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Abstract

Posttranscriptional cross talk and communication between genes mediated by microRNA response element (MREs) yield
large regulatory competing endogenous RNA (ceRNA) networks. Their inference may improve the understanding of patholo-
gies and shed new light on biological mechanisms. A variety of RNA: messenger RNA, transcribed pseudogenes, noncoding
RNA, circular RNA and proteins related to RNA-induced silencing complex complex interacting with RNA transfer and
ribosomal RNA have been experimentally proved to be ceRNAs. We retrace the ceRNA hypothesis of posttranscriptional
regulation from its original formulation [Salmena L, Poliseno L, Tay Y, et al. Cell 2011;146:353–8] to the most recent experi-
mental and computational validations. We experimentally analyze the methods in literature [Li J-H, Liu S, Zhou H, et al.
Nucleic Acids Res 2013;42:D92–7; Sumazin P, Yang X, Chiu H-S, et al. Cell 2011;147:370–81; Sarver AL, Subramanian S.
Bioinformation 2012;8:731–3] comparing them with a general machine learning approach, called ceRNA predIction Algorithm,
evaluating the performance in predicting novel MRE-based ceRNAs.
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Introduction

The competing endogenous effect is a posttranscriptional activity
in which different RNAs (ceRNAs) compete for shared microRNAs
(miRNAs), thus regulating each other [1]. In [2], the authors
hypothesized that messenger RNAs (mRNAs) act as competitive
inhibitors of miRNA function (i.e. miRNA sponge or miRNA
decoy) by preventing miRNAs from binding their authentic tar-
gets [3], modulating their activity in a cell-type-specific manner.
Such a hypothesis helps explaining the difference in binding sites
conservation among species and the reason for in vivo detection
of a poor miRNA-mediated repression.

A competing effect occurs when one or more miRNA response
elements (MREs), targeted by the same pool of miRNAs, lie in a
RNA transcript. Using techniques based on immunoprecipitation,
such as cross-linking, ligation and sequencing of hybrids (CLASH)
[4], several experimentally validated and high-confidence
miRNA–target interactions have been discovered [4–7] (Figure 1).

The cross talk between RNAs, mediated by MREs, regulates
the relative concentrations of transcripts within the cell, yield-
ing large-scale regulatory networks (Figure 2).

Several types of RNAs, in different species, are involved in
ceRNA mechanism. These include miRNAs as mediators, and
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pseudogenes, long ncRNAs (lncRNA) and circular RNAs (circRNA)
as principal actors [8–12].

miRNAs are small (�22 nucleotides), single-stranded ncRNAs. By
binding to a MRE on the target RNA, they commonly degrade
mRNAs or inhibit the translation of transcripts. Occasionally,
miRNAs have been found to enhance gene expression or increase
target translation [13, 14]. In [15], the authors introduced a quantita-
tive model describing the nature of regulatory miRNAs. They showed
that the target repression activity by miRNA occurs only when their
quantity exceeds a certain cellular context-dependent threshold.

A deregulation in tumor suppressor transcripts can disrupt
the cellular regulatory network, leading to pathological condi-
tions. Therefore, the analysis of networks induced by ceRNA
activities can give insight on the mechanism and the processes
underlying the evolution of complex diseases. In [16], the
ceRNA regulation mechanism was tested on PTEN, a known
tumor suppressor gene and inhibitor of the phosphoinositide
3-kinase/Akt/mammalian target of rapamycin signaling path-
way. The authors used a bioinformatics approach, called ‘mutu-
ally targeted MRE enrichment’ (MuTaME), to find putative

Figure 1. Different miRNA target sites distribution. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Figure 2. Different scenarios describing the ratio between miRNA and ceRNA expression. The balance between miRNAs and RNAs gives rise to the cross talk. Indeed, in

the middle case, the maximum competing effect and cross talk between RNAs occurs. In the leftmost case, miRNAs upregulation causes the downregulation of RNA

through quantitative mechanism because MREs are less. Conversely, in the rightmost, the transcript RNAs upregulation causes the downregulation of miRNA. In these

cases, less ceRNA effect is reported. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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ceRNAs of PTEN in a 30 untranslated region (UTR)-dependent
manner, and to demonstrate that mRNAs can cross talk through
MREs. To measure the ceRNA effect, MuTaME combines four
scores related both to the number of miRNAs shared between
two genes and the MREs configuration. Moreover, by selecting
their top seven predicted genes, the authors showed coexpres-
sion for four of them with PTEN in human tissue.

