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Abstract

Motivation: Accurate disease risk prediction is essential for precision medicine. Existing models either assume that
diseases are caused by groups of predictors with small-to-moderate effects or a few isolated predictors with large
effects. Their performance can be sensitive to the underlying disease mechanisms, which are usually unknown in
advance.

Results: We developed a Bayesian linear mixed model (BLMM), where genetic effects were modelled using a hybrid
of the sparsity regression and linear mixed model with multiple random effects. The parameters in BLMM were
inferred through a computationally efficient variational Bayes algorithm. The proposed method can resemble the
shape of the true effect size distributions, captures the predictive effects from both common and rare variants, and is
robust against various disease models. Through extensive simulations and the application to a whole-genome
sequencing dataset obtained from the Alzheimer’s Disease Neuroimaging Initiatives, we have demonstrated that
BLMM has better prediction performance than existing methods and can detect variables and/or genetic regions
that are predictive.

Availabilityand implementation: The R-package is available at https://github.com/yhai943/BLMM.

Contact: y.wen@auckland.ac.nz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The concept of treating diseases with precise interventions, designed
rationally from a detailed understanding of the biological mecha-
nisms and individual differences, has been widely accepted as the
goal of precision medicine, an emerging model of healthcare that tai-
lors treatment strategies based on individuals’ profiles (Ashley,
2015). Towards this end, there is an expectation that the emerging
genetic findings and other existing knowledge will revolutionize the
current trial-and-error practice of medicine by enabling more accur-
ate disease prediction and precise prevention/treatment strategies. It
is expected that the formed risk prediction models can help identify
high-risk sub-populations so that appropriate treatments can be
delivered. Despite promising, for most of the complex human dis-
eases, the existing models lack sufficient accuracy for clinical use
(Lipinski et al., 2016).

Human diseases are usually affected by multiple genetic variants
through complex biological mechanisms, and thus progress towards
accurately predicting disease risk requires the development of ana-
lytical models that can jointly consider multiple genetic variants and
allow for various magnitudes of effect sizes for different predictors.
The genomic best linear unbiased prediction (gBLUP) models have

long been used for risk prediction research (Henderson, 1950;
Moser et al., 2009). They use the linear mixed model (LMM) frame-
work to model disease risk, where high-dimensional genomic data is
jointly modelled through the variance-covariance matrix of the ran-
dom effect. Instead of modelling the effects from individual predic-
tors, they aim at estimating the cumulative predictive effects from
multiple genetic variants, making it possible to simultaneously con-
sider a large amount of predictors (De los Campos et al., 2013;
Hayes et al., 2001). For example, Yang et al. predicted human
heights using the gBLUP method, where the cumulative predictive
effect of all genetic variants is estimated using the LMM framework
with a single random effect term. Their model explains 45% herit-
ability that is considerably higher than the model built with known
predictors (Yang et al., 2010). Although practically useful and easy
to implement, gBLUP simply assumes all genetic variants have the
same effect-size distribution (Henderson, 1975), which is too simple
to be realistic (Speed and Balding, 2014). For example, single nu-
cleotide polymorphisms (SNPs) that come from different genetic
regions (e.g. coding and intron SNPs) are unlikely to have the same
type of effect sizes (Speed and Balding, 2014). Over the past deca-
des, many efforts have been made to relax the assumptions of
gBLUP(Speed and Balding, 2014; Weissbrod et al., 2016; Zeng and
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Zhou, 2017; Zhou et al., 2013). For example, MultiBLUP (Speed
and Balding, 2014) splits the genome into multiple genetic regions
and allows for variants from different regions having different effect
size distributions. However, these extensions still aim at modelling
the cumulative predictive effects from a group of predictors and thus
may fail to capture the effects from isolated predictors (i.e. a very
small fraction of variants across the genome and they are not located
nearby).

While jointly modelling all genetic variants has great potential
to capture predictive markers, the large amount of noise in high-
dimensional genomic data can substantially attenuate the robust-
ness and accuracy of prediction models. It is noted by Byrnes et al.
(2013) that variable selection is of great importance for building
risk prediction models in the absence of biological annotations.
Sparsity regression model has been widely used in genetic research
(Carvalho et al., 2008; Zhou et al., 2013). For example, in order to
identify causal variants, a penalized maximum likelihood approach
that introduces the normal exponential gamma density as a penalty
function was developed, and the corresponding non-zero coeffi-
cients were used for prediction (Hoggart et al., 2008). Logistic re-
gression with L1 penalty, which can shrink the coefficients of non-
relevant variables towards zero, has been developed to select the
most predictive genetic variants for cancer classification (Algamal
and Lee, 2015). Different from the key assumption used in gBLUP
that assumes genetic effects follow a normal distribution, the spars-
ity regression models assume that only a small fraction of genetic
variants have moderate-to-large effect sizes and the rest are noise
(Zhou et al., 2013). Their performance can be affected by the
underlying disease model that is usually unknown in advance
(Chatterjee et al., 2016). In addition, simultaneously modelling
and selecting predictive variants from millions of potential predic-
tors in the sparsity regression models can be computationally
challenging.

