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Abstract

Humans have coexisted with pathogenic microorganisms throughout its history of evolution. We have never halted the
exploration of pathogenic microorganisms. With the improvement of genome-sequencing technology and the continuous
reduction of sequencing costs, an increasing number of complete genome sequences of pathogenic microorganisms have
become available. Genome annotation of this massive sequence information has become a daunting task in biological
research. This paper summarizes the approaches to the genome annotation of pathogenic microorganisms and the
available popular genome annotation tools for prokaryotes, eukaryotes and viruses. Furthermore, real-world comparisons of
different annotation tools using 12 genomes from prokaryotes, eukaryotes and viruses were conducted. Current challenges
and problems were also discussed.
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Introduction

As the earliest known life forms, microorganisms or microbes
have been developing on Earth for approximately four billion
years [1–3]. Since modern humans (Homo sapiens) appeared
approximately 300 000 years ago [4], microorganisms have
interacted with humans and secretly lived together on Earth
[5]. Until the first century B.C., our ancestors speculated that
some unseen creatures possibly caused serious diseases [6].
In the late 1880s, disease-causing microorganisms, namely,
pathogens, were gradually established and studied by scientists.
Since then, scientists have been studying why and how these
microorganisms, including bacteria, fungi, viruses and parasites,
make us sick [7]. To date, approximately 1400 species of
human pathogenic microorganisms have been identified. Of
these, almost 90 were first reported in humans since 1980 [8].
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Although we have accumulated much useful understanding of
the emergence, evolution, pandemic and pathogenic mechanism
of pathogenic microorganisms, there are still some crucial
gaps in our knowledge. For instance, we still know very
little about the diversity of pathogens that humans may
be exposed to. The prior conditions for determining which
pathogens can infect humans and estimating these pathogens’
transmission potential are more challenging [9, 10]. Since
the first complete genome sequence of the microorganism
Haemophilus influenza was published in 1995 [11], the whole-
genome era’s arrival has brought a new dawn for us to fill these
gaps. Over the past two decades, the genomes of hundreds
of eukaryotes and hundreds of thousands of prokaryotes,
including pathogenic microorganisms, have been sequenced.
Moreover, many thousands of complete genomes are coming
soon [12]. Genome annotation has become a critical element for

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/2/845/6127450 by guest on 20 April 2024

https://academic.oup.com/
http://orcid.org/0000-0002-5264-1382


846 Dong et al.

Figure 1. Genome annotation strategies.

us to understand genomic biology, especially the genomes of
pathogenic microorganisms. Over the years of efforts, genome
annotation has flourished. Today, we know not only protein-
coding genes but also many other functional elements, such as
promoters, enhancers, noncoding RNAs and DNA methylation
sites.

Approaches to genome annotation of
pathogenic microorganisms
Since the first complete genome was sequenced 25 years ago
[11], people have been trying to use various approaches to anno-
tate the genomes more completely and accurately. Generally,
genome annotation mainly consists of three parts: structural
gene annotation, functional gene annotation and noncoding
sequence annotation (Figure 1). Each part contains many differ-
ent methods for annotations.

Structural gene annotation identifies the coordinates of
genes in a genome. Although pathogenic microorganisms cover
a wide range of species, including eukaryotes, prokaryotes and
viruses, their structural gene annotations generally fall into
similar categories as follows: homology-based gene prediction
and ab initio gene prediction. For homology-based structural
gene annotation, the sequences of proteins, transcripts, genes
or even genomes from related species or databases are aligned
to the genome to be annotated [13–16]. Commonly, methods
based on BLAST [17] or hidden Markov models (HMMs) [18] are
used for alignment. BLAST is mainly used to find homologs
based on whole sequence alignment, while HMM is mainly used
to find remote homologs based on domain structures. If the
selected reference and the genome to be annotated are closely
related, such as belonging to the same species, BLAST is often
selected. Conversely, HMM is often selected if they have a distant
relationship. As the output, the homologs and their coordinates
in the genome are identified. Boundaries between introns and
exons are also found. Ab initio structural gene annotation is a
method that uses statistical models to identify gene features,
such as exons, introns, start codons and stop codons. The
process of ab initio structural gene annotation usually includes
the following two components: model parameter estimation
and gene prediction. For conventional ab initio methods, model

parameter estimation requires constructing training sets of
known gene structures. Transcriptome sequences, expressed
sequence tags (EST), gene sequences or protein sequences from

closely or distantly related species can be used as an initial
point to estimate the parameters of the ab initio statistical model

[19–21]. Other ab initio methods use self-training algorithms for
model parameter estimation, which does not require a user

to generate or provide any training set [22–24]. Regardless of
the methods used for model parameter estimation, the gene
prediction model based on these parameters can identify the
gene coordinates in a new genome. In short, homology-based
and ab initio gene predictions have advantages and limitations.
Furthermore, these predictions are applied in structural gene
annotation of various pathogenic bacteria, viruses, fungi and
protozoa. In reality, many pipelines for genome annotation
use the combination of the two categories to improve genome
annotation’s accuracy and efficiency [13, 15, 25–27].