Pseudogenes are a class of transcripts that have lost their
coding function because of the lack of stop codons, or single-nu-
cleotide polymorphisms. They have a regulator role, especially
in cancer [17, 18]. Their estimated number (�19 000) is compar-
able with that of coding genes. Furthermore, pseudogenes have
high sequence similarity with their relative genes. In [10], the
authors reported examples of competing gene–pseudogenes in
prostate cancer cell lines. In [19], the authors showed that
pseudogenes are preserved through evolution. They identified
48 coding loci in the earliest eutherian ancestors, whose ability
to encode proteins was lost during rodent evolution. These ‘uni-
tary pseudogenes’ maintained their tissue-specific expression
profile, and MRE sites, suggesting an apparent preservation of
their posttranscriptional regulatory role. Moreover, they experi-
mentally verified such a conserved role in the murine Pbcas4
unitary pseudogene, and its human ortholog BCAS4.

lncRNAs are a broad class of non-protein-coding RNAs, whose
length is >200 bp. They are transcribed by RNA polymerase II
from the reversed strand of a gene, and are subsequently polya-
denylated. Long intergenic ncRNAs (lincRNAs) are a subclass of
lncRNAs, easier to detect from RNA sequencing (RNA-seq) data
because of no overlap with other genes. lncRNAs act as posttran-
scriptional regulators and cell differentiators [20]. In [21], the au-
thors studied the indirect interactions between linc-MD1 and two
transcription factors (TFs), MAML1 and MEF2C, during muscle
cells differentiation in both mouse and human. Such interactions
appear to be mediated by two miRNAs, miR-133 and miR-135.

circRNAs are a class of ncRNAs whose function is almost un-
known. They have been found highly expressed in mouse testis
suggesting a role in the tissue differentiation [22]. In [23],
Guarnerio et al. report that circRNAs were obtained from the fu-
sion of different gene’s exons after chromosomal translocations
in cancer cells. They showed how one of these fusion circRNAs,
f-circM9, is related to drug resistance in leukemia.

In [24], the authors discovered a circRNA, called ciRS-7. It
contains >70 MREs acting as a miR-7 sponge, with a consequent
increasing of miR-7 targets [12]. In [25], the authors demon-
strated the importance to uncover the biological role of ciRS-7,
and the relationship between miR-7 and few oncogenes. ciRS-7
was mainly found in neuroblastomas and astrocytomas, renal
cells and lung carcinomas. Its close interaction with miR-7
suggests an active role of this miRNA as oncogenes regulator
(e.g. EGFR, IRS1, IRS2, Pak1, Raf1, Ack1 and PIK3CD) [25].

In [11], the H. saimiri U-rich RNAs (HSURs) 1 and 2, which are
the most conserved and abundant RNA transcripts in
Herpesvirus saimiri, have been found related to T-cell activation
on the host. Three potential miRNAs (miR-142-3p, miR-27 and
miR-16) binding HSURs were experimentally validated in vivo.
They also identified anticorrelation between an underexpres-
sion of miR-27 and the subsequent overexpression of FOXO1
(a known target of miR-27), when both HSUR 1 and 2 are ex-
pressed. A detailed list of interactions and experiments regard-
ing miRNA sponges can be found in [26, 27].

Several quantitative in silico models to measure ceRNA cross
talk have been proposed. Some of them are reviewed in the
next section and are experimentally evaluated in this article.
We refer to [26] for a complementary review.

We developed a computational method, called ceRNA
predIction Algorithm (CERNIA, described in the following
Section), which takes into account insights from in vivo and in
silico experiments, such as 50 UTR and coding region binding
sites, and tissue-specific gene expression profiles, to uncover
novel ceRNAs, by taking into account both validated and high-
confidence miRNA–target interactions [4, 28, 29].

CERNIA makes use of a recommendation system, DT-Hybrid
[30, 31], to compute miRNA–target predictions by means of a
bipartite network. Then, a network projection step [30, 31] is
used to obtain putative ceRNA interactions with associated
strengths. Predictions are then filtered through an SVM by using
a modified MuTaME scoring, taking into account miRNA-target
hybridization energy, shared MREs and RNA expression levels.
We compared the prediction power and the characteristics of
CERNIA with few state-of-the-art methods. CERNIA is available
at https://github.com/dsardina/cernia/.