Bayesian LMMs are another widely used alternatives for the
analysis of genomic data (Dunson, 2001), and they have shown
better prediction performance than gBLUP-based methods (Zeng
and Zhou, 2017; Zhou et al., 2013). Compared to the frequentest,
Bayesian LMMs can easily accommodate various model assump-
tions and different types of effects via specifying different prior dis-
tributions (Zhao et al., 2006). For example, BayesA assumes each
genetic effect has its own variance and thus a scaled univariate stu-

dent’s t prior distribution (i.e. bi � tð0; t; r2
aÞ) is used (Habier et al.,

2011; Zhou et al., 2013). BayeB assumes that a large amount of
genetic variants have no predictive effects, and thus a mixture dis-

tribution (bi � ptð0; t; r2
aÞ þ ð1� pÞd0; r2

a 6¼ 0) that uses a t-distri-
bution to account for predictive effects and a point mass at zero to
model the effects from noise variants is set as it is prior (Habier
et al., 2011; Zhou et al., 2013). Bayesian Lasso assumes the major-
ity of variants have weak or no effects, and thus the double expo-
nential (DE) prior distribution (bi � DEð0; hÞ) is employed (Yi and
Xu, 2008). Existing Bayesian LMMs usually assume that only a
very small fraction of genetic variants are predictive and set the pri-
ors accordingly. However, their performance can be sensitive to
the underlying disease model (Zeng and Zhou, 2017; Zhou et al.,
2013) and the choice of priors adopted (Gianola, 2013). While pre-
vious attempts mainly focus on modifying the parametric priors so
that they can mimic the distribution of true effect sizes, none of
them work uniformly better as each disease can have its own mech-
anism and the true effect distribution is usually unknown.
Recently, a non-parametric Bayesian method, latent Dirichlet pro-
cess regression (DPR), was proposed to better model the effect size
distributions. It uses the Dirichlet process normal mixture (i.e. bi �
p1Nð0; 0 �r2

e Þ þ
P1
k¼2

pkNð0;r2
kr

2
e Þ) as its prior for each genetic ef-

fect, and thus has the flexibility to model any unknown distribu-
tions (Zeng and Zhou, 2017). However, it cannot consider the
existing biological annotations and thus fails to capture small
effects from multiple genetic variants located within a functional
unit (e.g. gene).

gBLUP-based methods and their Bayesian counterparts have
made various levels of successes in risk prediction research (Yang

et al., 2010; Zeng and Zhou, 2017; Zhou et al., 2013). However,
there are several key limitations. First, the existing methods are
mainly designed for common variants (i.e. minor allele frequency >
5%) and thus are not capable of capturing the predictive effects
from rare variants. Converging evidences have suggested that rare
variants can play an important role in explaining disease heritability
(Gibson, 2012). For example, Bodmer and Bonilla (2008) found
rare variants in APC gene are associated with colorectal cancer.
Overlooking the contribution of rare variants can substantially re-
duce the accuracy of risk prediction models (Eichler et al., 2010).
Second, most of the existing methods assume that diseases are either
caused by a large number of predictors with small-to-moderate
effects (e.g. gBLUP) or a few isolate predictors with large effects
(e.g. sparsity regression). Therefore, their performance can be sensi-
tive to the underlying disease model. Third, identifying predictors
from high-dimensional data is a daunting task (Hoggart et al., 2008;
Yi and Xu, 2008; Zhou et al., 2013), especially when a large amount
of rare variants are considered. While it is widely accepted that
jointly selecting predictors located in nearby regions (e.g. all markers
within a gene) can improve computational efficiency and the inter-
pretation of the prediction model, there lack theoretical support and
empirical criteria are often used (Speed and Balding, 2014;
Weissbrod et al., 2016).

To address these challenges, we developed a Bayesian LMM
with multiple random effects (denoted as BLMM). The proposed
model can (i) resemble the true effect size distributions, (ii) capture
the predictive effects from both common and rare variants and (iii)
is robust against disease models. It can simultaneously select isolated
predictors with large effects and a group of predictors with small-to-
large effects. Rather than using Markov chain Monte Carlo
(MCMC) that can be intractable, we developed a variational
Bayesian (VB) algorithm that provides an analytical approximation
to the posterior distribution (Blei et al., 2017). In the following sec-
tions, we first presented the BLMM model and the variational distri-
bution for its parameter estimation. We further compared its
predictive ability with existing methods, including (i) MultiBLUP
(Speed and Balding, 2014) and (ii) DPR (Zeng and Zhou, 2017).
Finally, we illustrated the advantage of BLMM with an application
to the dataset obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Mueller et al., 2005).

2 Materials and methods

In the following sections, we first presented the prediction model
and then provided a detailed description of the VB algorithm used
for the parameter estimation.

2.1 BLMM for risk prediction of complex traits
It is well accepted that the predictive effects of genetic variants can
differ substantially across genomic regions (e.g. intergenic, Exon
and Intron) (Schork et al., 2013; Speed and Balding, 2014), and
some predictors can have very strong effects (e.g. the risk allele of
APOE gene on predicting Alzheimer’s Disease). Therefore, given M
genetic regions (e.g. genes), we proposed to form a hybrid model aS

Y ¼ bþ
XM
m¼1

gm1� with � � Nð0; Ir2
� Þ; (1)

where Y is the outcome and � � Nð0; Ir2
� Þ. Similar to existing

Bayesian methods, we set the prior for r2
� as r2

� � IGða0; b0Þ, where
IG denotes the inverse gamma distribution and a0 ¼ b0 ¼ 0:1. X(b)
is the genotypes (their effects) and they are designed to capture the
isolated large predictive effects. gm, on the other hand, represents
the cumulative predictive effects from all genetic variants within re-
gion m, and they are used to reflect the effects from a group of pre-
dictors. The rationale of having b in the proposed model is similar
to that used in the sparsity regression models, which assume disease
heritability can be mainly explained by a few isolated genetic
markers with large effects (Yi and Xu, 2008; Zhou et al., 2013). The
rationale of having gm in the proposed model is similar to those
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adopted in gBLUP and their extensions, which assume disease herit-
ability can be attributed to a large number of genetic markers with
small-to-moderate effects (Speed and Balding, 2014; Weissbrod
et al., 2016; Zhou et al., 2013). In addition, similar to the random
field model proposed by Wen et al. (2016), gm also has the potential
to capture the cumulative predictive effect from all rare variants
within region m. Therefore, the proposed BLMM is a very flexible
framework for modelling diseases with various underlying
mechanisms.

