combinations compared
with the single one.

Analysis of survival markers, drug targets and
regulation

For the survival analysis of each marker gene, we divided sam-
ples into high and low expression groups by each marker gene’s
median expression level. The overall survival (OS) was defined
as the time from diagnosis to death or last clinical follow-up.
The Kaplan–Meier method within the R package ‘survival’ and
the log-rank test were used to assess statistical significance,
and the cutoff of significance was P < 0.05. We also collected US
FDA-approved anticancer drugs and their targets from DrugBank
[22] and mapped these drug targets to SEGs in our analyzed
cancer types. Based on the regulatory relationship of TF-targets
that we collected from ChIP-Seq and the binding site predic-
tion in the hTFtarget database (http://bioinfo.life.hust.edu.cn/
hTFtarget/) [23], we constructed a regulatory network of TF-
targets for SEGs and visualized it using Cytoscape (version 3.5).

Results
Landscape of SEGs in 34 TCGA cancer types

First, we comprehensively surveyed SEGs that were highly
expressed in single and multiple tissues across 33 cancer types
(Figure 1A), 24 paracancerous tissues from TCGA and 30 normal
tissues from the GTEx, respectively. As a result, we identified
2558 SEGs highly expressed in 33 cancers, and 1075 of them
highly expressed in only one cancer type (Figure 1B, Table S3).
The number of SEGs for each cancer type was markedly different,
indicating the heterogeneity of these cancers. Most cancers
had fewer than 100 SEGs. Some cancers related to the nervous
system (GBM, LGG and PCPG), hematological system (DLBC and
LAML) and reproductive system (TGCT) had more than 100
SEGs, indicating their specialized systems and diseases. We also
detected 4035 SEGs across 24 paracancerous tissues (Figure 1C).
Among these SEGs, 1081 SEGs were in single paracancerous
tissues and GBM (glioblastoma) had the most SEGs in its
paracancerous tissue, whereas several paracancerous tissues,
such as KIRC, STAD and UCEC, had no SEGs highly expressed
in their single tissues. Furthermore, we identified 3281 SEGs
across 30 GTEx normal tissues and 1601 SEGs in single normal
tissues (Figure 1D). Among these tissues, testis tissue had the
most SEGs.

Identification of cSEGs as diagnosis markers in solid
tumors

cSEGs are defined as SEGs specifically and highly expressed in
only a single cancer, but not highly expressed in other cancers,
paracancerous tissues or normal tissues (Figure 2A). Because 19
TCGA cancer types were matched with 15 normal tissues in the
GTEx, we focused on the 19 cancer types. In 15 solid tumors, we
identified 233 cSEGs that may serve as diagnostic biomarkers
(Figure 2B). To obtain cancer biomarkers with high specificity
and sensitivity, we calculated the frequency of highly expressed
samples to measure the sensitivity of cSEGs. Interestingly, three
cSEGs (OGDH, MUDENG and ACO2) with the highest high expres-
sion frequency (>80%) were identified in KICH (kidney cancer)
(Figure 2B). In addition, 43 cSEGs with high expression frequency
(>70%) were identified and 38 of these cSEGs belonged to KICH.
Conversely, very few cSEGs (less than 5) with a frequency of high
expression of >50% were detected in seven cancer types, e.g.,
EFNA1, AKR1C3 and GPC3 in LIHC (liver cancer; Figure 2B).

To explore whether the identified cSEGs were highly specific
and had the potential to be diagnostic biomarkers, we compared
our identified BRCA (breast cancer) cSEGs (GATA3 and XBP1) with
three established biomarkers (ESR1, PGP and ERBB2) in BRCA
[24]. GATA3 and XBP1 have a frequency of high expression of
higher than 60% in BRCA. However, except for ESR1, the three
established makers were not specific in BRCA (Figure S1). Fur-
thermore, although ESR1 was specifically expressed in BRCA
cancer tissue, it was also highly expressed in UCEC paracancer-
ous tissue, and thus we did not select ESR1 as a cSEG for BRCA.

Identification of diagnostic markers for early-stage
cancers

Early-stage cancer detection appears to be a key approach to
reduce cancer mortality; most cancer deaths are preventable
through early detection [25]. To detect markers for early-stage
cancers, we divided the cancer data into four stages from T1 to T4
based on sample clinical information. We then identified SEGs
for each cancer stage. As a result, we obtained 560 SEGs across
21 TCGA cancer types at T1 stage (Figure 3A). Among these SEGs,
233 cSEGs in the T1 stage had a high expression frequency
(>50%) across 17 cancers (Figure 3B, Table S4), which may allow
the use of these cSEGs as early-stage diagnostic biomarkers.
Notably, KICH had 79 T1 stage markers with high expression
frequency (>50%). In addition, the high expression frequency of
ACO2 and MUDENG in KICH was higher than 90%, indicating their
high sensitivity in detection.