In silico methods for ceRNA networks
and validation

In [32], the authors enstablished the optimal conditions for
cross talk, validating their results by means of two known
ceRNAs: PTEN and VAPA. They simulated different scenarios in
which one or more miRNAs interact with a certain number of
targets, considering a number of miRNA–target interaction con-
figurations. The authors also considered indirect interactions,
which happen when three ceRNAs compete with themselves
(e.g. ceRNA1 competes with ceRNA2, ceRNA2 competes with
ceRNA3 and ceRNA1 competes with ceRNA3). Their results
highlighted the strong impact of indirect interactions in ceRNA
networks, also showing that TF levels are strongly intercon-
nected with ceRNA ones. In [33, 34], the authors proposed two
models based on stochastic process and titration mechanism.
(Titration is a technique used in chemistry to determine the
concentration of an unknown solution. When the molecules
interact with each other in a titrative way, there is a threshold
above which the phenomenon occurs.) Simulations, corroborat-
ing the ceRNA findings, proved that a stronger repression exists
when ceRNAs have perfect binding [35].

In [33], the authors designed a synthetic gene circuit in
human cells, and fitted the model to experimental data. Their
findings show that ceRNA effect strongly relies on the relative
concentrations of transcripts and miRNA–target binding
strengths. They also observed that their results resembled the
conditions found in [36], where a greater concentration of tran-
scripts was needed to lower the miRNA repression on a specific
target. See Table 1 for a summary of the methods in [32–34].

Tables 2 and 3 compare the described methods, showing de-
tails on data and tools, together with the estimation of the
ceRNA effect for gene pairs.

TraceRNA [37] uses both validated miRNA targets from
miRTarBase [28] and user-provided ones. Starting from a ‘gene
of interest’ (GoI), the algorithm extracts targeting miRNAs, and
predicts their target mRNAs by using both SVMicrO [38] and
BCmicrO [39]. Putative genes are filtered on the basis of two cri-
terias: (i) the number of common miRNAs between putative
ceRNAs and GoI and (ii) a ‘confidence score’. The score can be
computed in two ways: by combining the results of the above-
mentioned interaction prediction algorithms, or by using a scor-
ing methodology called SiteTest, similar to MuTaME [16].
TraceRNA introduces a P-value computed for each putative
ceRNA and estimates the relative false discovery rate. It allows
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users to use gene expression data and take into account only
tissue-specific ceRNA interactions.

In [40], the ceRNA hypothesis is exploited to predict the
functions of lincRNAs. If a gene and a regulator share some
miRNAs, they are likely involved in the same biological process.
By using RNA-seq, the method is able to gain insights on the re-
lationship between coding genes and regulatory RNAs. They
used TargetScan [3], PITA [35] and miRanda [41, 42] as sources of
predicted miRNA–target interactions. lincRNAs are retrieved
from [43], and their sequences are downloaded from University
of California Santa Cruz Genome Browser. Furthermore,
miRNA–lincRNA binding sites were computed with miRanda.
Finally, by using a hypergeometric test, the authors estimated
the significance of the ceRNA effect for a pair of transcripts on
the basis of the number of shared miRNA targets. However, no
MREs or relative abundances or biding strengths are used. The
final database is called Linc2GO.

Other databases reporting ceRNA interactions include
starBase [44], lnCeDB [45] and HumanViCe [46]. The last work has
been motivated by two studies that investigated the commonly
used pathways used by viruses to infect host cells [47, 48].

Two computational methods based on Pearson correlation
are reported in [49, 50]. In [49], the authors focused on ceRNA
cross talk between mRNAs and lncRNAs in breast cancer to
highlight the regulatory function of the latter. They also com-
pared inferred cancer and normal ceRNA networks by comput-
ing sensitivity correlation as the difference between Pearson
and partial correlation coefficients and retained only those pairs
with sensitivity correlation >0.3.

In [50], the authors performed an analysis of ceRNA mechan-
ism among 20 types of cancer, including a topological analysis
of the obtained networks. They use predicted miRNA–target
interactions, CLIP-seq data sets from starBase and expressions
data from TCGA. They inferred putative ceRNAs by taking into
account only pairs with a positive correlation score and a sig-
nificant adjusted P-value. They also computed a sensitivity cor-
relation to examine the role of miRNAs in the ceRNA regulatory
network.