2.1.1 The predictive effects from isolated predictors

To detect the isolated predictors with large effects (i.e. b), the spike
and slab prior can be used for each bj, where the effects from noise
markers can have a point mass at zero. However, such a procedure
can underestimate the posterior variances for b (Carbonetto et al.,
2012). To address this issue, we introduced a Bernoulli random vec-
tor and re-parameterized the model as,

Y ¼ XCbþ
XM
m¼1

gm1� with � � Nð0; Ir2
� Þ; (2)

where C ¼ diag(c) and c ¼ ðc1; c2; . . . ; cpÞT is a vector of binary vari-
ables indicating whether each genetic variant is included in the
model. We set the priors for b and c as bj � Nð0;r2

bÞ and
cj � Bernoulliðh0Þ, respectively. We used h0 2 ½0; 1� as a tuning par-
ameter to control the sparsity level. Although the principle of indif-
ference usually sets h0 ¼ 0:5 (Cerquides and de Mantaras, 2003), we
set h0 ¼ 0:1 for the proposed method as the probability for each
variant to be predictive is much lower than 0.5 for high-dimensional
genetic data.

Given model 2, it is straightforward to see that the genetic vari-
ant has no effect on the outcome when cj ¼ 0, regardless of the value
of bj (i.e. bjcjXj ¼ 0). By using c to perform variable selection, the
proposed re-parametrization can keep all of bj in the same partition
and thus avoids the underestimation of their posterior variances. It
can be shown that the isolated genetic effects in the proposed model
follow the Bernoulli-Gaussian distribution(Fernandes et al., 2017;
Ormerod et al., 2017). The details of the derivation of conditional
posterior can be found in Appendix SA.1.

2.1.2 Cumulative predictive effects from groups of predictors

To capture the cumulative predictive effects (i.e. gm) from a group
of predictors located nearby, we followed a similar idea used in
MultiBLUP (Speed and Balding, 2014) and assumed that genetic
similarities can lead to phenotypic similarity. We allow different
regions contributing differently to the outcome, and set a multivari-
ate normal prior for each region-based cumulative predictive effect
(i.e. gm) aS

gmjKm�Nð0;Kmr2
mÞ m ¼ 1; . . . ;M

r2
m�IGða1;b1Þ:

(3)

Km is the genetic similarity for region m and it is defined as

Km ¼ GmWmGT
m=pm, where Gm is the genotype matrix for region m

and pm is the number of genetic markers in the region. Wm ¼
diagðw1;w2; . . . ;wpm

Þ is the pre-specified weights used to capture the
contribution of rare variants. Similar to existing literature (Wu et al.,

2011), we defined the weights as wj ¼ 1
MAFjð1�MAFjÞ, where MAFj is the

minor allele frequency for the jth variant. r2
m reflects the effect sizes for

predictors in region m, and they allow to differ across different regions

(i.e. r2
1 ¼ r2

2 � � � ¼ r2
M is not required). Since the predictive effects from

a group of predictors are usually assumed to be small-to-moderate ex-
cept for a few rare variants (Saint Pierre and Genin, 2014; Zhou et al.,

2013), the values of r2
m are expected to be small. Therefore, the hyper-

parameters (i.e. a1 and b1) are set to be 0.1 for all regions.
For high-dimensional data, many regions included in the analysis

are not disease-related, and these noise regions can reduce the robust-
ness and accuracy of the prediction models. Moreover, the identifica-
tion of genetic susceptibility regions facilitate the model interpretation

and help to determine sub-populations at high risk (Weissfeld et al.,
2015). For the proposed model, the identification of predictive regions
is equivalent to determine which r2

m 6¼ 0. Therefore, rather than assum-
ing all regions have predictive effects (i.e. Equation 3), we propose to
use the idea of the spike and slap prior (Mitchell and Beauchamp,
1988) and set the prior for each region aS

gmjKm; r
2
m�}ðrmÞNð0;Kmr2

mÞ þ ð1� }ðrmÞÞd0; m ¼ 1; . . . ;M

rm�Bernoulliðh1Þ;
(4)

where rm is a binary random variable indicating whether each genet-
ic region is included in the model, }ðrmÞ is the probability of success
for a Bernoulli random trial rm, and d0 denotes a discrete measure
concentrated at zero. Since the majority of genetic regions explain
little phenotypic variance, we set h1 ¼ 0:1 for the hyper-parameter
in the Bernoulli distribution.