Two-gene markers in cancer diagnosis

Application of the two-gene combination has great potential
as a biomarker in cancer diagnosis and prognosis prediction.
A low frequency of a single cSEG may lead to a high miss
rate (low sensitivity). Thus, we conducted a two-gene combina-
tion strategy to identify biomarkers with higher sensitivity in
multiple cancer types. The two-gene markers with the highest
frequency across 13 cancer types are listed in Table 1. Compared
with other cancers, KICH shows the highest high expression
frequency at 97% in 4 two-gene combinations (ACO2–ARSJ, ACO2–
CLNK, DLAT–OGDH and ELOVL7–PPDPF). Moreover, we detected
two-gene markers in the T1 stage across 11 cancers (Table S5).
The two-gene markers with the highest high expression fre-
quency in each cancer are listed in Table 2. It is noteworthy that
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Figure 1. Landscape of SEG distribution in cancers and paracancerous and normal tissues. (A) Abbreviations and full names of 33 TCGA cancer types. (B) Numbers of

SEGs in 33 cancers. (C) SEG numbers in 24 paracancerous tissues. (D) Numbers of SEGs in 30 normal tissues. Blue and red bars denote SEGs in multiple tissues and

single tissues, respectively.

16 combinations in COAD, 87 combinations in READ and 215
combinations in KICH (listed in Table S5) reached the highest
possible high expression frequency (100%, Table S5). These two-
gene combinations have high sensitivity and specificity for early
diagnosis of cancer.

SEGs as potential targets of cancer drug repurposing

Most drugs function by targeting proteins and modulating their
activities in a tissue-specific manner, and hundreds of genes are
the targets of US FDA-approved drugs [26]. To identify potential
drug repurposing based on the SEGs in Figure 1A, we compared
targets of US FDA-approved anticancer drugs from DrugBank
with our SEGs. As a result, we identified 13 SEGs in 7 cancer
types that were targets of dozens of drugs (Figure 4). About half
of these drugs were used in the corresponding cancer of that
SEG (drugs in green in Figure 4). The other half of the drugs were

developed for other cancers, which were not SEG-related cancers
(drugs in orange in Figure 4). Thus, we inferred that these drugs
may be repurposed to the cancer with the SEG as a drug target.
For example, Alemtuzumab is used in the treatment of chronic
lymphocytic leukemia [27]; however, its target CD52 is a SEG in
DLBC (lymphoma), a leukemia-related disease. Ziv-aflibercept
(also known as Aflibercept) is used in therapy against metastatic
colorectal cancer [28], but its target VEGFB is a SEG of KICH and
UVM. Thus, alemtuzumab and ziv-aflibercept are examples of
drugs that can potentially be repurposed to treat other cancers.

Regulatory network for SEGs and prognosis analysis for
cSEGs

Given that TFs play pivotal roles in cancer initiation and progress
[29], we identified TFs and their targets from SEGs, and we
conducted regulatory network analysis to reveal how SEGs were

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/2175/5669857 by guest on 19 April 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz131#supplementary-data


Cancer diagnostic biomarker identification 2179

Figure 2. cSEG screening and distribution in 15 cancers. (A) Flow chart of screening cSEGs. (B) Numbers and frequency pattern of cSEGs in 15 cancers. Green, yellow,

blue and red bars denote cSEGs with a frequency of high expression higher than 50%, 60%, 70% and 80%, respectively. Gene names with background colors are the

corresponding genes with the same color in the bars below.

Figure 3. Overview of SEG distribution in 21 T1 stage cancers and markers selected with high frequency in 17 T1 stage cancers. (A) Numbers of SEGs in 21 T1 stage

cancers. (B) Numbers of cSEGs and their frequency of high expression (>50%) in 17 T1 stage cancers. Green, yellow, blue, red and dark blue bars denote SEGs with a

frequency of high expression higher than 50%, 60%, 70%, 80% and 90%, respectively. Gene names with background colors are the corresponding genes with the same

color in the bars below.
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Table 1. The two-gene combinations with highest frequency as cSEG markers in 13 cancers

Cancer Gene 1 Gene 1 frequency Gene 2 Gene 2 frequency Co-frequency P-value of
two-gene
combination