Other two known algorithms are ceRDB [51] and Hermes [52],
which use CMI, together with Cupid [53], a miRNA–target predic-
tion methodology. In [52], the authors concentrate on large-
scale regulatory networks from glioblastoma gene expression

Table 2. ceRNA prediction algorithms characteristics

Name Interactions
types

Data Tools Pair estimation ceRNA classes

Hermes 30 UTR TCGA MINDy, Cupid, snapCGH Fisher’s method MI, CMI mRNA
ceRDB 30 UTR TargetScan Gene Cluster MRE-based score mRNA
TraceRNA 30 UTR miRTarBase SVMicro Gamma distribution, SiteTest

algorithm, Pearson correl-
ation, Borda method

mRNA
BCmicrO

Linc2GO 30 UTR Human lincRNA Catalog, UCSC,
miRBase, KEGG

TargetScan, miRanda, PITA Hypergeometric distribution mRNA, lncRNA

starBase 30UTR GEO, GENCODE, circBase,
KEGG, PANTHER, MSigDB,
miRBase, TargetScan,
TarBase, miRecords,
miRGator, miRNAMap

miRanda/mirSVR, PITA,
Pictar, RNA22

Hypergeometric test mRNA, lncRNA,
circRNA,
pseudogene

50 UTR
CDS

lnCeDB Sequence GENCODE TargetScan, starBase,
miRCode,Smith–
Waterman

Hypergeometric test, expres-
sion levels analysis

mRNA, lncRNA

HumanViCe 30 UTR miRBase, vHot, GENCODE, [14] TargetScan, miRanda,
RNAhybrid, microT, PITA

Hypergeometric test mRNA, lncRNA,
circRNA

CERNIA 30 UTR miRTarBase, starBase,
miRecords, [7], TCGA

miRanda, DT-Hybrid MuTaME, DT-Hybrid, Gene ex-
pression correlation, SVM
classification

mRNA, lncRNA,
pseudogene50 UTR

CDS

Table 1. Summary of the quantitative models in the literature that describes ceRNA cross talk. We report the goal of the studies, the methodol-
ogies used, the results and the validation of the models

Ala et al. [33] Bosia et al. [34] Yuan et al. [35]

Goal Molecular requirements and extent of
ceRNA cross talk

Analyze titration and cross talk within
a network of M miRNAs interacting
with N mRNA targets

Quantitative analysis of a minimal
ceRNA network

Method Mass action model Stochastic model Differential equations
Results Transcription factor and ceRNA net-

works are highly linked
Hypersensitivity near the molecular

threshold
High expression and MRE affinity of

targets counteract RNA interference
efficiency

Validated ceRNAs PTEN-VAMP in five cell lines – Genetic gene circuit with iRFP, mKate,
EYFP in HEK293 cells
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data, whereas in [51], biological meaningful results related to
PTEN are reported.

Inferring ceRNA networks through
recommendation system: CERNIA

Figure 3 depicts the pipeline of CERNIA.

Data sources

CERNIA uses both validated and high-confidence miRNA–target
interactions to create a data set with �400 000 interactions, 15 131

target RNAs and 660 miRNAs (see Supplementary Materials,
Section Data sets).

For each miRNA–target pair in our data set, we computed
MREs and their hybridization energy (see Supplementary
Materials, Section MRE extraction). We obtained �7 millions
MREs related to all miRNAs and targets of our data set.

ceRNAs prediction method

To predict ceRNA cross talks, we applied the DT-Hybrid recom-
mendation algorithm [30, 31]. DT-Hybrid needs as input an adja-
cency matrix A, which represents a bipartite network with m
nodes of type M and n of type T, where aij is 1 if a link between
node i and node j exists, with i ¼ 1, 2,. . ., m, and j ¼ 1,2,. . .,n. For
CERNIA, M is miRNA, T is target and aij ¼ 1 if an interaction
among the miRNA i and the target j exists.

DT-Hybrid performs a two-step projection of the bipartite
network according to the concept of resources transfer: the re-
sources present in T nodes are transferred to M nodes and
therefore returned back to T nodes. The result of the network
projection is a matrix W ¼ wij

� �
n�m

, which contains the weights
for each pair of nodes of class T as follows:

wij ¼
1

kðtiÞ1�kkðtjÞk
Xm

s¼1

aisajs

kðmsÞ

where k(t) is the degree of the t node, mi is the i-th node of class
M, ti is the i-th node of class T, aij are the entries of A and k is a
tuning parameter, which is optimized to increase prediction

Table 3. Comparison of the prediction algorithms on the basis of
their features

Name ceRNA
prediction/
validation

Validated
miRNA/target
interactions

Expression
data

CLIP-seq
data

MRE

HERMES �/� � � � �
ceRDB �/� � � � �

TraceRNA �/� � � � �

Linc2GO �/� � � � �
starBase �/� �a � � �
lnCeDB �/� � � � �
HumanViCe �/� � � � �
CERNIA �/� � � � �

aBona fide miRNA–target interactions. They are overlapping with CLIP-seq data ex-

periments of Ago- and RBP-binding sites, but not specifically validated interactions.