Functional gene annotation predicts gene functions, namely,
assigns gene (family) names and attributes. Once the genes in
a new genome are obtained, it is natural that we want to know
their functions. Similar to structural gene annotation, functional
gene annotation also has two strategies in principle, i.e. homol-
ogy based and ab initio. However, almost all genome annota-
tion pipelines adopt the homology-based strategy for functional
gene annotation [13, 15, 20, 26–33], although some ab initio algo-
rithms for gene function prediction have been reported [34–36].
Generally, based on BLAST or HMM, the predicted proteins are
searched against a hierarchical collection of protein homologs,
protein families and domain architectures from various public
databases, such as GenBank, SwissProt and Pfam, among others.
Then, the hit name with the highest-precedence evidence is
assigned to the proteins.

Although the core feature of genome annotation has been
gene prediction, many reports about functional elements in the
genome’s noncoding region have prompted efforts to expand the
genome annotation to noncoding sequences. Currently, many
genome annotation pipelines include the annotation of non-
coding functional elements, such as promoters, enhancers, non-
coding RNAs and transposable elements [15, 30–32]. In these
pipelines, noncoding sequences are annotated by special pro-
grams to find various noncoding functional elements. Generally,
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Figure 2. Flowchart of a general guideline for choosing annotation tools.

these programs also employ a homology-based or ab initio strat-
egy to identify distinctive noncoding functional elements in the
genome [37–40].

In addition, for eukaryotic pathogens such as fungi and
protozoa, sometimes the mitochondrial genome needs to be
annotated. Unlike the nuclear genome, the mitochondrial
genome uses a different codon translation table, which
brings unique annotation challenges [13]. The current genome
annotation pipelines generally do not include mitochondrial
genome annotations. A researcher may have to employ separate
annotation programs or pipelines for this task [41, 42].

Genome annotation tools for pathogenic
microorganisms
For the genome annotation of pathogenic microorganisms,
many popular tools or pipelines can be selected, which can be
divided into two types: stand-alone software and web-based
systems. Generally, most stand-alone software tools require
the command line to run, which requires the users to have
some computer skills of the command line and Linux operating
system. In contrast, the web-based system does not require
users to have any specific computer skills. Users usually only
need to upload their data files in the specified format onto the
website. The genome annotation pipeline in the background
will automatically analyze the data and return the results to the
users. However, the stand-alone version of the software usually
runs much faster than the web-based system. A flowchart of
the general guideline is provided to help new researchers in the
field (Figure 2).

For the genome annotation of prokaryotic pathogens, popular
tools include RAST [31], RASTtk [43], DOE-JGI Microbial Genome
Annotation Pipeline (MGAP) [44], GeneSAS [45], Prokka [30] and
PGAP [15], among others. RAST (https://rast.nmpdr.org/), as
a web-based system of prokaryotic genome annotation, was
published in 2008 [31]. To date, RAST has annotated over 60 000

distinct genomes by over 12 000 users [46]. Using this server,
protein-encoding, rRNA and tRNA gene coordinates and their
functions can be predicted. Additionally, the metabolic network
can be reconstructed based on the predicted information.
Moreover, the annotated genome can be browsed in the SEED
environment [47]. In 2015, a modular and extensible version
of RAST, namely, the RAST tool kit (RASTtk), was released [43].
RASTtk is available not only as embedded options on the RAST
web server but also as a stand-alone tool to be installed and
run locally (https://github.com/TheSEED/RASTtk-Distribution/
releases/). The DOE-JGI MGAP is also a web-based system for
bacterial and archaeal genome annotation (https://gold.jgi.doe.
gov/index). MGAP can annotate protein-encoding and RNA
genes, gene functions and CRISPR elements in a genome. The
users need first to register a project and submit their assembled
nucleotide sequence datasets to the Genomes Online Database
(GOLD), and then these datasets are annotated by MGAP [44].
GenSAS (https://www.gensas.org/) is another online platform
that can be used for prokaryotic genome annotation [45]. The
platform provides a variety of optional tools for structural

