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Abstract

Motivation: As one of the most important and widely used mainstream iterative search tool for protein sequence
search, an accurate Position-Specific Scoring Matrix (PSSM) is the key of PSI-BLAST. However, PSSMs containing
non-homologous information obviously reduce the performance of PSI-BLAST for protein remote homology.

Results: To further study this problem, we summarize three types of Incorrectly Selected Homology (ISH) errors in
PSSMs. A new search tool Supervised-Manner-based Iterative BLAST (SMI-BLAST) is proposed based on PSI-
BLAST for solving these errors. SMI-BLAST obviously outperforms PSI-BLAST on the Structural Classification of
Proteins-extended (SCOPe) dataset. Compared with PSI-BLAST on the ISH error subsets of SCOPe dataset, SMI-
BLAST detects 1.6–2.87 folds more remote homologous sequences, and outperforms PSI-BLAST by 35.66% in terms
of ROC1 scores. Furthermore, this framework is applied to JackHMMER, DELTA-BLAST and PSI-BLASTexB, and
their performance is further improved.

Availability and implementation: User-friendly webservers for SMI-BLAST, JackHMMER, DELTA-BLAST and PSI-
BLASTexB are established at http://bliulab.net/SMI-BLAST/, by which the users can easily get the results without the
need to go through the mathematical details.

Contact: bliu@bliulab.net

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein remote homology detection is an increasingly important task
in analysing protein structures and functions (Chen et al., 2018).
With the rapid growth of protein sequences, more and more compu-
tational methods have been proposed to address this important and
challenging problem.

Among those methods, PSI-BLAST (Altschul, 1997) is one of the
most widely used and famous tools in this field. It represents the
protein sequence as the Position-Specific Scoring Matrix (PSSM) in
an iteration manner, leading to better performance than sequence
alignment methods, such as BLAST (Altschul et al., 1990) and
FASTA (Pearson, 1990; Pearson and Lipman, 1988). Because of its
effectiveness and accuracy, several improvements for PSI-BLAST
have been proposed. For e-value score, some methods re-calculate or
replace it for more accurate ranking list. Because early iterations are
highly specific, and later iterations are sensitive for weaker remote
homologs, SIB-BLAST (Lee et al., 2008) re-calculates e-value by
combining the second ranking list and the final ranking list to im-
prove the accuracy of PSI-BLAST. PSI-BLASTFDR (Carroll et al.,
2015) replaces the e-value threshold with false discovery rate (FDR)

to improve retrieval performance. For PSSM profile, PSI-BLASTexB
(Oda et al., 2017) points out that the narrow block in multiple se-
quence alignment (MSA) leads to an inaccurate PSSM, and it solves
this problem by setting the minimum block width (MBW) in PSI-
BLAST. CS-BLAST (Biegert and Soding, 2009) constructs a new
context-specific amino acid similarities to replace the PSSM for
higher sensitivity. DELTA-BLAST (Boratyn et al., 2012) searches a
database with a new constructed PSSM, which contains the
information of conserved domain after using RPS-BLAST
(Marchler-Bauer, 2002) to search on Conserved Domain Database
(Marchler-Bauer, 2011). On the library of complete protein sequen-
ces, PSI-SEARCH2 (Pearson et al., 2017) solves the homologous
over-extension (HOE) errors (Gonzalez and Pearson, 2010) of
PSSM by inserting the original query sequence residues into gapped
positions in the aligned subject sequences. Therefore, the frequency
of false-positive alignments is reduced by 5–20 folds compared with
PSI-BLAST and JackHMMER. HHblits (Remmert et al., 2012) and
HMMER (Eddy, 2011) are based on HMM profile alignments ra-
ther than PSSM, which is more sensitive because HMM profile con-
siders not only emission probability but also state transition
probability. JackHMMER (Johnson et al., 2010) and HHblits
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(Remmert et al., 2012) also use different iterative strategies to en-
hance the ability of detecting remote homology protein. Those meth-
ods are combined to further improve the performance, such as
SAM-HMMER (Wistrand and Sonnhammer, 2005), CHASE (Alam
et al., 2004) and ProtDec-LTR (Liu et al., 2015a).

For databases with whole protein sequences, such as UniProt
dataset (The UniProt, 2017), the most important problems of PSI-
BLAST are non-homologous false-positive (FP) alignments (NH-FP)
and HOE FPs defined by Gonzalez and Pearson (2010). HOE errors
severely affect the performance of PSI-BLAST on the databases with
whole proteins. Fortunately, PSI-SEARCH series (Li et al., 2012;
Pearson et al., 2017; Yang et al., 2019) have solved the HOE errors
with excellent performance. However, unrelated protein domain
errors of NH-FP become the main errors in the search process of
PSI-BLAST on protein domain databases, which are widely used to
evaluate the performance of protein remote detection and fold rec-
ognition (Remmert et al., 2012; Senior et al., 2020; Yan et al.,
2019). To fully study the non-homologous protein errors in protein
domain databases, in this study, we make an attempt to solve the
non-homologous protein errors based on the PSI-BLAST search list
using a Supervised-Manner-based Iterative framework (SMI-
BLAST).