Figure 3. CERNIA pipeline. (A) All the validated and high-confidence miRNA–target interactions are collected and merged into a unique data set. The data set is used by

the 1st ceRNA pair prediction step performed by a recommendation algorithm called DT-Hybrid (B). (C) For each pair, we calculated MREs and hybridization energy

with miRanda. This score added to the MuTaME score, the DT-Hybrid recommendation score and the correlations between gene expression values for a specific tissue

type, form the CERNIA vector of seven scores. (D) The tissue validated ceRNAs, available in online repositories, and the CERNIA score vectors are used to classify (using

SVMs) a subset of the gene pairs given in (B) as the CERNIA putative ceRNAs. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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quality. The k parameter is related to the quantity and quality of
the predictions. A value close to one implies an equal distribu-
tion of the weights on the network, resulting in a greater weight
for those pairs of targets who share a large pool of miRNAs. Vice
versa, a value close to zero implies a distribution of weights
based on a nearest-neighbor average, implying a greater num-
ber of lower-quality predictions, as the number of shared
miRNAs is ignored.

The final scores of the recommendation are as follows:

S ¼W � A

Each element in the matrix S represents the suitability of the
interaction between a miRNA i and its predicted target j. It indi-
cates the degree of belief of the interaction between a ceRNA
pair, obtained on the basis of the number of miRNAs, which
simultaneously target both competitors. A higher value implies
both a greater number of common miRNAs and a greater
prediction.

ceRNAs cross talk score

For each pair of putative ceRNAs, we computed a vector of
measures containing (see Supplementary materials, Section
Scoring Function to have more details):

1. The fraction of common miRNAs;
2. The density of the MREs for all shared miRNAs;
3. The distribution of MREs of the putative ceRNAs;
4. The relation between the overall number of MREs for a puta-

tive ceRNA, compared with the number of miRNAs that yield
these MREs;

5. The density of the hybridization energies related to MREs for
all shared miRNAs;

6. The DT-Hybrid recommendation scores; and
7. The pairwise Pearson correlation between putative ceRNA

expressions from selected tissue.

Our score vector extends MuTaME [16], which includes only
the points 1, 2, 3 and 4. It is used within the classification step
as described below.

CERNIA classification

All putative ceRNA pairs obtained through the previous step are
filtered with a classification methodology. To do that, CERNIA
uses expression profiles. We keep only ceRNA pairs for which
both transcripts are expressed and partition the ceRNA pairs in
two subsets: validated/high confidence and predicted. As the
size of validated/high-confidence pairs is much smaller than
predicted ones, we generated 100 training sets with a compar-
able number of validated/high-confidence and predicted pairs.
The subsets of predicted pairs are considered as non-ceRNAs
(i.e. false positives). For each pair, we computed the CERNIA
score. Our aim is to identify a thresholding to discern true-posi-
tive ceRNA pairs from false-positive ones. CERNIA uses 100
SVMs [54–57] trained on the built data sets. SVMs training and
evaluation were used by the e1071 package of the R system. The
classifier was trained using a radial basis kernel function, and
its parameter was computed as the inverse of the number of di-
mensions of our training data. The procedure was repeated 10
times. For each putative ceRNA, CERNIA reports a final score
that is the percentage of the SVMs that agree in classifying such
a pair as ceRNA.

Results on validation and comparison on
ceRNA predictions
CERNIA validation

We collected a set of validated and high-confidence miRNA–tar-
get interactions from both curated databases (see
Supplementary Materials, Section Data sets) and CLASH immu-
noprecipitation experiments on three specific cancer types for
which they are known the greatest numbers of validated
ceRNAs: breast invasive carcinoma (BRCA), prostate adenocar-
cinoma (PRAD) and glioblastoma multiforme (GBM).

Validated tissue-specific ceRNA interactions are retrived
from [27, 58] and miRSponge [59], a manually curated database
containing miRNA-mediated interactions. We found 13 inter-
actions for GBM, 5 for BRCA and 6for PRAD (see Supplementary
Materials, Section Validated ceRNAs, Table S1).

We selected a set of 5641 GBM expressed genes from [52]. We
extended it by adding the tissue-specific validated ceRNAs ob-
taining, respectively, 5642 BRCA expressed genes and 5643
PRAD expressed genes. We refer to such sets as ‘gene sets’.