gene annotation, functional gene annotation and genome
visualization. Prokka (https://github.com/tseemann/prokka) is
a popular stand-alone tool for prokaryotic genome annotation
[30]. Prokka can quickly annotate a bacterial genome on a
desktop computer, and it can annotate protein-coding genes,
RNA genes and their functions and provide standard-compliant
output files for genome browsers. Many integrated genome
analysis tools, such as ASA3P [48], TORMES [49] and DFAST [50],
directly embed Prokka as their genome annotation function.
PGAP (https://github.com/ncbi/pgap) is another stand-alone
pipeline for genome annotation of prokaryotes [15]. NCBI has
used PGAP for prokaryotic genome annotation (https://www.
ncbi.nlm.nih.gov/genome/annotation_prok/). Coding genes,
noncoding genes, gene function and CRISPR loci can be predicted
with this pipeline, and genes are predicted by the combination
of homology-based and ab initio methods.
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Because of the complexity of eukaryotic genomes [51], many
eukaryotic genome annotation tools, such as PASA [52], Augustus
[53], SNAP [54], EVidenceModeler (EVM) [25], MAKER [55], BRAKER
[56] and GeneMark-EP+ [57], only focus on structural annotation
of genomes. Only a small number of eukaryotic genome annota-
tion tools can perform functional annotation. GenSAS (https://
www.gensas.org/) is a web server that can perform structural
annotation, functional annotation and visualization [45]. Mul-
tiple gene prediction tools, such as Augustus, SNAP and EVM,
can be chosen for genome structural annotation in GenSAS. For
functional annotation in GenSAS, BLAST+ [58] and Diamond [59]
are used to search public databases, such as NCBI RefSeq [60],
SwissProt [61] and TrEMBL [61], or any protein files provided
by users. Companion is a web server (http://companion.sange
r.ac.uk) for the annotation of parasite genomes [33]. A stand-
alone version of Companion (https://github.com/sanger-patho
gens/companion) is also available for large genome annotation
and user confidentiality. The tool performs gene finding, func-
tional annotation, pseudogene detection, comparative analyses
based on reference genomes and visualization of annotation and
analysis results. For the structural annotation of the genome in
the tool, Augustus, SNAP and RATT [62] are used. For functional
annotation of the genome in the tool, the OrthoMCL [63] and
Pfam [64] databases are searched for homologs by BLAST+ and
HMMER [65]. GAAP (http://gaap.hallym.ac.kr/) is a stand-alone
pipeline for eukaryotic genome assembly and annotation [66].
The pipeline can directly accept raw DNA/RNA data from the
NGS platform and assemble them into the genome and tran-
scriptome. Then, the assembled genome is annotated for struc-
ture and function by the pipeline. Augustus, SNAP, Maker, EVM
and PASA are combined for genome structural annotation in the
pipeline. For the functional annotation portion of the pipeline,
commercial software Blast2GO [67] and some public databases,
such as NCBI, Pfam, Gene Ontology [68] and KEGG Pathway [69],
are used to perform the function. genome annotator light (GAL)
(https://hub.docker.com/u/cglabiicb/) is a docker-based package
for genome structural and functional annotations for eukaryotes
and prokaryotes [70].

Unlike prokaryotic and eukaryotic genome annotation tools,
viral genome annotation tools have appeared only relatively
recently, as most of them have been published in the past few
years. Viral genome annotation system (http://cefg.uestc.cn/vga
s/) provides two versions (stand-alone and web server) for viral
genome annotation [29], and it uses an ab initio method improved
from ZCURVE_V [71] for gene prediction. The resulting predicted
genes are aligned with the SwissProt database by BLAST+ for
functional annotation. Viral Annotation DefineR (VADR, https://
github.com/nawrockie/vadr) is a reference-based tool for viral
genome annotation, and it was developed by NCBI and inte-
grated into GenBank for viral submissions [16]. By searching
RefSeq, an appropriate reference is identified for the genome to
be annotated. The genes and their functions are predicted based
on the mapping between the reference and the target genome.
Similarly, VAPiD [28] and VIGOR [72] are also reference-based
tools and provide the capability for genome submissions to NCBI
GenBank.