Based on the analysis of PSI-BLAST search results and non-
homologous protein errors, we summarize three situations as incor-
rectly Selected Homology (ISH) errors. ISH errors indicate that true
positives (TPs) exist in the ranking list but the selected list is null or
contains false positives. Figure 1 shows three types of ISH errors and
other situations of PSSM: (i) True-PSSM (Fig. 1A). PSSM is con-
structed by TPs, which is an ideal situation for PSSM and can de-
scribe the correct evolutionary information of query sequences; (ii)
ISH-MIX error (Fig. 1B). The selected list contains false positives
and TPs, leading to more false positives detected at later iterations;
(iii) ISH-NULL error (Fig. 1C). No sequence in the selected list can
be used to construct PSSM but there are TPs in the candidate list;
(iv) ISH-ALL error (Fig. 1D). The sequences in the selected list are
all false positives but TPs exist in the candidate list. For PSI-BLAST
with ISH-ALL error, it is hard to detect the TPs at later iterations
and (v) False-PSSM (Fig. 1E). The ranking list contains no TP, and
therefore there is no more adjustment space for PSSM. To construct
and keep an ideal situation during the iteration process, the above
ISH errors of PSSM should be solved.

In this study, we propose a framework (SMI-BLAST) to correct
ISH errors by embedding Supervised-Manner-based Iterative frame-
work (SMI-based framework) in PSI-BLAST. SMI-BLAST can not
only correct the ISH errors of PSI-BLAST, but also can improve its
performance for protein remote homology detection. Furthermore,
SMI-based framework is successfully applied to JackHMMER

(Johnson et al., 2010), DELTA-BLAST (Boratyn et al., 2012) and
PSI-BLASTexB (Oda et al., 2017).

2 Materials and methods

2.1 Benchmark dataset
For evaluating the performance of SMI-BLAST, the Structural
Classification of Proteins-extended (SCOPe2.06) dataset
(Chandonia, 2019) is used, which is a golden benchmark for protein
remote homology detection with less than 95% identity to each
other. According to structural and evolutionary relationships,
28 010 protein sequences in SCOPe are classified into the following
five hierarchy levels: protein, family, superfamily, fold and class.

For analysing the ISH errors of PSSM, those sequences suffering
from ISH errors after the first iteration of PSI-BLAST are separated
from SCOPe benchmark dataset. ISH error subset is represented as:

S
ISH ¼ S

ISH
MIX [ SISH

NULL [ S
ISH
ALL; (1)

where those subsets represent the three ISH error situations shown
in Figure 1. (i) ISH error subset S

ISH
MIX with 229 sequences: the

selected lists of those sequences contain TPs and false positives. (ii)
ISH error subset SISH

NULL with 907 sequences: the selected lists of those
sequences contain no sequence, but TPs exit in the result list. (iii)
ISH error subset S

ISH
ALL with 6 sequences: the selected lists of those

sequences only contain false positives, but TPs exit in the result list.
For the total SCOPe benchmark dataset in this study, it consisted

of ISH error subset SISH and other sequences that belong to the other
two situations of PSSM. The SCOPe benchmark dataset is repre-
sented as:

Sscope ¼ S
ISH [ ST [ SF; (2)

where those two subsets represent the corresponding situations
shown in Figure 1. (i) Subset ST with 25 014 sequences: the selected
lists of those sequences after the first iteration are all TPs. (ii) Subset
S

F with 1854 sequences: their ranking lists after the first iteration
contain no TP, meaning that there are no TPs for constructing cor-
rect PSSM from those ranking lists.

2.2 Flowchart of SMI-BLAST
The flowchart of SMI-based framework is shown in Figure 2. The
flowchart contains four models: (i) first unsupervised PSI-BLAST
model is used to produce initial search result with 1 iteration; (ii) the
first supervised learning to rank model (Li, 2011) LTR-First is used
to solve the ISH errors by selecting a more accurate selected list. The
false positives used to construct PSSMs are obviously reduced by
LTR-First model; (iii) the second unsupervised PSI-BLAST model is
used to detect more homology protein sequences with the corrected

Fig. 1. The five situations of PSI-BLAST selecting sequences to construct PSSM profile

for protein remote homology detection. Brown bars, blue bars and red bars within

black rectangle represent query sequences, homologous sequences (in the same super-

family) and non-homologous sequences (not in the same superfamily), respectively.