We calculated the scores for all possible pairs of genes in the
BRCA, PRAD and GBM gene sets, and performed the classifica-
tion procedure described in previous Section. These scores rep-
resent the percentage of SVMs that agree in classifying a pair as
ceRNA. We estimated a ‘classification threshold’ for each tissue,
separately, by computing receiver operating characteristic (ROC)
curves for our ensemble of classifiers [60] and chose the third
quantile of the best cutoffs distribution that maximize the area
under curve (AUC). The estimated average areas (AUCs) are 0.96,
0.89 and 0.91 for BRCA, PRAD and GBM (Figure 4). We classified
as ceRNA 1 348 392 pairs for BRCA, 6357 for PRAD and 1 035 222
for GBM.

CERNIA reaches the best sensitivity for BRCA compared with
the other two tissue types. In the Supplementary File S2, we re-
port the complete list of validated pairs, whereas in the
Supplementary Materials, Section CERNIA predictions,
Supplementary Figure S1–S3, we report the distributions of the
CERNIA scores together with the scores for the validated pairs
for each tissue type.

ceRNA predictors comparison

In Figure 5, we report a comparison of CERNIA with starBase
and ceRDB. To perform a fair comparison, we used in CERNIA
only the scores 1–6 (see section ceRNAs cross talk score) because
both starBase and ceRDB do not use tissue-specific expression
data. We used the validated pairs in BRCA, PRAD and GBM to
classify the putative ceRNA pairs. Whereas in Figure 6, CERNIA
is compared with a general conditional mutual information
methodology (CMI) by applying all the seven scores in the
classification step and by using 100 permutations to calculate
the P-value. We used starBase putative ceRNA pairs, and the
restricted set of PTEN ceRNA interactions for CMI and ceRDB
comparison. (We focused on PTEN interactions because the
computation of CMI on the whole set of pairs was not feasible,
and ceRDB web interface accepted only single-gene queries.)

CERNIA predicts 10 validated ceRNA cross talk out of 13 in
GBM, 5 out of 5 in BRCA and 3 out of 6 in PRAD. We used the
hypergeometric distribution to compute the probability of ob-
taining by chance the number of validated ceRNAs within the
set of predicted interactions. For each data set, we generated
the number of possible ceRNA pairs. Such a value was therefore
used within the hypergeometric distribution. For all data sets,
we got low probabilities of obtaining by chance the validated
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interactions: for GBM, the probability is 3.3397�10�6; for BRCA, it
is 4.9562�10�6; and for PRAD, it is 3.0904�10�10. In Supplementary
Materials, Section CERNIA predictions, Table S2 reports the prob-
ability of obtaining by chance the number of validated ceRNAs
within the set of predicted interactions as function of the scor-
ing threshold. The threshold chosen by ROC curve analysis is
the most accurate. Furthermore, we can observe that obtaining
by chance such validated pairs is improbable.

starBase contains >1 million predicted ceRNA interactions.
The results contain 4 of 13 validated ceRNA interactions in GBM,

0 of 5 in BRCA and 2 of 6 in PRAD. For starBase, the probabilities
to get by chance the validated predictions are considerably higher
than CERNIA: for GBM, the probability is 8.9210�10�3; for BRCA, it
is 0.6959; and for PRAD, it is 5.4875�10�2.

CERNIA and starBase give around the same number of predic-
tions, which are �145 000 ceRNA interactions in BRCA, �24 000 in
PRAD and �145 000 in GBM. The number of BRCA-specific and
GBM-specific interactions predicted by CERNIA is comparable
with starBase. However, CERNIA predicts a smaller set of putative
ceRNAs for PRAD.

Figure 5. Comparisons between CERNIA, starBase and ceRDB. starBase has the largest number of predictions, whereas we focused on ceRDB’s PTEN ceRNA interactions.

starBase and ceRDB do not distinguish between tissue type; therefore, we trained CERNIA without using correlations between tissue-specific gene expressions, and car-

ried out the comparison using BRCA, PRAD and GBM validated ceRNA pairs. Reported in square brackets is the number of validated ceRNA interactions for each set. A

colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Figure 4. (A–C) are ROC curves computed for BRCA, GBM and PRAD, respectively. Curves are obtained by averaging the 10 repeats on the 100 SVMs. In dotted red, we re-

port the original curves. In the (D–F), we report curves for sensitivity (blue), specificity (red) and tissue-specific cutoff (green). A colour version of this figure is available

at BIB online: https://academic.oup.com/bib.
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CERNIA is able to predict the majority of PTEN ceRNA inter-
actions reported in literature for GBM and PRAD with respect to
ceRDB. Here, CERNIA has again low probabilities (BRCA, 0.1492;
PRAD, 1.9097�10�2; GBM, 2.6564�10�3) compared with ceRDB
(BRCA, 0.8475; PRAD, 0.2479; GBM, 0.1982).