Directly incorporating Equation 4 into the proposed model is
computationally demanding. To expedite its computation, we used
the idea from Chen and Dunson (2003) and decomposed Km as
Km ¼ QmKmQT

m, where Km ¼ diagðkm1; . . . ; kmnÞ with km1 �
km2 � � � � kmn � 0 being eigenvalues and Qm is a matrix of the corre-
sponding eigenvectors. We further re-parameterized the cumulative
predictive effects part with the slab and spike prior aS

Y ¼ XCbþ
XM
m¼1

ðZmrmUmÞ þ �; (5)

where Um � Nð0; Ir2
mÞ; Zm ¼ QmK

1
2
m and Eðrm ¼ 1Þ ¼ }ðrmÞ. While

the re-parameterization facilitates the selection of predictive regions
(i.e. rm ¼ 1 indicates the region is predictive), the dimensions of
both Zm and Um depend on the sample size n, making their manipu-
lations still computationally challenging. Note that Km is only guar-
anteed to be positive semi-definite and the eigenvalues decay very
fast. Therefore, we used the idea of kernel principal component ana-
lysis and approximated Zm with a low-rank matrix Z0m ¼ Q0mðK0mÞ

1
2,

where K0m is a diagonal matrix with the nm largest eigenvalues and
Q0m is the corresponding eigenvectors. Equation 5 can be written aS

Y ¼ XCbþ
XM
m¼1

ðZ0mrmU 0mÞ þ �; (6)

where U 0m � Nð0; I 0r2
mÞ with I 0 being an nm � nm identity matrix.

2.2 Parameter estimation based on a variational Bayes

algorithm
Estimating parameters for the proposed model using the standard
techniques (e.g. MCMC) can be intractable and slow for conver-
gence. Therefore, we developed a mean-field VB algorithm to infer
parameters. Unlike the exact inference, VB approximates the poster-
ior through minimizing the Kullback-Leibler (KL) divergence be-
tween the true and approximation distributions (Zhang et al.,
2019), and it converges much faster than the exact method
(Salimans et al., 2015; Zhang et al., 2019).

The basic idea of VB is to find a family of simple probability distri-
butions that approximate the true posterior distribution as close as
possible in terms of KL divergence, and the parameters in the approxi-
mated distributions can be easily estimated (Ghahramani and Beal,
2000; Zhang et al., 2019). Let n be all the parameters that need to be
estimated. To choose a class of distribution that leads to a more trace-
able approximation (Bishop, 2006), we factorized the posterior pðnjyÞ
as a product of independent distributions on small subsets of parame-
ters. We defined the approximated distribution qðnÞ as

qðnÞ¼qb

Qp
j¼1

qcj

QM
m¼1

qUm

QM
m¼1

qrm

QM
m¼1

qr2
m
�qr2

�
, where qb¼NðMb;SbÞ;

qcj
¼BernoulliðwjÞ; qUm¼NðMm;SmÞ; qrm¼BernoulliðwmÞ; qr2

m
¼IG

ðam;bmÞ; and qr2
�
¼IGða�;b�Þ. We estimated the parameters by mini-

mizing the KL divergence between the exact posterior distribution
(pðnjyÞ) and the variational distribution qðnÞ:
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KLðqjpÞ¼
ð
qðnÞlog

qðnÞ
pðnjyÞdn¼logpðyÞ�ðEqðnÞ½logpðn;yÞ��EqðnÞ½logqðnÞ�Þ

(7)

Minimizing KLðqjpÞ is equivalent to maximizing the evidence
lower bound (ELBO) calculated aS

ELBO ¼ EqðnÞ½log pðn; yÞ� � EqðnÞ½log qðnÞ�¼ logðCða�ÞÞ

�a� logðb�Þ þ
1

2
logðdetðSbÞÞ

þ 1

2rb2

ðMbTMb þ trðSbÞÞ þ
X

j

ðwj log
log h0

wj

þð1�wjÞ log
1� log h0

1�wj
Þ þ

X
m

ðlogðCðamÞÞ � am logðbmÞ

þ1

2
logðdetðSmÞÞ �

am

2bm
MT

mMm þ trðSmÞÞ þwm log
h1

wm

�

þð1�wmÞ log
1� log h1

1�wm

�
;

(8)

where wð�Þ is digamma function and Cð�Þ is the gamma function; wj ¼
pðcj ¼ 1jyÞ and wm ¼ pðrm ¼ 1jyÞ. The details of ELBO derivations
are shown in Appendix SA.2. To maximize the ELBO, we followed the
same procedure used in Zhang et al. (2019), where parameters were
updated one at a time using the coordinate ascent algorithm (Bishop,
2006). The inference procedure of the VB is shown in Algorithm 1. We
used the estimating equations for updating parameter n as follows
(details of derivation were shown in Appendix SA.3):

Update b: Recall the variation distribution for qðbÞ is
qðbÞ ¼ N ðMb;SbÞ. The parameters Mb and Sb are updated accord-
ing to estimating equations:

Mb ¼ E
1

r�2

� �
SbEðcjÞXTEðAÞ

Sb ¼
(

aE 1
r
�2

� �
ððXTXÞ�XÞ þ E 1

rb
2I

� �
g
�1

where A ¼ y�
PM

m¼1

ðZmðrmImUmÞÞ; X ¼ wwT þW�ðI �WÞ;

W ¼ diagðwÞ; w ¼ EqðcÞ; and � denotes the Hadamard
product.Update cj: The variation distribution for qðcjÞ is

qðcjÞ ¼ BernoulliðwjÞ, where wj ¼ EðqðcjÞÞ. To update the cj, we

used the following estimating equation (Ormerod et al., 2017):

logitðwjÞ ¼ logitðh0Þ �
1

2
E

1

r2
�

� �
XT

j X jðMT
bbðjÞMbðjÞ þ Sbðj;jÞ Þ

� E
� 1

r�2

XT
j

�
X ð�jÞCð�jÞðMbð�jÞMbðjÞ þ Sbð�j;jÞ Þ

��

þE
� 1

r�2

XT
j ðEðAÞMbðjÞÞ;

�

where logitðwjÞ ¼ log
wj

1�wj

� �
; MbðjÞ is the jth component of Mb;

Mbð�jÞ is the whole vector of Mb except the single component at

index j; X ð�jÞ and Cð�jÞ are the matrices of X and C except the jth col-

umn; and Sbð�j;jÞ is jth column of Sb without the jth component.