Blue bars and red bars constitute the ranking list of search results. The grey dotted lines

represent the inclusion threshold for next alignments (default e-value ¼ 0.002) and the

threshold for saving hit (default e-value ¼ 10) in PSI-BLAST (Altschul, 1997). Selected

lists represent those sequences are selected to construct PSSM for the next iteration

when their e-value scores are lower than inclusion threshold of PSI-BLAST. Candidate

lists represent that those sequences are abandoned in the next iteration when their

scores are between inclusion threshold and threshold of PSI-BLAST.(Color version of

this figure is available at Bioinformatics online.)

Fig. 2. The flowchart of SMI-BLAST. The red arrows show how to adjust PSSM to

solve the ISH errors. The blue arrows show re-sorting the final ranking list by learn-

ing to rank model based on sequence similarity matrix when the number of iteration

is greater than 1. (Color version of this figure is available at Bioinformatics online.)
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PSSM; (iv) the second supervised learning-to-rank model LTR-Final
is used to re-rank the final ranking list from previous step for more
accurate results. Although more accurate PSSM can be obtained by

LTR-First, the final ranking lists should be re-ranked by LTR-Final.
The reason is that the True-PSSM cannot guarantee the accuracy of

ranking list. Furthermore, sequence similarity matrix is the most
critical module for the two learning-to-rank models, because it
describes the similarity of ranking list and query sequence from vari-

ous aspects.

2.3 Sequence similarity matrix construction
How to measure the similarity of remote homology protein sequence

pairs is a challenging task. PSI-BLAST relies on profile alignment
scores. Therefore, its ranking lists are confined to sequence align-
ment information. The ranking list of PSI-BLAST can be represented

as:

Listn qð Þ ¼ p1; p2; . . . ; plf g; (3)

where n represents the nth iteration, q represents the query protein,
pi represents the ith feedback protein in the ranking list and

evalue q; pið Þ � evalue q; piþ1ð Þ, l represents the number of feedback
proteins ðdefault 0 � l � 500Þ.

In SMI-BLAST, the l � 89 sequence similarity matrix is con-
structed to describe the similarity of query sequences and feedback
sequences. This matrix is composed of one alignment similarity ma-

trix and four feature similarity matrices, defined as:

Psequence similarity ¼ PALIPAACPACRPPSEAACPPROFILE�;
�

(4)

where l � 5 PALI is alignment similarity matrix, l � 18 PAAC is
amino acid composition feature similarity matrix, l � 24 PACR is

autocorrelation feature similarity matrix, l � 12 PPSEAAC is pseudo
amino acid composition feature similarity matrix, l � 30 PPROFILE

is profile-based feature similarity matrix.
For l � 5 alignment similarity matrix, the alignment scores are

extracted from the ranking list generated by PSI-BLAST, defined as:

PALI¼

ui q; p1ð Þ ue q; p1ð Þ ub q; p1ð Þ ual q; p1ð Þ uo q; p1ð Þ
ui q; p2ð Þ ue q; p2ð Þ ub q; p2ð Þ ual q; p2ð Þ uo q; p2ð Þ

..

. ..
. ..

. ..
. ..

.

ui q; plð Þ ue q; plð Þ ub q; p1ð Þ ual q; plð Þ uo q; plð Þ

2
66664

3
77775
;

(5)

where ui q; plð Þ; ue q; plð Þ; ubðq; p1Þ; ualðq; plÞ represent iden-
tity, e-value, bit score, align length calculated by PSI-BLAST, re-

spectively. uoðq; plÞ represents the reciprocal of ranking position in
ranking list of PSI-BLAST.

For l � 84 feature similarity matrix, six similarity metrics are
used to calculate the feature similarity scores between query se-
quence and feedback sequences in the ranking list. Those features of

query sequences and feedback sequences are extracted by Pse-in-
One (Liu et al., 2015b), which are useful for protein sequence ana-

lysis problems (Zou et al., 2016). The feature similarity matrix is
divided into four sub-matrices according to different feature types
defined as:

PAAC ¼

/Kmerðq; p1Þ /DRðq; p1Þ /DPðq; p1Þ
/Kmerðq; p2Þ /DRðq; p2Þ /DPðq; p2Þ

..

. ..
. ..

.

/Kmerðq; plÞ /DRðq; p lÞ /DPðq; plÞ

2
6664

3
7775; (6)

PACR ¼

/ACðq; p1Þ /CCðq; p1Þ /ACCðq; p1Þ /PDTðq; p1Þ
/ACðq; p2Þ /CCðq; p2Þ /ACCðq; p2Þ /PDTðq; p1Þ

..