We compared CERNIA with a general CMI methodology. We
used the code implemented in Hermes [52] software. We con-
sidered the combination of PTEN and genes in the tissue gene
sets obtaining 5641 pairs in BRCA, 5642 in PRAD and 5640 in
GBM. We used the same significance threshold reported in [52]
with P-value <10�4. We computed the probabilities to get by
chance the PTEN validated interactions, CMI has the following
values 0.4084, 0.4136 and 0.2317 in BRCA, PRAD and GBM, re-
spectively, whereas CERNIA achieves the same probabilities:
0.1492 in BRCA, 1.9097�10�2 in PRAD and 2.6564�10�3 in GBM.
CERNIA and CMI have in common 664, 0 and 658 predicted
ceRNA interactions with PTEN in BRCA, PRAD and GBM, respect-
ively. Both algorithms identify almost an equal number of tis-
sue-validated ceRNA interactions. CERNIA, however, yields
better results in GBM.

Finally, we selected BRCA, PRAD and GBM predictions from
[50] and compared them with CERNIA. The results showed that
their method is not able to predict any of the validated ceRNA
interactions. We observed a similar behavior analyzing the
BRCA CERNIA’s predictions by using the data in Additional file
10 in [49]. These data use 0.3 as threshold that corresponds to
the 99th percentile of the sensitivity correlation values distribu-
tion. We did not found any common prediction with CERNIA.
Furthermore, among their 1103 ceRNA predicted pairs, no vali-
dated ceRNA interactions could be found.

The stability of CERNIA performances with respect to ceRDB,
starBase and CMI, may be because of the usage of both validated
and high-confidence miRNA–target interactions, and a broad
set of established ceRNA cross talk rules (MuTaME, DT-Hybrid,
gene expression correlation). Furthermore, CERNIA exploits
MREs in the whole transcribed sequence.

Functional annotation of CERNIA predictions

We investigate the functional role of CERNIA predictions. For
each tissue, we selected the genes within CERNIA-predicted inter-
actions, and performed a functional annotation, Gene Ontology
and pathway enrichment of such genes by using MSigDB [61].

The majority of putative ceRNAs (>700) for BRCA are TFs (80 are
also oncogenes). In total, 180 are both oncogenes and translocated
cancer genes. The same analysis performed for PRAD reported
similar results (>20 predicted ceRNAs are tumor suppressors).
About 50 genes are both translocated cancer genes and TFs (see
Supplementary Materials, Section GO enrichment, Tables S3–S5 for a
comprehensive description).

MSigDB is used to compute overlaps with known gene sets.
We selected the putative ceRNAs in common between BRCA,
PRAD and GBM tissues, whose amount is 2505. After, we selected
the ‘hallmark gene sets’ from MSigDB [61] and retained the top 20
most significant overlaps (see Supplementary File S3).

We also performed topological analysis, and looked for can-
cer-specific genes among putative ceRNAs in the Catalog of
Somatic Mutation in Cancer [62]. The results are described in
the Supplementary Materials, Section Topological Analysis and
are reported in Supplementary File S4.

Conclusions and discussion

The competing endogenous (ceRNA) effect is a posttranscrip-
tional regulatory mechanism, which has been studied and
acknowledged for many classes of RNA, both protein coding
and noncoding. One of the most interesting outcome of the
cross talk between such RNAs is that the ceRNA effect is used as
a method to easily predict a function for many unknown RNAs
in normal and pathological conditions. However, it still remains
to be understood if this RNA competition is part of the system
biology, and if the ceRNA regulation will help finding suitable
druggable targets.

We reviewed the state of the art of in vivo and in silico ceRNA
prediction methods. We developed a new in silico method, called
CERNIA, which relies on both validated and high-confidence
miRNA–target interactions, considering not only 30 UTR miRNA
binding sites but also 50 UTR and coding sequence (CDS) ones [4, 5].
CERNIA can be used to study the ceRNA competition among differ-
ent tissue types, and different classes of genes. Compared with
other prediction methods and databases, such as Hermes, ceRDB
and starBase, CERNIA shares a large amount of putative competing
pairs. However, it is also capable to infer novel ceRNA interactions,
which could allow extending the current understanding of the
competing endogenous effect phenomena.