Update Um: The variational distribution for qðUmÞ is
qðUmÞ ¼ N ðMm; SmÞ, with mean Mm and variance Sm. Therefore,
the parameters are updated as:

Mm ¼ Eð 1

r�2

ÞSmðEðrmÞIÞZT
mEðBmÞ

Sm ¼
(

aE
1

r�2

� �
ððZT

mZmÞ�ðwmImÞÞ þ E
1

r2
m

I

� �9=
;
�1 ; (11)

where Bm ¼ y� XCb�
P

i6¼mðZiðriIiU iÞÞ.
Update rm: The variation distribution for qðrmÞ is

qðrmÞ ¼ BernoulliðwmÞ, where wm ¼ EðqðrmÞÞ. Hence, the estimat-
ing equation for updating rm iS

logitðwmÞ ¼ logitðh1Þ �
1

2r�
2 MT

mZT
mZmMum

þ trðZT
mZmSmÞÞ

�

þ 1

2r�2
EðBT

mÞZmMm

�
;

(12)

where wm ¼ EðqðrmÞÞ; logitðwmÞ ¼ log wm

1�wm

� �
.

Update r2
m: The variational distribution for qðr2

mÞ is

qðr2
mÞ ¼ IGðam; bmÞ. The parameters are updated bY

am ¼
n

2
þ a1

bm ¼ E
1

2
UT

mUm

� �
þ b1

(13)

Update r2
� : The variational distribution for qðr2

� Þ is
qðr2

� Þ ¼ IGða�; b�Þ. The parameters a� and b� are updated according
to following equations:

a� ¼
n

2
þ a0

b� ¼ Eð1
2

EðCTCÞÞ þ b0;
(14)

where C ¼ y� XCb�
PM

m¼1

ðZmðrmImUmÞÞ.

3 Simulations

Simulation studies were conducted to evaluate the impact of disease
models and the number of noise regions on the performance of the
proposed method. For all simulation studies, to mimic the minor al-
lele frequencies and linkage disequilibrium (LD) in the real genome,
all genotype data was drawn directly from phase 1 (ADNI-1) and
subsequent extensions (ADNI-GO/2) of ADNI study (i.e. n¼808)
(Saykin et al., 2015). We first excluded the genetic variants with
more than 20% missing and then grouped them according to the
gene annotation in GRch37 assembly. The average number of genet-
ic variants for each gene is around 597 (range 10–4056), and the
average length of the gene is 32.9 kb (range 2.6–303.1 kb). We fur-
ther added a window of 5 kb upstream and downstream to each
gene. In all our simulation studies, we treated each gene as a genetic
region. To avoid over-fitting, 20% samples were randomly selected

Algorithm 1: Inference procedure of variational Bayes algo-

rithm for BLMM.

Input: X; G1, . . ., GM; y

Output: b̂, w1, ..., wp, Û 1, ..., Û M, w1, ..., wM, r̂2
1, ..., r̂2

M; r̂
2
�

Initialisation: define Km / GmWmGT
m for each region and set

Zm ¼ QmK
1
2
m; m ¼ 1 . . . ;M;

while the increase of variational lower bound (ELBO) is not

negligible do

1: For individual effects: a). update Mb and Sb for b (see 9),

and b) update logitðw1Þ; . . . ; logitðwpÞ (see 10);

2: For cumulative effects: a). update Mm and Sm for Um (see

11); b) update logitðw1Þ; . . . ; logitðwMÞ; see 12; and c) up-

date am and bm for rm (see 13);

3: Update a� and b� for r2
� according to 14;

end
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for testing and the remaining was used for training. To reduce the
chance finding problem, each simulation setting was replicated 100
times. For all methods, the prediction performance was evaluated by
using the Pearson correlations and root mean square errors (RMSE).

We further compared our method with two widely used methods
including MultiBLUP (Speed and Balding, 2014) and DPR with VB
method (denoted as DPRVB). For computational reasons, we did
not compare the performance of the proposed method to DPR with
parameter estimated using the MCMC technique, which has similar
performance as DPRVB but much slower convergence rate (Zeng
and Zhou, 2017).

3.1 Scenario 1: the impact of disease model
In this set of simulations, we evaluated the performance of the pro-
posed method under different disease models, including the out-
comes were affected by (i) groups of predictors located nearby and
(ii) isolated predictors.