BLCA FER1L4 54% SHISA5 66% 75% 5.07E-10
BRCA GALNT6 58% GATA3 63% 75% 3.44E-17
CESC KLHDC7B 55% TCAM1P 61% 84% 1.19E-14
CHOL ARRDC2 61% ANXA9 64% 81% 0.12
CHOL ARRDC2 61% GMNN 58% 81% 0.07
CHOL ARRDC2 61% SLFN13 64% 81% 0.12
HNSC LAMB3 60% ALOXE3 56% 80% 1.10E-16
HNSC LAMB3 60% TM4SF19 56% 80% 1.10E-16
HNSC DNAH17 54% ITGA6 61% 80% 6.16E-19
KICH ACO2 82% ARSJ 58% 97% 2.08E-07
KICH ACO2 82% CLNK 68% 97% 0.000036
KICH DLAT 70% OGDH 83% 97% 0.000072
KICH ELOVL7 67% PPDPF 70% 97% 0.000018
KIRC NRP1 69% FBXO17 70% 89% 1.81E-15
KIRC NRP1 69% HMOX1 66% 89% 4.23E-19
KIRC NRP1 69% SPAG4 67% 89% 1.05E-17
KIRC FLT1 63% SPAG4 67% 89% 5.16E-23
KIRP C2orf18 65% CREB5 62% 92% 1.07E-17
KIRP C2orf18 65% ITM2B 74% 92% 3.46E-15
LIHC AKR1C3 60% EFNA1 65% 83% 6.12E-12
PRAD ERGIC1 79% CREB3L1 67% 91% 4.22E-20
PRAD ERGIC1 79% DNAH8 59% 91% 6.43E-31
SKCM ABL2 65% HMCN1 58% 83% 3.99E-17
THCA S100A13 73% SLC17A5 67% 88% 2.32E-15
THCA S100A13 73% LTBP3 66% 88% 1.81E-16
UCEC DLX5 56% EYA2 58% 79% 5.64E-06
UCEC DLX5 56% CAPS 58% 79% 5.64E-06

P-value denotes the significance of two-gene combination compared with the Gene 1 or Gene 2 by Chi-square test. Co-frequency denotes the frequency of high
expression of one of the two genes in the cancer type.

regulated. In total, 24 cancers had TFs as SEGs. We selected six
cancer types and exhibit their regulatory networks in Figure 5.
Among these SEGs, some TFs are specific pivotal genes in can-
cers, such as TP63 in LUSC [30] and GATA3 in BRCA [31]. Some
TFs are related to cancer prognosis, such as GATA2 in KICH [32]
and CDX2 in COAD [33]. KICH and GBM had more SEGs, so their
specific TF regulatory networks were also more complex than
other cancers.

To evaluate the prognostic effects of cSEGs in cancer, we used
the Kaplan–Meier method in GSCALite [14] to identify prognosis-
related genes in all cSEGs. We identified 39 cSEGs as prognosis-
related genes across 7 cancer types (BRCA, KICH, KIRC, KIRP,
PCPG, THCA and UCEC), and most of them were in 3 kidney
cancer subtypes (Table S6). Survival curves of eight prognosis
prediction markers with high expression frequency are shown
in Figure S2.

Discussion
Although diagnostic cancer biomarkers are playing important
roles in personalized oncological patient care, the number of
biomarkers in clinical use is pitifully small [34]. One reason is
that most tumor markers in one cancer type can also exist
in other cancer types, and thus there is a lack of specificity.
Therefore, in this study, we screened cSEGs with high sensitivity
and specificity that are essential for cancer detection, especially
at the early stage. Although we identified many novel cSEGs for
some cancers, some have been reported to evolve during cancer

progression. For instance, GPC3 is a cSEG highly expressed in
LIHC in our work, and it was reported that its upregulation is
important to both malignant transformation and tumorigenesis
in liver cancer [35]. In addition, NDUFA4L2 was identified as
highly expressed in KIRC, which confirmed it as a risk factor
for clear cell–renal cell carcinoma progression and mortality
[36]. These cSEGs were considered diagnostic tools, including for
biopsy and laboratory tests, which still miss many cancer types
such as BRAC [37], COAD [38] and KIRC [39]. It is worth men-
tioning that we identified two-gene markers with much higher
sensitivity and specificity, which may provide better diagnostic
indicators for early clinical diagnosis. Besides, we evaluated
the power of several cSEGs on multiple independent datasets
of cancers including PAAD [40] and KIRC [41] (Figure S3). The
tendency of expression levels of cSEGs appeared dramatically
differences between tumor and normal samples, such as TCN1
in PAAD and KRBA1 in KIRC, etc. (Figure S3). We should note
that the frequency of TCN1 in PAAD, KRBA1, PLVAP and VEGFA
in KIRC validation datasets is 83%, 83%, 99%, 85% and 100%,
respectively, which suggest their higher frequencies in valuation
datasets than those in TCGA datasets, which were 54%, 65%, 63%
and 65%, respectively. In addition, several cSEGs and their com-
binations showed similar expression profiles and discriminatory
powers on independent datasets. For example, the co-frequency
of the two-gene combination of AKRIC3 and EFNA1 on LIHC [42]
independent dataset (86%) was consistent with our finding on
TCGA and GTEx datasets (83%), suggesting that our results are
convincing.
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Figure 4. Targets of US FDA-approved drugs in SEGs of seven cancers. Red, cancers; blue: targets of US FDA-approved drugs as SEGs of that cancer; green, a drug that

was tested in that cancer; orange, a drug that was developed for cancers other than that cancer.