In vivo studies on mice are a starting point to uncover the
role of specific RNAs in activating cancer pathways in vivo. In
[63], the authors validated the ceRNA cross talk between
BRAFP1 pseudogene and BRAF in human, then performed an
in vivo study on the murine counterparts, Braf-rs1 and B-raf.
Their findings supported the hypothesis that such a pseudo-
gene induces lymphomas in mice. In some human DLBCL cell
lines, the overexpression of BRAFP1 caused an increase in
BRAF levels and cell proliferation. On the other hand, the
ceRNA cross talk has aroused some criticisms [36, 64–66]. In
[36], the authors proved the inability of derepressing a target
by means of a single miRNA family. This is because of the high
amount of endogenous MREs concentration needed to repress
the miRNA function, which is impossible to reach for a single

Figure 6. Comparisons between CERNIA and CMI. We focused on PTEN predictions for BRCA, PRAD and GBM. Reported in square brackets is the number of validated

ceRNA interactions identified for each set. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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target. Another important aspect in ceRNA cross talk valid-
ation refers to the methodology used to quantify the contribu-
tion of all endogenous MREs for a specific miRNA. However,
the authors did not exclude the possibility that this huge num-
ber of binding sites is provided by different lncRNAs, suggest-
ing a viable analysis of the noncoding landscape in diseases.
They also concluded that it is more likely to have miRNA-
mediated cross talk between mRNAs in conditions of suddenly
changes of RNA concentration, such as in cell differentiation
or cancer. In [67], the authors uncover a lncRNA called
BC032469, which acts as a ceRNA competing for miR-1207-5p
with human gene TERT, and another lncRNA called OIP5-AS1/
cyrano bound to HuR [68]. The investigation of unknown
lncRNAs landscape by using a combination of Ago CLIP-
supported or CLASH and RNA-seq experiments can improve
the knowledge and the functional characterization of tran-
scripts [27].

The authors in [66] report both the difficulties related to
technical, and informatics methodologies, in measuring and
validating the ceRNA effects. The first refers to the bias of the
argonaute (Ago) HITS-CLIP protocol, which does not take into
account the localization of the Ago proteins, the specificity of
the RNA binding or uses Dicer-deficient cells. The latter basic-
ally refers to miRNA–target prediction algorithm for 30 UTR-de-
pendent binding sites, and lack of targets gene expression in
the prediction model.

The Ago–miRNA complex repression and the ceRNA effect
can be quantitatively studied with small RNA-seq, poly-A RNA-
seq and iCLIP techniques, as performed in [65]. They also
performed transcriptome reconstruction, and transcripts quan-
tification with Cufflink in mouse embryonic stem cell in the
presence or absence of Ago protein. This approach, exploiting
RNA-seq, is able to find novel RNA isoforms, resulting in a more
accurate computation of MREs. The iCLIP experiments were
used to find Ago-binding sites, and measure their affinity to
vary the concentration. The authors concluded that Ago binding
happens when miRNA and target sites have approximately
the same amount of copies. In [64], the authors tried to bridge
the gap between simulated and experimental results deducing
that an mRNA containing a couple of MREs with normal expres-
sion within a cell for a miRNA cannot significantly cross talk
with other mRNAs, although the same conclusion has to be
examined for lncRNAs. More in general, cross talk is likely to
occur when the concentration of a specific MRE sequence is
comparable with the total amount of competing binding sites in
the cell [64].

Finally, we can summarize, by considering the ceRNA cross
talk state of art, that an emphasis is needed on environment
studies and prediction models regarding miRNA–target predic-
tions (in particular those with noncanonical binding sites) and
cellular localization of the actor molecules [miRNA, transcripts
RNA, TFs and RNA-binding proteins (RBPs)] to understand the
dynamic nature of the cell regulatory network.

Key Points

• ceRNA posttranscriptional cross talk needs to be deep-
ened with in vivo experiments, and validated as a
widespread biological regulatory mechanism.

• RNA-seq, CLIP-seq and CLASH are powerful tech-
niques, which can be exploited to improve the under-
standing of the ceRNA effect.

• The number of prediction methods for ceRNA cross

talks is increasing, and much more accurate methods
are expected in the future together with more vali-
dated data.

• Improve ceRNAs prediction methods to accurately pre-
dict functions for many unknown RNAs in normal and
pathological conditions.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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