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Abstract

Summary: Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive
carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding car-
cinogenesis and provides insightful clues to build predictive signatures with mechanistic interpretability for cancer
precision medicine. Here, we implemented a machine learning-based gene dysregulation analysis framework in an
R package, DysRegSig, which is capable of exploring gene dysregulations from high-dimensional data and building
mechanistic signature based on gene dysregulations. DysRegSig can serve as an easy-to-use tool to facilitate gene
dysregulation analysis and follow-up analysis.

Availability and implementation: The source code and user’s guide of DysRegSig are freely available at Github:
https://github.com/SCBIT-YYLab/DysRegSig.

Contact: yyli@scbit.org or yxli@sibs.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumorigenesis is believed to be triggered by a series of events such as
DNA mutation, chromosomal variation, aberrant epigenetic modifi-
cation and further driven by dysfunctional regulation of gene expres-
sion programs (Hanahan and Weinberg, 2011; Lee and Young,
2013). Gene dysregulation has been suggested as a hallmark of cancer
(Bradner et al., 2017). The phenotypic heterogeneity of tumors, like
drug response, metastasis and survival time, could thus be ascribed,
at least in part, to gene dysregulations. In this sense, investigating
transcriptional dysregulations helps to understand the molecular
mechanisms underlying phenotypic changes and promotes the imple-
mentation of cancer precision medicine. Specifically, gene dysregula-
tion analysis has the potential to provide functionally relevant seeds
for building predictive signatures with both predictive power and ex-
planatory power, which to some extent address the issue that most of
current efforts to build signatures for predicting prognosis, and

therapeutic benefits are focusing on predictive accuracy rather than
on mechanistic interpretability (Robinson et al., 2013).

About one decade ago, differential correlation analysis (DCA)
began to emerge as a mechanism-driven strategy, representing the
first steps towards elucidating gene dysregulations (de la Fuente,
2010). However, without fully incorporating transcriptional regula-
tion rules, DCA-based methods inevitably include too much noise
(Singh et al., 2018). To enhance the performance of gene dysregula-
tion analysis, we proposed a machine learning-based framework in a
companion paper (Li et al., submitted to JMCB, accepted), which is
capable of robustly exploring gene dysregulations from high-
dimensional expression data with cooperativity and synergy be-
tween regulators, and several other transcriptional regulation rules
are taken into consideration. Here, we report DysRegSig, an R pack-
age that serves as an easy-to-use tool to facilitate gene dysregulation
analysis and mechanistic signature construction for cancer precision
medicine.
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2 The design of DysRegSig

Figure 1 describes the framework of DysRegSig. Figure 1a gives an
overview of the pipeline for identifying gene dysregulations. Given
expression data under two comparative conditions and a reference
gene regulatory network (GRN), DysRegSig first builds conditional
GRNs with feature selection algorithm such as Boruta (Kursa and
Rudnicki, 2010) that is able to consider cooperativity and synergy
between TFs and robustly cope with high-dimensional data, then
quantifies regulatory intensities of every regulation relationships and
their confidence intervals with de-biased LASSO (Javanmard and
Montanari, 2014), and eventually identifies gene dysregulations by
integrating three standards including differential regulation, differ-
ential expression of target and the consistency between differential
regulation and differential expression (Li et al., 2017) (Fig. 1a and
b). Figure 1c provides an example of a gene dysregulation. Benefited
from the above design, the gene dysregulation analysis pipeline
could robustly process high-dimensional expression data with coop-
erativity and synergy between regulators, and several other tran-
scriptional regulation rules are taken into consideration.

Based on the identified gene dysregulations, DysRegSig made
further selections with genetic algorithm, focusing on those robustly
associated with a specific phenotype, such as prognosis and drug re-
sponse (Fig. 1d). These dysregulations could be used as mechanistic
signatures for cancer precision medicine. Besides, DysRegSig offers
DCA tools including DiffCor and DiffCorþþ, which combines trad-
itional DCA, differential expression analysis, and the estimation of
the consistency between differential coexpression and differential
expression. Tools for ranking dysregulations and TFs, RankTF and
RankDysReg, are also provided. More details of DysRegSig could
be found in Supplementary File.

3 Case study

We adopted dataset IMvigor210CoreBiologies to demonstrate the
practicability and performance of DysRegSig, which contains ex-
pression data from patients with metastatic urothelial cancer and
matched drug response data of a PDL1 inhibitor (Mariathasan
et al., 2018). DysRegSig identified 295 gene dysregulations between
response group (n¼68) and non-response group (n¼230)
(Supplementary Table S1). Among the top ten TFs, eight are cancer-
related genes (Supplementary Table S2, Supplementary Fig. S1). The
identified dysregulations showed predictive effect for drug response
and prognosis as a whole (Supplementary Table S3, Supplementary
Fig. S2). At last, 18 dysregulations that are robustly associated with
prognosis were selected to build a prognostic signature, which
proved to exhibit much higher predictive accuracy than mutation
burden and neoantigen burden (Supplementary Fig. S3).
Furthermore, the 18 dysregulations offer insightful clues to under-
stand the mechanisms underlying prognosis, which endows the pre-
dictive signature with mechanistic explanatory power.
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Fig. 1. The framework of DysRegSig. (a) The pipeline for identifying gene dysregula-

tions. (b) The details of the construction of conditional GRNs and the quantification

of regulatory intensities. (c) An example of gene dysregulation. X-axis denotes TF’s

expression and y-axis denotes target’s expression. The regression lines and confi-

dence interval shadows were calculated by single variable regression. (d) The identi-

fication of gene dysregulations that is robustly associated with a specific phenotype.

The frequency of each dysregulation in top ten ‘individuals’ at each iteration of gen-

etic algorithm is indicated by color
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