3.1.1 The outcome is affected by predictors located nearby

We first evaluated the proposed method when diseases were caused
by a number of predictors located in nearby regions (i.e. the assump-
tion used in MultiBLUP). We randomly selected 30 genes from
ADNI dataset and set 2 of them to be causal. We simulated the out-
comes aS

Y � Nð0;
XR

i

K ir
2
i þ Ir2

� Þ; (15)

where K i ¼ ðGiW iG
T
i Þ=pi; Gi is an n� pi matrix of all genetic

markers on gene i; and pi is the number of variants on gene i. W i is

the weights that reflect the predictive effect of each genetic variant
on the ith gene. We first considered the case where outcomes were
mainly caused by common variants, and set wj ¼ 1 for each predic-
tors. We further considered the scenario where rare variants contrib-
uted substantially to disease risk. We simulated two models under

such settings, where a beta-type of weights wj ¼
dbetaðMAFj; 1; 25Þ2 and a weighted sum statistics types of weights

wj ¼ 1
MAFjð1�MAFjÞ (denoted as WSS) were used. While the BLMM

uses WSS weight to construct the variance-covariance structure for
the random effects by default, other weights can also be employed.
To evaluate the robustness of the default weight, we further ana-
lysed the simulated data using BLMM-UW and BLMM-BETA,
where the un-weighted weights (i.e. wj ¼ 1) and beta types of
weights were adopted respectively. For all the scenarios, we gradual-
ly changed the heritability from 25% to 75%.

The Pearson correlations and the RMSEs are shown inFigure 1.
Not surprisingly, as the heritability increases, all methods tend to
perform better. When the outcomes were simulated under the as-
sumption that all genetic variants contributed equally (Fig. 1A), all
BLMM methods tend to perform similarly. When the disease out-
comes were simulated under the assumption that rare variants had
large contributions (Fig. 1B and C), BLMM with BETA and WSS
weights perform much better than the BLMM-UW. This is mainly
because the weights in both the BLMM-BETA and BLMM-WSS are
designed to capture the effects from rare variants. Indeed, the per-
formance of BLMM-BETA and BLMM-WSS are very similar.
Although BLMM with weights that reflect the underlying disease
model performed the best, the BLMM-WSS performed close to the
best under all the situations considered. As shown in Figure 1,
BLMMs have much better performance than both MultiBLUP and
DPRVB. This is mainly due to the fact that BLMM explicitly

Fig. 1. The comparison of prediction accuracy when outcomes were caused by groups of predictors located nearby. (A) The outcomes were simulated with an equal weight ma-

trix. (B) The outcomes were simulated with a BETA weight matrix. (C) The outcomes were simulated with a WSS weight matrix
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accounts for the effects from rare variants and selects predictive
regions, and thus substantially reduce the impact of noise. In add-
ition, we noticed that DPRVB has much worse performance than
both MultiBLUP and BLMM methods under current settings, where
a group of predictors from nearby regions are predictive. This is par-
tially because DPRVB assumes that only isolated markers have large
predictive effects.

With regards to the variable selection, the averaged sensitivity
and specificity for BLMM-WSS are 87% and 94%, respectively.
The sensitivity and specificity for the other two weights (i.e. BLMM-
UW and BLMM-BETA) are listed in Supplementary Table S1. Not
surprisingly, BLMM with the weight that represents the underlying
disease model has the best selection performance. However, the

BLMM-WSS tends to be robust under various disease models. While
BLMM-WSS performs the best when the model assumption was com-
pletely satisfied, its selection accuracy is close to the best that is
obtained from BLMM with weights reflecting the true disease model
(Supplementary Table S1).

3.1.2 The outcome is affected by isolated predictors

We further considered the case where the outcomes were caused by
a small fraction of isolated genetic variants, the same assumption
employed by the sparsity regression model. Similar to the above set-
tings, 30 genes were drawn from the ADNI dataset. We randomly
selected 1% of common genetic variants to serve as causal variants

Fig. 2. The comparison of prediction accuracy when outcomes were affected by isolated predictors

Fig. 3. The comparison of prediction accuracy under different number of noise regions. (A) The outcomes were simulated with an equal weight matrix and isolated genetic var-

iants. (B) The outcomes were simulated with a BETA weight matrix and isolated genetic variants. (C) The outcomes were simulated with a WSS weight matrix and isolated

genetic variants
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and simulated the outcome as Y ¼ bþ �, where X is a matrix of
causal variants and b � Nð0; Ir2

bÞ is their effects. Similar to Scenario I,
we gradually increased the heritability from 25% to 75%.

The results are summarized in Figure 2. As the heritability
increases, the performance of all methods improves. As
expected, BLMM-WSS has the highest Pearson correlations and
the smallest RMSEs across all the settings considered, and it
captures most of the heritability. This is mainly due to the fact
that our proposed method can not only model the effects from
individual predictors but also select those that are predictive.
DPRVB has slightly better performance than MultiBLUP, indi-
cating the improved performance of DPRVB yields when its as-
sumption is met.

With regards to the variable selection, the LD between causal and
non-causal variants can have a big impact on the evaluation of selection
accuracy (Berger et al., 2015; Walters et al., 2012; Yang et al., 2010).
As LD is mostly present within the gene and becomes negligible at dis-
tant locations (e.g. Supplementary Fig. S1), we calculated the probabil-
ity of correctly select genes that harbour causal variants. BLMM-WSS
can achieve an average of 80% sensitivity and 93% specificity
(Supplementary Table S2). All genes have a relatively small chance of
being selected from the random effects part of the BLMM model
(Supplementary Table S2). This is consistent with the disease model,
where the predictors are not located nearby.