Performance test of genome annotation tools
To compare the performances of these genome annotation
tools, 12 genomes with complete annotation information from
prokaryotes, eukaryotes and viruses were selected to test
and compare the above genome annotation tools (Table 1).
Among them, Clostridioides difficile 630, Klebsiella pneumoniae

subsp. pneumoniae HS11286, Neisseria gonorrhoeae FA 1090 and
Staphylococcus aureus subsp. aureus NCTC 8325 are important
bacterial pathogens from prokaryotes. Plasmodium falciparum
3D7, Toxoplasma gondii ME49 and Babesia microti strain R.I.
are eukaryotic parasites. Aspergillus fumigatus Af293 is a
fungal pathogen. SARS-CoV-2 (COVID-19), Dengue virus 2
Thailand/16681/84, Hepatitis C virus subtype 1a and Norwalk
virus are important viral pathogens. These genomes were used
to test prokaryotic, eukaryotic and viral genome annotation
tools.

For the testing of prokaryotic genome annotation tools,
PROKKA, RAST, RASTtk, GeneSAS and PGAP were selected to
annotate the four prokaryotic genomes (Table 2 and Table 3).
All these tools showed high accuracy of genome annotation.
For most genomes, the annotation accuracy of these tools
reached approximately 90%. Of these tools, PGAP showed the
best annotation performance. For example, for the genomes
of Clostridioides difficile 630, Neisseria gonorrhoeae FA 1090 and
Staphylococcus aureus subsp. aureus NCTC 8325, PGAP predicted
the most genes (96.39%, 94.42% and 90.78%, respectively) that
were completely identical to the reference annotation. Although
PROKKA predicted the fewest genes identical to the reference
annotation in most genomes, over 80% of the genes from the
reference annotation were still detected by PROKKA. To further
compare the similarity between the reference annotation and
the result from each tested tool, the revised similarity score from
BEACON [73] was used as follows:

SimilarityScore = Genes with same start position
Totalx + Totalz

∗ 2 ∗ 100

where Totalx and Totalz are the total numbers of genes from
the tested tool and the reference annotation, respectively. The
similarity scores indicated that these tools’ annotations had
high similarity with the reference annotation for most genomes.
For example, for the genomes of Clostridioides difficile 630, Neis-
seria gonorrhoeae FA 1090 and Staphylococcus aureus subsp. aureus
NCTC 8325, the similarity scores of PGAP reached 98.28%, 96.56%
and 95.16%, respectively. The similarity scores of RAST and
RASTtk were also over 90% for the three genomes. Although
the similarity score of PGAP in the genome of Klebsiella pneu-
moniae subsp. pneumoniae HS11286 did not exceed 90%, it still
reached 89.93%. For functional annotation, the coding sequences
(CDSs) with functional annotation occupied more than 80% of
the total CDSs in most reference annotations. For most genomes,
PGAP achieved the highest functional annotation similarity rates
using the reference annotations as the gold standard, while
PROKKA had the lowest rates, such as 55.54% in Clostridioides
difficile 630 and 57.58% in Neisseria gonorrhoeae FA 1090. It is
worth noting that the functional annotation in the GeneSAS
webserver was presented in the form of links to other protein
databases and not included in the outputted files. Although
PGAP outperformed in structure and function annotations of
the prokaryotic genome, its running was the slowest and its
requirement for the computing performance of a computer was
the highest. In our test, PGAP simply could not run on a computer
with 8 CPU cores and 15 GiB memory. Even on a computer with
16 CPU cores and 376 GiB memory, it still ran more than 5 h. In
contrast, PROKKA and RASTtk only took a few minutes on the
computer with 8 CPU cores and 15 GiB memory.

For the test of eukaryotic genome annotation tools, the
Companion web server, Companion command line, GeneSAS,
GAL and GAAP were selected to annotate the four eukaryotic
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Table 1. Information about selected reference genome annotation

Taxon Species Sources

Prokaryote Clostridioides difficile 630 https://www.ncbi.nlm.nih.gov/genome/?term=Clostridioi
des%20difficile%20630

Klebsiella pneumoniae subsp. pneumoniae HS11286 https://www.ncbi.nlm.nih.gov/genome/?term=Klebsiella+
pneumoniae

Neisseria gonorrhoeae FA 1090 https://www.ncbi.nlm.nih.gov/genome/?term=Neisseria+
gonorrhoeae

Staphylococcus aureus subsp. aureus NCTC 8325 https://www.ncbi.nlm.nih.gov/genome/?term=Staphyloco
ccus+aureus