. ..
. ..

. ..
.

/ACðq; plÞ /CCðq; p lÞ /ACCðq; plÞ /PDTðq; plÞ

2
6664

3
7775;

(7)

PPSEAAC ¼

/PCPSEAAC
ðq; p1Þ /SCPSEAAC

ðq; p1Þ
/PCPSEAAC

ðq; p2Þ /SCPSEAAC
ðq; p2Þ

..

. ..
.

/PCPSEAAC
ðq; plÞ /SCPSEAAC

ðq; p lÞ

2
66664

3
77775
; (8)

PPROFILE

¼

/APðq; p1Þ /T1ðq; p1Þ /T2ðq; p1Þ /PPðq; p1Þ /DTðq; p1Þ
/APðq; p2Þ /T1ðq; p2Þ /T2ðq; p2Þ /PPðq; p1Þ /DTðq; p2Þ

..

. ..
. ..

. ..
. ..

.

/APðq; plÞ /T1ðq; p lÞ /T2ðq; plÞ /PPðq; p1Þ /DTðq; plÞ

2
666664

3
777775
;

(9)

where AAC represents the amino acid composition based on Kmer
(Liu et al., 2008), DR (Liu et al., 2014b) and DP (Liu et al., 2014a).
ACR represents the autocorrelation based on AC, CC, ACC (Dong
et al., 2009; Guo et al., 2008) and PDT (Liu et al., 2012). PSEAAC
represents the pseudo amino acid composition based on PC-PseAAC
(Chou, 2001), SC-PseAAC (Chou, 2005). PROFILE represents the
profile-based features. AP, T1, T2, PP, DT represent features based
on Top-1-gram (Liu et al., 2008), Top-2-gram (Liu et al., 2008),
ACC-PSSM (Dong et al., 2009), PDT-Profile (Liu et al., 2012), DT
(Liu et al., 2014a). /mðq;plÞ represents the feature similarity score,
m represents the feature type. /mðq;plÞ can be calculated by:

/m q; plð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðf m
q;i � f m

pl ;i
Þ2

vuut

XN
i¼1

f m
q;i � f m

pl ;i

XN
i¼1

f m
q;i ��f m

q

� �
� f m

pl ;i
��f m

pl

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

f m
q;i ��f m

q

� �2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

f m
pl ;i
��f m

pl

� �2

vuut

maxlf
m
q;i � f m

pl ;iXN
i¼1

f m
q;i � f m

pl ;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

f m
q;i

� �2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

f m
pl ;i

� �2

vuut

XN
i¼1

f m
q;i � f m

pl ;n

XN
i¼1

f m
q;i þ

XN
i¼1

f m
pl ;i

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

T

;

(10)

where f m
q;i and f m

p;i represent the features of query sequence and feed-
back sequence, i ð0 < i � NÞ represents the ith location of N-di-
mensional feature. According to the order in matrix /m q;plð Þ,
Euclidean distance (Danielsson, 1980), Manhattan distance
(Borgefors, 1984), Pearson’s Correlation score (Lee Rodgers and
Nicewander, 1988), Chebyshev distance (Klove et al., 2010), Cosine
similarity (Singhal, 2001) and Bray Curtis dissimilarity (Somerfield,
2008) are used to measure the similarity scores between query
sequence’s feature and feedback sequence’s feature. These similarity
metrics have been widely used in biological sequence analysis prob-
lems (Bass et al., 2013; Hou et al., 2018).

2.4 Training the two learning-to-rank models
In sequence similarity matrix, 89 types of sequence similarity scores
are calculated to represent the sequence pairs’ similarity. How to re-
rank the result list based on those similarity scores is important for
generating a more accurate ranking list. Learning to rank (LTR)
algorithms solve the ranking task in a supervised manner, which are
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widely used in Information Retrieval (IR) and Natural Language
Processing (NLP) (Li, 2011). LambdaMART (Burges, 2010) com-
bining LambdaRank (Burges et al., 2006) and MART (Multiple

Additive Regression Trees) is used to train the two LTR models
(LTR-First and LTR-Final) in SMI-BLAST with default parameters

of RankLib-2.10 (Burges et al., 2005) except that the loss function is
set as Normalized Discounted Cumulative Gain (Donmez et al.,
2009). To improve the generalizability of SMI-BLAST, the two LTR

models are trained and evaluated by fivefold cross-validation
(Bengio and Grandvalet, 2004) (see Supplementary Fig. S1 in

Supplementary Data). In other words, the training samples and test
samples of the LTR models are fully independent. It should be
noticed that the two LTR models are independently trained, and the

PSSMs generated by LTR-First are fed into the LTR-Final for the
final prediction.