Exploring systematic approaches through various molecu-
lar features to find drugs for cancers is crucial. Among these
features, gene expression has been the most widely used [43].
Drug repurposing is a very good approach to adapt existing drugs
to different diseases. Moreover, molecular drugs/inhibitors with
high selective target genes reduce side effects [44]. Our strategy
to identify cSEGs with high specificity as drug targets may be
suitable as a complementary method to the traditional target-
based approach.

Nevertheless, we should note the limitation of cSEGs, which
is that we detected cSEGs based on mRNA expression here, but
not the protein level. Therefore, a further detection of protein
expression, such as flow cytometry, may be necessary. In addi-
tion, we calculated the expression of cSEGs in tumor tissue sites

rather than in peripheral blood, and biopsies of tumor sites are
traumatic. Finally, we did not validate those biomarkers in vivo
and in vitro, so experimental validation may warrant further
investigation.

In conclusion, these findings have important implications
for future practice. First, we selected cancer markers from
tissue-specific genes because of the lack of current cancer
markers. Moreover, because of the lack of sensitivity of single
markers, we also selected two-gene markers to improve
sensitivity and accuracy. Finally, we obtained a number of
early diagnosis markers with high specificity and sensitiv-
ity to some cancers. These results will be very useful in
validating the diagnostic and therapeutic biomarkers for
cancers.
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Figure 5. Regulatory network for specifically expressed TFs in six cancers and the target genes from SEGs. Red triangles, TF; circles, target genes; red: nonprognosis-

related TFs; light blue triangle: prognosis-related TFs; orange, drug-target related target genes; blue: nonprognosis-related target genes; green: prognosis-related target

genes.
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Key Points
• We identified SEGs that were highly expressed in single
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Table 2. The two-gene combinations with highest frequency in T1
stage cancers for early diagnosis

Cancer Gene 1 Gene 2 Co-frequency

BLCA SPOCD1 ALOX5 100%
BLCA SPOCD1 C10orf116 100%
BLCA SPOCD1 CARD11 100%
BLCA SPOCD1 FER1L4 100%
BLCA SPOCD1 LOC284837 100%
BLCA SPOCD1 LRP11 100%
BLCA SPOCD1 MYCL1 100%
BLCA SPOCD1 PM20D1 100%
BLCA SPOCD1 PROM2 100%
BLCA SPOCD1 PVRL1 100%
BLCA SPOCD1 SNCG 100%
BLCA SPOCD1 TINAGL1 100%
BLCA SPOCD1 ZNF626 100%
BRCA PRLR ZG16B 79%
CESC CDKN2A SMC1B 89%
CHOL CLDN10 TMEM156 89%
CHOL CLDN10 UCA1 89%
CHOL CLDN10 UNC13D 89%
CHOL IL8 UNC13D 89%
COAD ACSL5 GPX2 100%
COAD ACSL5 OLFM4 100%
ESCA TM4SF20 DUOX2 74%
ESCA TM4SF20 REG4 74%
HNSC LY6K PVRL1 94%
KIRC BTNL9 HMOX1 89%
KIRC CDH6 GPR4 89%
KIRC HMOX1 FLT1 89%
KIRC HMOX1 GPR4 89%
KIRP LRRK2 CRYAB 88%
KIRP LRRK2 GALNT14 88%
LIHC CDHR5 TMEM37 88%
LUSC DAPL1 PVRL1 76%
PAAD CHST4 TMPRSS3 86%
PAAD CLDN10 DUOX2 86%
PAAD CLDN10 TMPRSS3 86%
SKCM AP1S2 VGF 90%
SKCM APOD RGS20 90%
THCA DAPL1 DIRAS3 90%

Co-frequency denotes the frequency of high expression of one of the two
genes in the cancer type. Note: the complete list of two-gene combinations,
including 87 combinations in READ and 215 combinations in KICH, appears in
Supplementary Table S5.

• We identified 233 cSEGs with high specificity and sen-
sitivity as potential markers across 15 solid tumors.

• We detected cSEGs as early cancer-sensitive markers in
the T1 stage with a frequency >50% across 17 cancers,
and we obtained two-gene markers to increase sensi-
tivity.

• We performed drug analysis, prognostic analysis and
transcriptional regulatory network analysis based on
cSEGs in various cancers.
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