Eukaryote Plasmodium falciparum 3D7 https://www.ncbi.nlm.nih.gov/genome/33?genome_asse
mbly_id=895506

Toxoplasma gondii ME49 (assembly TGA4) https://www.ncbi.nlm.nih.gov/genome/?term=Toxopla
sma+gondii

Babesia microti strain RI (assembly ASM69194v2) https://www.ncbi.nlm.nih.gov/genome/?term=babesia+
microti

Aspergillus fumigatus Af293 (assembly ASM265v1) https://www.ncbi.nlm.nih.gov/genome/?term=Aspergillu
s+fumigatus

Virus SARS-CoV-2 https://www.ncbi.nlm.nih.gov/sars-cov-2/
Dengue virus 2 Thailand/16681/84 https://www.ncbi.nlm.nih.gov/genome/?term=Dengue+vi

rus
Hepatitis C virus subtype 1a https://www.ncbi.nlm.nih.gov/genome/?term=Hepatitis+

C+virus
Norwalk virus https://www.ncbi.nlm.nih.gov/genome/5619

Table 2. The software selected for the performance test of genome annotation

Applicable object Softwarea Software release type Average running speedb Source

Prokaryotic genome PROKKA Stand alone About 2 min https://github.com/tsee
mann/prokka

RASTtk Stand alone About 4 min https://github.com/The
SEED/RASTtk-Distributio
n/releases/

RAST Web based About 40 min https://rast.nmpdr.org/
GeneSAS_genemarkS Web based Less than 1 h https://www.gensas.org/
PGAP Stand alone About 5 h https://github.com/ncbi/

pgap
Eukaryotic genome Companion_web Web based About 10 h http://companion.sange

r.ac.uk
Companion_cl Stand alone About 15 h https://github.com/sange

r-pathogens/companion
GeneSAS_genemarkES Web based Less than 1 h https://www.gensas.org/
GAL Stand alone About 1 day https://hub.docker.com/u/

cglabiicb/
GAAP Stand alone More than 1 day http://gaap.hallym.ac.kr/

Viral genome VADR Stand alone About 1 min https://github.com/nawro
ckie/vadr

VAPiD Stand alone About 1 min https://github.com/
rcs333/VAPiD

GeneSAS_genemarkS Web based A few minutes https://www.gensas.org/
GeneSAS_glimmer3 Web based A few minutes https://www.gensas.org/

aFor stand-alone software except for PGAP, they are tested at a workstation with 8 CPU cores and 15 GiB memory. Because high-performance computing (at least over
4 GB memory/CPU) is required for PGAP, PGAP is tested at a server with 16 CPU cores, 376 GiB memory.
bThe average of three running times of all related genome annotations.

genomes (Table 2 and Table 4). Although the Companion web
server and its command-line generally performed better on
genome annotation, they could only annotate parasite genomes
and required reference genome annotation from related species.
GeneSAS with the genemarkES method usually performed well
on structural gene annotation for most genomes. However,
GeneSAS did not have functional gene annotation in the output
files. GAL and GAAP generally showed lower annotation accu-

racy for most genomes, but they could annotate any eukaryotic
genome. For GAAP, no functional annotation was tested as a
commercial tool (Blast2GO Cloud) was required. Additionally,
GAAP is not a wrapped-up pipeline, thereby requiring users to
perform all steps separately by themselves. For the running
speed, the Companion web server, Companion command-
line and GAAP required approximately 1 day to complete the
annotation, while GeneSAS completed the annotation in 1 h.
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Table 3. Performance test of prokaryotic genome annotation tools based on four species

Species Software Genes CDS CDS with
function

CDS
without
function

rRNA tRNA Genes
with same
start and
end
position
(%)a

Genes
with same
start
position
(%)

Similarity
scoreb

Clostridioides
difficile

Ref_annotationc 3904 3850 3353
(87.09%)

497
(12.91%)

32 88 / / /

PROKKA 3913 3824 2124
(55.54%)

1700
(44.46%)

/ 89 3547
(90.86%)

3714
(95.13%)

95.02%

RASTtk 4031 3912 2930
(74.90%)

982
(25.10%)

32 87 3557
(91.11%)

3727
(95.47%)

93.94%

RAST 4261 3904 2929
(75.03%)

975
(24.97%)

96 261 3721
(95.31%)

3900
(99.90%)

95.53%

GeneSAS_
genemarkS

4087 3966 / / 32 89 3615
(92.60%)

3755
(96.20%)

93.98%

PGAP 3886 3829 3410
(89.06%)

419
(10.94%)