3.2 Scenario 2: the impact of noise predictors
In this set of simulations, we evaluated the impact of the number of
noise regions on the performance of the proposed method. We con-
sidered a disease model where diseases were caused by both isolated
markers and a group of predictors located in nearby regions. Similar
to Section 3.1, 2 genes were randomly selected to serve as groups of
predictors located nearby, and 1% of common variants were set as
causal isolated predictors. Regions without any causal markers
served as the noise, and we gradually increased its number from 30
to 50. The outcomes were simulated aS

Y � Nðbþ
XR

i

gi; Ir
2
� Þ (16)

where gi � Nð0;K ir2
i Þ. The total heritability was set to be 80% with

cumulative genetic effects and isolated additive effects each contri-
buting half of the genetic variance (i.e. VarðbÞ ¼ Varð

PR
i

giÞ). Same
as Section 3.1.1, for cumulative effects, we used three weight matri-
ces to allow rare variants having various levels of contributions to
disease risks.

The Pearson correlations and RMSEs are shown in Figure 3, and
the computational time (IntelVR XeonVR Processor E5-2695 v4
2.1 GHz, dual core) and memory as the number of noise regions
increases is shown in Supplementary Figure S2. Regardless of the
number of regions and the underlying disease models, the proposed
method performs better than the others. As the number of noise
regions increases, the prediction accuracy from all methods
decreases. However, the performance of the other methods dropped
much faster as compared to the BLMM method. This is partially

due to the fact that the proposed method is capable of selecting and
modelling the predictive effects from both individual variants and
genes, which substantially reduces the impact of noise regions/pre-
dictors. MultiBLUP uses empirical criteria to select predictive
regions, and thus has improved performance as compared to
DPRVB. However, it can’t capture the effects from isolate predictors
and the adopted empirical criteria may reduce the robustness of its
performance. For DPRVB, it uses truncated stick-breaking approxi-
mation approach to select the normal components for the density es-
timation, which is not directly related to the selection of predictive
variables. Their strategy incurs uncertainty in selecting predictors
which can negatively affect models’ predictive ability.

With regards to the variable selection, the BLMM-WSS can rea-
sonably detect both causal variants and regions. As the number of
noise region increases from 30 to 50, the average sensitivity changed
from 74% to 63% and the specificity changed from 92% to 85%.
The detailed selection performance for additive and random effects
for the BLMM model under each disease model is shown in
Supplementary Table S3.

4 Real data application

We were interested in predicting positron emission tomography
(PET) imaging outcomes using the whole-genome sequencing data
from the ADNI study. ADNI is a multi-site study designed for the
prevention and treatment of Alzheimer’s Disease (AD) (Mueller
et al., 2005). The initial phase of ADNI (ADNI-1) and its subse-
quent phases (ADNI-GO/2) recruit participants aged from 55 to 90,
at 57 sites across the United States and Canada (Nho et al., 2016).
The whole-genome sequencing (WGS) was performed on blood-
derived genomic DNA samples from 818 ADNI (1/GO/2) partici-
pants (Saykin et al., 2015). Samples were sent to a non-Clinical
Laboratory Improvements Amendments (non-CLIA) laboratory at
Illumina and sequenced on the Illumina HiSeq2000 (Saykin et al.,
2015). After discarding the related individuals, 808 subjects
remained for my analysis (Petersen et al., 2010). To ensure data
quality, variants not successfully genotyped (missing rate > 1%)
were filtered out from the raw data.

The distribution of the PET-imaging outcomes, including florbe-
tapir (AV45, Mean ¼ 1.21, STD ¼ 0.23) and fluorodeoxy glucose
(FDG, Mean ¼ 6.04, STD ¼ 0.8), are shown in Supplementary
Figure S3. The sample sizes for FDG and AV45 are 639 and 501, re-
spectively. We used 57 susceptibility genes (Supplementary Table
S4) that have been reported to be associated with AD, and included
a total of 115 749 genetic variants in our analysis. To avoid over-
fitting, 80% of the data was used to train the model. Pearson corre-
lations and RMSEs were calculated based on the remaining 20% of
the data. To avoid the chance findings, this process was replicated
100 times. For comparison purposes, we also built prediction mod-
els using the DPRVB and MultiBLUP methods.

The prediction accuracies are shown in Figure 4. BLMM-WSS
outperformed both the MultiBLUP and DPRVB methods for the pre-
diction of FDG and has comparable performance to that of
MultiBLUP for the prediction of AV45. For both outcomes, DPRVB

Fig. 4. The prediction accuracies for positron emission tomography imaging outcomes
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that is not capable of selecting predictors performs substantially
worse than both BLMM and MultiBLUP, indicating variable selec-
tions can be of great importance for an accurate and robust predic-
tion model. To further explore our model, the probability of each
gene being selected was summarized (Supplementary Table S4).
Three genes (i.e. APOC, APOE and TOMM40) have been selected
frequently for both AV45 and FDG. Many previous studies have
shown that these three genes play an important role in AD. For
examples, Ossenkoppele et al. (2013) found that APOE e4 allele has
a differential effect on glucose metabolism in AD patients. APOs
(e.g. APOC-III and APOE) have also been confirmed to be associ-
ated with AD-related pathologies (Zou et al., 2019). TOMM40 and
APOE are related to the late-onset AD (Roses, 2010).

5 Discussion and conclusions

We have presented a novel BLMM framework for risk prediction
analysis using high-dimensional genetic data. The proposed frame-
work is (i) flexible and robust against various disease models (i.e.
diseases can be affected by predictors located nearby and/or iso-
lated); (ii) capable of selecting and capturing the predictive effects
from both common and rare variants; and (iii) less sensitive to the
number of noise predictors. Through extensive simulation studies,
we have demonstrated that BLMM has higher prediction accuracy
as compared to the commonly used MultiBLUP and DPRVB (Speed
and Balding, 2014; Zeng and Zhou, 2017) and can correctly select
predictive variants/regions. Moreover, although BLMM performs
the best when weights reflect the underlying disease model, the de-
fault weight (i.e. BLMM-WSS) has the best or close-to-the-best per-
formance. We considered this important, as in practice the disease
model is usually unknown in advance.