2.5 PSSM construction and iterative search of SMI-

BLAST
To complete the PSSM adjustment, PSSM should be constructed
according to the selected list R1

0
which is offered by LTR-First.

First, unabridged multiple sequence alignment from List1 is con-
structed. It contains all the detailed alignment information between

the query sequence and feedback sequences. Second, only the
sequences in multiple sequence alignments with the same id
with R1

0
are retained. Third, the original sequences with the same id

as R1
0
are used to construct the HIT_DB by makeblastdb command.

Finally, similar command with PSI-SEARCH (Pearson et al., 2017)

from PSI-BLAST 2.7.1þ is used to construct PSSM with MSA and
HIT_DB.

For later iteration search, the new constructed PSSM in asntxt
format is used as input to run psiblast 2.7.1þ program. When the
final ranking lists are produced, LTR-Final model is used to re-sort

it.

2.6 Evaluation
To evaluate the improvement of different methods, the ranking

quality and the ability of detecting remote homology sequences are
measured. In this study, if the feedback protein sequences and the
query protein sequence are in the same superfamily, the feedback

protein sequences are considered as TPs, otherwise false positives
(Chen et al., 2017). For the ranking quality, ROC1 and ROC50
scores are used. If ROC1 or ROC50 score is 1, it indicates the rank-

ing list gets a perfect ranking. For the ability of detecting remote
homology sequences, the TP number and coverage in the same

Errors Per Query (EPQ) score (Reid et al., 2007) are used as evalu-
ation metrics. TP number represents the number of detected hom-
ology proteins. Coverage represents the proportion of the detected

homologous proteins in the total query protein’s superfamilies. EPQ
represents the proportion of detected non-homology proteins in the

total detected proteins in the search results.

3 Results

3.1 Incorrectly Selected Homology errors obviously

decrease the performance of PSI-BLAST
As introduced in Section 1, PSI-BLAST is suffering from the ISH
errors. In this section, we study the influence of these errors on the
performance of PSI-BAST. We analyse the performance of PSI-
BLAST on the true PSSM subset S

T and ISH error subsets S
ISH
MIX,

S
ISH
NULL and S

ISH
ALL (cf. Eq. 1), and the predictive results are shown in

Table 1, from which we can see: (i) PSI-BLAST achieves good per-
formance in terms of ranking quality and detected true-positive
number on True PSSM subset; (ii) compared with the results of PSI-
BLAST on True PSSM subset, the ranking quality and detected num-
ber of TP obviously decrease on ISH error subsets. Based on the
above results, we conclude that the performance of PSI-BLAST obvi-
ously decreases because of the ISH errors.

To directly show the effect of ISH errors on PSI-BLAST, an ex-
ample is given in Figure 3. SMI-BLAST achieves good performance
at the second iteration (Fig. 3C) after extracting true homology pro-
tein sequence to construct true PSSM (Fig. 3A and B). However, the
performance of PSI-BLAST 2.7.1þ (https://blast.ncbi.nlm.nih.gov/
Blast.cgi) at the second iteration is extremely low (Fig. 3F) because
the PSSM of PSI-BLAST suffers from ISH-NULL error (Fig. 3D and
E).

3.2 SMI-BLAST outperforms PSI-BLAST by solving the

Incorrectly Selected Homology errors
As can been seen from Figure 4A and B, compared with PSI-BLAST,
SMI-BLAST improves the performance by 35.66% in terms of aver-
age ROC1, and detects 1.6–2.87-folds TPs on the ISH error subset
S

ISH (cf. Eq. 1).
The most obvious performance improvements by SMI-BLAST

are on set S
ISH
NULL and set S

ISH
ALL (Table 2). On set S

ISH
NULL, more than

3-fold TPs are detected and nearly 2-fold improvement in terms of
ROC1. The homology proteins of more than half of the query
sequences are correctly detected (Fig. 4C and D), and more rank-
ing lists do not contain any false positive (Fig. 4F). On set S

ISH
ALL,

the ranking lists of PSI-BLAST are obviously improved by SMI-
BLAST. The top hit in more than half of all the ranking lists is

Table 1. The performance of PSI-BLAST with different PSSM situa-

tions after two iterations

Dataset Method ROC1a ROC50a TP numbera

S
T PSI-BLASTb 0.9225 0.9636 70.7306

S
ISH
MIX PSI-BLASTb 0.6432 0.8747 31.9432

S
ISH
NULL PSI-BLASTb 0.4268 0.6723 3.7067

S
ISH
ALL PSI-BLASTb 0.0000 0.2989 6.6667

aPerformance at homology level that contains close homology and remote

homology (belonging to the same SCOP superfamily).
bThe results of PSI-BLAST are obtained by PSI-BLAST 2.7.1þ (https://

blast.ncbi.nlm.nih.gov/Blast.cgi). It is worth noting that PSI-BLAST 2.7.1þ
can produce some homology protein sequences on set SISH

NULL and set SISH
ALL.