32 88 3763
(96.39%)

3828
(98.05%)

98.28%

Klebsiella
pneumoniae

Ref_annotation 5868 5779 4085
(70.69%)

1694
(29.31%)

25 62 / / /

PROKKA 5540 5451 3889
(71.34%)

1562
(28.66%)

/ 88 4760
(81.12%)

5100
(86.91%)

89.41%

RASTtk 5844 5731 4826
(84.21%)

905
(15.79%)

25 88 5092
(86.78%)

5394
(91.92%)

92.11%

RAST 6070 5731 4857
(84.75%)

874
(15.25%)

75 264 5216
(88.89%)

5517
(94.02%)

92.43%

GeneSAS_
genemarkS

5544 5544 / / / / 4581
(78.07%)

5018
(85.51%)

87.94%

PGAP 5467 5527 5014
(90.72%)

513
(9.28%)

25 88 4858
(82.79%)

5097
(86.86%)

89.93%

Neisseria
gonorrhoeae

Ref_annotation 2044 1973 1600
(81.09%)

373
(18.91%)

11 54 / / /

PROKKA 2201 2145 1235
(57.58%)

910
(42.42%)

/ 55 1713
(83.81%)

1836
(89.82%)

86.50%

RASTtk 2642 2575 1765
(68.54%)

810
(31.46%)

12 55 1731
(84.69%)

1881
(92.03%)

80.28%

RAST 2776 2575 1783
(69.24%)

792
(30.76%)

36 165 1839
(89.98%)

1999
(97.80%)

82.95%

GeneSAS_
genemarkS

2357 2357 / / / / 1421
(69.52%)

1683
(82.34%)

76.48%

PGAP 2030 1960 1629
(83.11%)

331
(16.89%)

12 55 1930
(94.42%)

1967
(96.23%)

96.56%

Staphylococcus
aureus

Ref_annotation 2842 2767 1238
(44.74%)

1529
(55.26%)

16 59 / / /

PROKKA 2693 2630 1720
(65.40%)

910
(34.60%)

/ 62 2315
(81.46%)

2476
(87.12%)

89.47%

RASTtk 2763 2687 2157
(80.28%)

530
(19.72%)

16 60 2353
(82.79%)

2523
(88.78%)

90.03%

RAST 2915 2687 2157
(80.28%)

530
(19.72%)

48 180 2471
(86.95%)

2647
(93.14%)

91.96%

GeneSAS_
genemarkS

2683 2683 / / / / 2320
(81.63%)

2458
(86.49%)

88.98%

PGAP 2782 2704 2327
(86.06%)

377
(13.94%)

16 59 2580
(90.78%)

2676
(94.16%)

95.16%

aPercentage is equal to (the number of detected identical genes/ref_annotation genes)∗100.
bSimilarityScore = ((Genes with same start position)/(Totalx + Totalz))∗2∗100. Totalx and Totalz are the total number of genes in the software annotation and reference
annotation. The function is from BEACON (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539851/).
cref_annotation means the reference annotation. It is from NCBI RefSeq.

Another thing to note is that all tested tools showed
extremely low annotation accuracy for T. gondii ME49. According
to the NCBI genome assembly information, the genome dataset
contained over 2000 scaffolds, except for 15 chromosomes and
plasmids (Table S1). Therefore, we hypothesized that the reason

for the low annotation accuracy of all tested tools might be the
incomplete assembly of the genome. To verify this hypothesis,
we selected another strain of T. gondii (RH-88), which had a more
complete genome assembly, to test all the tools. The annotation
results showed that these tools had higher annotation accuracy
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Table 4. Performance test of eukaryotic genome annotation tools based on four species

Species Software Genes CDS CDS with
function

CDS
without
function

rRNA tRNA Genes
with same
start and
end
position
(%)a

Genes
with same
start
position

Similarity
scoreb

Plasmodium
falciparum

Ref_annotationc 5457 5354 3616
(67.54%)

1738
(32.46%)

28 45 / / /

Companion_web 5196 5130 3072
(59.89%)

2058
(40.11%)

14 47 5009
(91.80%)

5027
(92.12%)

94.38%

Companion_cl 4521 4392 2672
(60.84%)

1720
(39.16%)

19 46 4317
(79.11%)

4345
(79.62)

87.09%

GeneSAS_
genemarkES

5184 5108 / / 14 62 3929
(72.00%)

4388
(80.41%)

82.47%

GAL 1706 1706 1362
(79.84%)