Many studies have demonstrated that rare variants can improve
the accuracies of risk prediction models (Gibson, 2012; Taudien
et al., 2016). However, their large number, low minor allele fre-
quencies and unknown types of effects pose significant challenges
for prediction modelling. Most existing methods are designed for
common variants (Speed and Balding, 2014; Weissbrod et al., 2016;
Zeng and Zhou, 2017; Zhou et al., 2013), and thus are not capable
of capturing the predictive effects from rare variants. In this study,
we used a similar idea in the association analysis of sequencing data
(Speed and Balding, 2014; Wu et al., 2011), and assumed that genet-
ic similarity leads to phenotypic similarity. We incorporated a WSS
weight into the genetic similarity measure, making it capable of cap-
turing the predictive effects from rare variants. As shown in simula-
tion studies (Fig. 1), this strategy yields improved prediction
accuracy when rare variants contribute to disease risk. While the
ideal choice of weights should reflect the underlying disease model,
the proposed WSS weight has the best or close-to-optimal perform-
ance across a wide range of settings (Fig. 1).

Most of the existing methods either assume that diseases are
caused by a few isolate predictors(Carvalho et al., 2008; Zhou
et al., 2013) or a group of predictors located nearby(Speed and
Balding, 2014; Weissbrod et al., 2016; Zeng and Zhou, 2017)
and thus their performance can be affected by the unknown
underlying disease model. The proposed BLMM can be viewed as
a unified framework, where both of these commonly used
assumptions are accommodated. Specifically, the random effect
part of BLMM is designed to capture the cumulative effects from
predictors including rare variants in nearby regions, whereas the
fixed effect part is for modelling the effects from isolated predic-
tors. As shown in simulations, the proposed method achieves the
highest prediction accuracy among all the methods considered re-
gardless of the underlying disease models.

For high-dimensional sequencing data, a large amount of meas-
ured genetic variants are not predictive, and thus variable selection
is of great importance for building accurate prediction models.
However, the majority of the existing variable selection methods are
designed for selecting isolated predictors (Habier et al., 2011; Yi
and Xu, 2008; Zeng and Zhou, 2017; Zhou et al., 2013) and few
can be used for selecting groups of predictions. While the LMM-
based prediction models have the capacity for selecting groups of

predictors located nearby (Speed and Balding, 2014; Weissbrod
et al., 2016), they usually use empirical criteria that can lead to sub-
optimal prediction performance. Contrary to existing methods, the
proposed BLMM uses ‘Bernoulli-Gaussian prior’ and ‘spike and
slab prior’ to facilitate the variable selection. It can not only select
predictive markers but also regions with many predictors harboured.
It achieves over 80% sensitivity and specificity across all the simula-
tion settings (Supplementary Tables S1–S3). With noise regions/var-
iants being excluded, the BLMM has a much better prediction
accuracy as compared to MultiBLUP and DPRVB.

Through the analysis of PET imaging outcomes, we found that
the overall accuracy of BLMM-WSS is greater compared to the
other methods. APOE, APOC and TOMM40 located on chromo-
some 19 are frequently selected. Mounting evidences have indicated
that these three genes are important causative elements of AD.
Polymorphism of APOE can influence the neuronal repair mecha-
nisms and the maintenance of synaptic connections (Ferencz et al.,
2012). TOMM40 is considered as a promising lending gene in AD
onset and plays an essential role in mitochondrial survival (Ferencz
et al., 2012). Recent reports show that APOE locus have LD pat-
terns with APOE on 19q13.2 (Bekris et al., 2012). This strong LD
suggests it is difficult to establish the association between risk of
AD and APOE promoter polymorphisms independent (Bekris
et al., 2008). SNPs at the TOMM40 gene have been reported to be
associated with higher cerebrospinal fluid and post-mortem brain
apolipoprotein E (apoE) expression in the hippocampus of AD
patients (Bekris et al., 2012). APOC polymorphism has been
reported to be associated with an increased risk of the late-onset
AD, and it also has interaction with APOE (Martins et al., 2009).

Similar to existing literature, the proposed BLMM only applies
to continuous outcomes. While conventional strategies normally
treat binary outcomes as if they were continuous (Speed and
Balding, 2014; Weissbrod et al., 2016; Zeng and Zhou, 2017; Zhou
et al., 2013), it would be of interest to develop a generalized
Bayesian LMM framework that can explicitly take the distribution
of the outcome into consideration. Currently, BLMM only focuses
on additive effects, and it would be natural to extend BLMM for
non-additive effects (e.g. dominance and epistasis effects), where
various kernel functions (e.g. quadratic and radial basis kernels) can
be used. Although KPCA and VB algorithms were used to reduce the
computation cost, it can still be computationally expensive for
genome-wide data, especially when various types of effects (i.e.
additive or pairwise interaction) are considered. These will be the fu-
ture directions of my research.

In summary, we have developed a novel BLMM method. It can
capture the predictive effects from both common and rare variants,
and provide robust prediction performance against various underly-
ing disease models. We considered the proposed BLMM model as
the efficient apparatus for use in a wide range of risk prediction
tasks.
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