Fig. 3. The results of query protein (SCOP ID: d2cwqa1 and Family: a.152.1.4) in

the iteration process of SMI-BLAST and PSI-BLAST 2.7.1þ (https://blast.ncbi.nlm.

nih.gov/Blast.cgi). (A) and (D) The result of SMI-BLAST and PSI-BLAST after the

first iteration, respectively. (B) There are three protein sequences providing align-

ment information for PSSM profile in SMI-BLAST. (C) The search result of SMI-

BLAST after the second iteration. (E) There is no sequence providing alignment in-

formation for PSSM profile in PSI-BLAST. (F) The search result of PSI-BLAST after

the second iteration
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TP (Fig. 4C), SMI-BLAST is able to detect more TPs (Fig. 4E).
On set ST and set SF, SMI-BLAST shows stable performance com-
pared with PSI-BLAST, further confirming the better results of
SMI-BLAST.

3.3 The influence of iteration number on the

performance of SMI-BLAST
To investigate the influence of iteration number on the performance
of SMI-BLAST, we investigate the ranking quality and detected
true-positive number of SMI-BLAST at different iterations.

As can been seen from Table 3 and Figure 5, the performance of
SMI-BLAST obviously outperforms PSI-BLAST at any iteration. It
should be noted that the ranking quality of SMI-BLAST declines
slightly with the growth of iteration number, but it is still obviously
higher than that of PSI-BLAST (Table 3 and Fig. 5). The reason is
that more low similarity protein sequences are detected at the fol-
lowing iterations, making it difficult to resort them by the final re-
sort step of SMI-BLAST. Therefore, it is necessary for users to make
a decision between ranking quality and the number of TPs.

3.4 SMI-BLAST solves the ISH errors of PSSM
For SMI-BLAST, resolving the ISH errors of PSSM mainly contrib-
utes to its better performance for protein remote homology detec-
tion. When ISH errors are solved by SMI-BLAST, higher ROC score
and more TPs can be obtained in the iteration process. To further
explore how many ISH errors are solved by SMI-BLAST, two situa-
tions are analysed: (i) ISH errors are completely corrected, which
means that the PSSMs with ISH errors can be all converted into
True-PSSMs; (ii) ISH errors are mitigated, which denotes that
PSSMs with ISH-NULL error and ISH-ALL error can be converted
into PSSMs with ISH-MIX error. The reason for mitigating ISH
errors is that the performance of PSI-BLAST on set SISH

MIX is obviously
higher than that on set SISH

NULL and set SISH
ALL (Table 1).

About 90.8% of ISH-MIX errors are corrected into True-PSSM
(Supplementary Fig. S2B and Supplementary Table S1), indicating
that the incorrect evolutionary information of ISH-MIX can be
removed by the first learning to rank model, contributing to lower
EPQ scores on set S

ISH
MIX (Fig. 4F and Table 2). About 79% ISH-

NULL errors and 50% ISH-ALL errors are corrected or mitigated,
leading to about 3-fold incensement in terms of the number of TP
(Supplementary Fig. S2C, D and Supplementary Table S1). Based on
these results, we conclude that: (i) Removing the false positives from

Fig. 4. SMI-BLAST (�) outperforms PSI-BLAST (þ) after two iterations on the bench-

mark dataset. Comparison between SMI-BLAST and PSI-BLAST in terms of ROC1

score (A) on the ISH error subset S
ISH. Comparison between SMI-BLAST and PSI-

BLAST in terms of true-positives number at the same EPQ (B) on the ISH error subset

S
ISH. Comparison between SMI-BLAST and PSI-BLAST in terms of ROC1 score,

ROC50 score and true-positive number and EPQ on different subsets of SCOPe bench-

mark dataset (C, D, E and F). In boxplots, the first and third quartiles are shown in the

box, the lines inside the box are median and the whiskers outside the box are 1.5 times

the interquartile. Yellow points show the average score (B). The results of PSI-BLAST

are obtained by PSI-BLAST 2.7.1þ (https://blast.ncbi.nlm.nih.gov/Blast.cgi). (Color

version of this figure is available at Bioinformatics online.)