344
(20.16%)

/ / 323
(5.92%)

753
(13.80%)

21.02%

GAAP 5377 5377 / d / / / 2799
(51.30%)

3657
(67.01%)

67.51%

Toxoplasma
gondii

Ref_annotation 8925 8292 4008
(48.34%)

4284
(51.66%)

424 183 / / /

Companion_web 4996 4488 2441 508 301 193 1639
(18.36%)

1976
(22.14%)

28.39%

Companion_cl 11 297 10 520 2151
(20.45%)

8369
(79.55%)

566 191 1067
(12.06%)

1488
(16.67%)

14.72%

GeneSAS_
genemarkES

/ / / / / / / / /

GAL 34 288 34 288 27 368
(79.82%)

6920
(20.18%)

/ / 116
(1.30%)

796
(8.92%)

3.68%

GAAP 26 204 26 204 / / / / 96 (1.08%) 545
(6.11%)

3.10%

Babesia
microti

Ref_annotation 3685 3567 2335
(65.46%)

1232
(34.54%)

16 68 / / /

Companion_web 3151 3075 1 (0.03%) 3074
(99.97%)

8 64 2262
(61.38%)

2642
(71.70%)

77.30%

Companion_cl 2655 2572 1474
(57.31%)

1098
(42.69%)

8 63 2461
(66.78%)

2507
(68.03%)

79.09%

GeneSAS_
genemarkES

3066 3066 / / / / 2427
(65.86%)

2740
(74.36%)

81.17%

GAL 2104 2104 2031
(96.53%)

73 (3.5%) / / 710
(19.27%)

1200
(32.56%)

41.46%

GAAP 1712 1712 / / / / 466
(12.65%)

852
(23.12%)

31.57%

Aspergillus
fumigatus

Ref_annotation 9859 9630 6977
(72.45%)

2653
(27.55%)

/ 229 / / /

Companion_web / / / / / / / / /
Companion_cl / / / / / / / / /
GeneSAS_
genemarkES

9706 9706 / / / / 6147
(62.35%)

7424
(75.30%)

75.89%

GAL 8978 8978 8623
(96.05%)

355 (4%) / / 6150
(62.38%)

7250
(73.54%)

76.98%

GAAP 8681 8681 / / / / 5908
(59.92%)

7036
(71.37%)

75.90%

aPercentage is equal to (genes with same start and end position/Ref_annotation genes)∗100.
bSimilarityScore = ((genes with same start position)/(Totalx + Totalz))∗2∗100. Totalx and Totalz are the total numbers of genes in the software annotation and reference
annotation. The function is from BEACON (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539851/).
cref_annotation means the reference annotation. It is from NCBI RefSeq.
dThe blank is here because the commercial tool CloudBlast is required for functional annotation.

for strain RH-88 than strain ME49 (Table S2), supporting our
hypothesis.

VADR, VAPiD and GeneSAS were selected to annotate the
four viral genomes (Table 2 and Table 5). Of these tools, only
VADR included the reference model of SARS-CoV-2. To make an
unbiased comparison among these tools, the reference model of

SARS-CoV-2 was removed from VADR. Because VADR’s default
reference models only include Flaviviridae and Caliciviridae, as
a result, it cannot find a reference meeting the similarity stan-
dard for homology-based annotation of SARS-CoV-2. Although
users could build their own reference model for specific genome
annotation, only RefSeq genomes are allowed to be used, and the
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Table 5. Performance test of viral genome annotation tools based on four species

Species Software Genes CDS CDS with
function

CDS
without
function

Genes with
same start
and end
position
(%)a

Genes with
same start
position

Similarity
scoreb

SARS-CoV-2 Ref_annotationc 11 13 4 (30.77%) 9 (69.23%) / / /
VADRd / / / / / / /
VAPiD 10 10 4 (40.00%) 6 (60.00%) 9 (81.82%%) 9 (81.82%) 86%
GeneSAS_genemarkS 9 9 / / 6 (54.55%) 7 (63.64%) 61%
GeneSAS_glimmer3 12 12 / / 8 (72.73%) 9 (81.82%) 78%

Dengue virus Ref_annotation 1 1 1 0 / / /
VADR 1 1 1 0 1 (100%) 1 (100%) 100%
VAPiD 1 1 1 0 1 (100%) 1 (100%) 100%
GeneSAS_genemarkS 1 1 / / 1 (100%) 1 (100%) 100%
GeneSAS_glimmer3 2 2 / / 1 (100%) 1 (100%) 66.67%