Table 2. The performance comparison between SMI-BLAST and

PSI-BLAST after two iterations

Dataset Method ROC1a ROC50a TP numbera EPQa

S
ISH
MIX PSI-BLASTb 0.6432 0.8747 31.9432 0.5304

SMI-BLAST 0.8487 0.9575 30.9782 0.4614

S
ISH
NULL PSI-BLASTb 0.4268 0.6723 3.7067 0.7059

SMI-BLAST 0.8214 0.9292 12.8247 0.5421

S
ISH
ALL PSI-BLASTb 0.0000 0.2989 6.6667 0.7415

SMI-BLAST 0.3596 0.7529 19.1667 0.5742

S
T PSI-BLASTb 0.9225 0.9636 70.7306 0.3027

SMI-BLAST 0.9680 0.9905 70.6471 0.3016

S
F PSI-BLASTb 0.0047 0.0131 0.0367 0.9951

SMI-BLAST 0.0032 0.0047 0.0119 0.9989

aPerformance at homology level that contains close homology and remote

homology (belonging to the same SCOP superfamily).
bThe results of PSI-BLAST are obtained by PSI-BLAST 2.7.1þ (https://

blast.ncbi.nlm.nih.gov/Blast.cgi). It is worth noting that PSI-BLAST 2.7.1þ
can produce some homology protein sequences on set SISH

NULL and set SISH
ALL.

Table 3. Performance comparison between PSI-BLAST and SMI-

BLAST at different iterations for protein remote homology detec-

tion on the SCOPe 2.06 benchmark dataset

Iteration PSI-BLASTa SMI-BLAST

ROC1b ROC50b Coverageb ROC1b ROC50b Coverageb

1 0.8318 0.8896 0.3978 0.9082 0.9269 0.3978

2 0.8432 0.8904 0.4636 0.8983 0.9230 0.4690

5 0.8513 0.8941 0.5134 0.8894 0.9192 0.5200

10 0.8523 0.8945 0.5235 0.8878 0.9190 0.5309

aThe results of PSI-BLAST are obtained by PSI-BLAST 2.7.1þ (https://

blast.ncbi.nlm.nih.gov/Blast.cgi).
bPerformance at homology level containing close homology and remote

homology (belonging to the same SCOP superfamily).

Fig. 5. SMI-BLAST outperforms PSI-BLAST in terms of ROC1 score at any iteration

on the SCOPe 2.06 benchmark dataset
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the selected list of ISH-MIX is essential, leading to more sensitive
PSSMs; (ii) The feedback sequences in candidate list can provide
useful alignment information, although the alignment similarity be-
tween query sequences and feedback sequences in candidate list is
relatively low.

3.5 Sequence similarity matrix analysis
The importance of similarity scores in sequence similarity matrix
should be explored, because the sequence similarity matrix is the
most crucial module for the two learning to rank models. In this sec-
tion, the FeatureManager tool of Ranklib-2.10 (Burges et al., 2005)
is used to generate the usage frequencies of sequence similarity
scores of LTR-First model, where higher usage frequencies indicate
more important contribution to this model. The distributions of
usage frequencies of five LTR-First models trained by 5-fold cross-
validation are similar (Fig. 6A), indicating that the contribution of
these similarity features for LTR-First model is stable.

To investigate the effect of sequence similarity features on the
performance of the SMI-BLAST, different feature combinations are
used to train SMI-BLAST according to their usage frequencies
obtained by the FeatureManger tool. From Figure 6B, Table 4,
Supplementary Tables S2 and S3, we can see the followings: (i) the
SMI-BLAST trained with all the 89 features can achieve the best per-
formance; (ii) the SMI-BLAST trained with the top 7 most important
features can obviously improve the performance of the PSI-BLAST;

(iii) when more features are added according to their frequencies,
the performance improvement of SMI-BLAST decreases gradually;
(iv) the e-value score is one of the most important features, indicat-
ing that the search results of PSI-BLAST have an important influence
on the performance of SMI-BLAST; (v) the profile-based features
are more important than the other sequence features in this frame-
work, which is consistent with previous studies ( Liu et al., 2019).

3.6 Application of SMI-based framework to related

search methods
To evaluate its generalization, the proposed SMI-based framework
is applied to JackHMMER and two PSI-BLAST related methods:
DELTA-BLAST (Boratyn et al., 2012) and PSI-BLASTexB (Oda
et al., 2017). JackHMMER (Johnson et al., 2010) is a state-of-the-
art iterative similarity search method based on HMM profiles with a
similar iterative process as that of PSI-BLAST. DELTA-BLAST and
PSI-BLASTexB are two improved versions of PSI-BLAST.
Unfortunately, they also suffer from the ISH errors on protein do-
main dataset, because HMM profile and PSSM profile are both con-
structed based on the multiple sequence alignments.

From Table 5 and Figure 7, we can see: (i) SMI-based framework
can not only obviously improve the performance of PSI-BLAST, but
also improve the performance of the three related search methods.
The reason for the performance improvement is that those methods
also suffer from the ISH errors when iteratively searching on protein

Fig. 6. The usage frequencies of sequence similarity scores in LTR-First models. The

labels in Figure 7A represent how to calculate the usage frequencies in the model,

such as DT-MD: 362 represents the usage frequencies score is 362 and it is calcu-

lated by DT feature and Manhattan distance

Table 4. Performance comparison of SMI-BLAST with different fea-

ture combinations for protein remote homology detection on the

SCOPe 2.06 benchmark dataset

Methods ROC1a ROC50a Coveragea

PSI-BLAST 0.8432 0.8904 0.4636

SMI-BLASTb 0.8957 0.9216 0.4625

SMI-BLASTc 0.8977 0.9227 0.4676

SMI-BLASTd 0.8980 0.9229 0.4689

SMI-BLASTe 0.8983 0.9230 0.4690

aPerformance at homology level containing close homology and remote

homology (belonging to the same SCOP superfamily).
bThe iteration number of SMI-BLAST is 2, and 7 features with usage fre-

quencies greater than 200 in Supplementary Tables S2 and S3 are used to

train the learning-to-rank models of SMI-BLAST.
cThe iteration number of SMI-BLAST is 2, and 31 features with usage fre-

quencies greater than 100 in Supplementary Tables S2 and S3 are used to

train the learning-to-rank models of SMI-BLAST.
dThe iteration number of SMI-BLAST is 2, and 70 features with usage fre-

quencies greater than 50 in Supplementary Tables S2 and S3 are used to train

the learning-to-rank models of SMI-BLAST.
eThe iteration number of SMI-BLAST is 2, and all the 89 features are used

to train the learning-to-rank models of SMI-BLAST.

Table 5. Performance of various methods for protein remote hom-

ology detection on the SCOPe 2.06 benchmark dataset

Methods Performance on SCOPe benchmark dataset

ROC1a ROC10a ROC20a ROC50a

PSI-BLAST 0.8513 0.8885 0.8921 0.8941

SMI-BLAST 0.8894 0.9146 0.9175 0.9192

JackHMMER 0.8919 0.9027 0.9043 0.9059

SMI-HMMER 0.8975 0.9103 0.9123 0.9138

DELTA-BLAST 0.8910 0.9157 0.9199 0.9233

SMI-DELTABLASTb 0.9051 0.9299 0.9333 0.9357

PSI-BLASTexB 0.8754 0.9041 0.9081 0.9112

SMI-PSIBLASTexBb 0.8929 0.9235 0.9276 0.9306

aPerformance at homology level that contains close homology and remote

homology (belonging to the same SCOP superfamily).
bThe parameters are given in Supplementary Table S4.

Fig. 7. SMI-based framework improves the performance of PSI-BLAST, DELTA-

BLAST, PSI-BLASTexB and JackHMMER on the SCOPe 2.06 benchmark dataset

918 X.Jin et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/7/913/5902827 by guest on 09 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa772#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa772#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa772#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa772#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa772#supplementary-data


domain database; (ii) SMI-based framework and two PSI-BLAST-
based search methods (DELTA-BLAST and PSI-BLASTexB) are
complementary, because they improve the performance of PSI-
BLAST using different theories and techniques; (iii) the SMI-based
framework can improve the performance of all the four methods,
and SMI-DELTABLAST achieves the best performance. Based on
the analysis of the sequence similarity matrix in the previous section,
it is reasonable to conclude that the original search method can pro-
vide important sequence similarity characteristics; (iv) the improve-
ment of JackHMMER is less than that of PSI-BLAST when applying
the SMI-based framework. The most important reason is that most
of the JackHMMER search results achieve the best ranking quality,
leading to a limited optimization space for SMI-based framework.

4 Conclusion

In this study, we summarize three types of ISH errors of PSSM for
protein remote homology detection. To overcome those errors, we
propose SMI-BLAST by applying the SMI-based framework to PSI-
BLAST. Experimental results show that SMI-BLAST outperforms
PSI-BLAST by solving the ISH errors of PSSM on protein domain
database. Sequence similarity matrix plays an important role in the
proposed framework, whose sequence similarity features are the key
to extract correct homology information from the ranking list and
improve the ranking quality search results. When applied to
DELTA-BLAST, PSI-BLASTexB and JackHMMER, the proposed
SMI-based framework can also improve the predictive performance
of those methods. The web servers of the proposed methods are con-
structed (http://bliulab.net/SMI-BLAST/). For more information of
the web servers, please refer to the ‘Web server and user guide’ sec-
tion in Supplementary Data. Sequence search is an important task in
protein sequence analysis, and the proposed SMI-based framework
is a general framework, which would be also applied to solve other
related problems, such as protein fold recognition, protein–protein
interaction prediction, etc.
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