Hepacivirus C Ref_annotation 1 3 3 0 / / /
VADR 1 3 3 0 1 (100%) 1 (100%) 100%
VAPiD 1 3 3 0 1 (100%) 1 (100%) 100%
GeneSAS_genemarkS 2 2 / / 0 (0%) 0 (0%) 0%
GeneSAS_glimmer3 3 3 / / 1 (100%) 1 (100%) 50%

Norwalk virus Ref_annotation 3 3 3 0 / / /
VADR 3 3 3 0 3 (100%) 3 (100%) 100%
VAPiD 3 3 3 0 3 (100%) 3 (100%) 100%
GeneSAS_genemarkS 3 3 / / 3 (100%) 3 (100%) 100%
GeneSAS_glimmer3 3 3 / / 3 (100%) 3 (100%) 100%

aPercentage is equal to (Genes with same start and end position/Ref_annotation genes)∗100.
bSimilarityScore = ((Genes with same start position)/(Totalx + Totalz))∗2∗100. Totalx and Totalz are the total number of genes in the software annotation and reference
annotation. The function is from BEACON (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539851/).
cref_annotation means the reference annotation. It is from NCBI RefSeq.
dVADR with default reference models (Flaviviridae and Caliciviridae) could not annotate the genome of SARS-CoV-2, because VADR could not find anyone in the default
model library to meet the similarity standard for homology-based annotation. VADR can annotate SARS-CoV-2 by using its SARS-CoV-2 specific reference model.

length of a reference genome has to be less than 25 K in VADR.
In contrast, VAPiD and GeneSAS can annotate the genome of any
virus. To further explore and compare the detailed differences in
annotation capabilities of these tools, we visualized the genome
annotation results of these tools for SARS-CoV-2 (Figure S1). We
found that the main difference in genome annotation of these
tools occurred in predicting overlapping genes. It was difficult
for most tools to accurately predict overlapping genes in a viral
genome. The genome annotation results indicated that VADR
and VAPiD generally had more stable and better annotation
performance than GeneSAS. With regard to the running speed,
all the tested tools needed only one or 2 min to complete the
annotation.

Current challenges for genome annotation
Over the past two decades, genome annotation has experienced
rapid development and prosperity, making our understanding
of genomes more explicit and profound. Genome annotation
has become a necessary foundation or critical element in
various biological fields. However, the accuracy of genome
annotation has always been a considerable challenge for
researchers. The impact on the annotation accuracy comes
mainly from two aspects as follows: the quality of genome
assembly and the selection of annotation tools. Draft assemblies
with errors and contamination decrease the accuracy of genome
annotation. The existence of many draft genomes has led to
less accurate genome annotation [12]. Further improvements
in sequencing and assembly technologies may increase the
quality of genome assembly, thereby improving the accuracy

of downstream genome annotation. The other aspect impacting
the accuracy of an annotation is the selection of annotation
tools. Although many tools can currently be selected for genome
annotation, the annotation results obtained from different tools
contain apparent differences. Due to the lack of recognized
evaluation standards and systems, it is challenging to evaluate
and identify the quality of annotation tools objectively. The
introduction of unified evaluation standards or systems would
improve the overall quality and accuracy of genome annotation
tools.

For the current annotation tools, functional annotation is
based on searching homologs in protein databases. However,
some reports have indicated that approximately 30%–40% of pro-
teins in databases are under ‘unknown function’ [74–76]. More-
over, for many proteins from new species, their homologs are not
found in current databases [77]. Therefore, some nonhomology-
based functional annotation methods should be developed and
integrated into genome annotation tools to enhance the ability
to annotate proteins without homologs or only with homologs
of unknown function in public databases.

More ab initio algorithms for viral genome annotation need
to be developed to enhance the strength of viral genome anno-
tation tools. In addition, more stand-alone genome annotation
pipelines for eukaryotes with full functions should also be devel-
oped.

Key Points
• We summarize the strategies and approaches for the

genome annotation of pathogenic microorganisms.
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• Popular genome annotation tools for eukaryotes,
prokaryotes and viruses are collected, and their char-
acteristics are presented.

• Real-world comparisons of different genome annota-
tion tools using sample genomes are conducted.

• Although genome annotation methods have shown
rapid development and prosperity, researchers still
face challenges such as the inconsistency of genome
annotations between tools and the large proportion of
proteins with unknown functions.

Supplementary data

Supplementary materials are available online at Briefings in
Bioinformatics.
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