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Abstract

Motivation: Exploring the relationship between human proteins and abnormal phenotypes is of great importance in
the prevention, diagnosis and treatment of diseases. The human phenotype ontology (HPO) is a standardized vo-
cabulary that describes the phenotype abnormalities encountered in human diseases. However, the current HPO
annotations of proteins are not complete. Thus, it is important to identify missing protein–phenotype associations.

Results: We propose HPOFiller, a graph convolutional network (GCN)-based approach, for predicting missing HPO
annotations. HPOFiller has two key GCN components for capturing embeddings from complex network structures:
(i) S-GCN for both protein–protein interaction network and HPO semantic similarity network to utilize network
weights; (ii) Bi-GCN for the protein–phenotype bipartite graph to conduct message passing between proteins and
phenotypes. The core idea of HPOFiller is to repeat run these two GCN modules consecutively over the three net-
works, to refine the embeddings. Empirical results of extremely stringent evaluation avoiding potential information
leakage including cross-validation and temporal validation demonstrates that HPOFiller significantly outperforms all
other state-of-the-art methods. In particular, the ablation study shows that batch normalization contributes the most
to the performance. The further examination offers literature evidence for highly ranked predictions. Finally using
known disease-HPO term associations, HPOFiller could suggest promising, unknown disease–gene associations,
presenting possible genetic causes of human disorders.

Availabilityand implementation: https://github.com/liulizhi1996/HPOFiller.

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Uncovering phenotypic correlations of gene mutations have long
been an essential task in genetics research. The Human Phenotype
Ontology (HPO) (Köhler et al., 2019) provides a standardized vo-
cabulary of phenotype abnormalities encountered in human diseases
and of their semantic relationships. The HPO annotations of human
genes can facilitate disease gene identification and prioritization and
hence assist clinical diagnostics (Köhler et al., 2009).

Figure 1 shows the average number of HPO annotations includ-
ing ancestors of the specific annotations over proteins. We keep
track of proteins that already exist in the database released in March

2018 and count how many annotations each protein has on average
as time goes on. This figure indicates an around 20% increase of the
average number in the past two years, implying that a large number
of missing associations still exist between proteins and phenotypes.
The incomplete HPO annotations would degrade the performance
of phenotype prediction tools (Liu et al., 2020) and affect the ana-
lysis of genetic causes of disorders. Thus it would be imperative to
develop a computational method for identifying missing protein-
HPO term associations.

However, filling the missing HPO annotations is a very challeng-
ing task: (i) The annotations are highly sparse. For HPO annotations
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released by June 2020, annotations (positive examples) are only
1.58% among all possible pairs of proteins and HPO terms. (ii) The
distribution of HPO annotations is skewed. In HPO released by
June 2020, more than 1700 out of 15 054 HPO terms are used to
annotate only one protein, while over 3700 terms are associated
with more than 10 proteins. (iii) HPO terms are not independent of
each other but organized hierarchically as a directed acyclic graph
(DAG). The directed edge between two terms represents an ‘is-a’ re-
lationship, keeping the ‘true-path-rule’. That is, a protein, which is
annotated with a given term, can be annotated with all ancestor
terms in the DAG.

The importance of protein–protein interaction (PPI) network for
prediction of HPO annotations is broadly recognized, due to an as-
sumption that strongly interacted proteins are more likely to be
associated with similar phenotypes (Goh et al., 2007; Oti et al.,
2006). Thus, taking the PPI network as input data, can be of great
help to identify missing HPO annotations. Besides, the similarity be-
tween HPO terms providing quantitative measures of phenotype
relationships would be useful likewise. Accordingly, we have three
input graphs: two types of similarity networks separately for pro-
teins and HPO terms, and a bipartite network by annotations be-
tween proteins and HPO terms.

Recently graph convolutional networks (GCNs) (Defferrard
et al., 2016; Kipf and Welling, 2017), the extension of convolutional
neural networks (CNNs) for specifically graph-based data, has
achieved great success in many applications. GCN with non-linear
activations is suitable for capturing the complex structures behind
the input networks. In addition, stacking multiple GCN layers leads
to the expressive modeling of high-order connectivity which makes
the model not limited to focus on local-structure. We thus, for pre-
dicting missing HPO annotations, present a GCN-based approach,
termed HPOFiller, to utilize three types of input networks. In par-
ticular, we design two kinds of GCN blocks: (i) S-GCN on PPI net-
work and HPO similarity network, respectively, that aggregates
feature information from neighbors, considering edge weights, to
obtain better representations; (ii) Bi-GCN on the protein–phenotype
bipartite network that allows feature information interchanging be-
tween proteins and HPO terms. It is noteworthy that we adopt HPO
semantic similarity rather simply HPO binary hierarchy to enable
the information to flow between the siblings or ancestor-descendant
more than strict parent–child, in order that the model can find simi-
lar HPO terms more broadly and deeply. During the training stage,
we propose an enhanced annotation matrix as the objective goal to
relax the label sparsity.

We extensively evaluated the performance of HPOFiller through
cross-validation and temporal validation. Specially, we designed an
extremely strict cross-validation procedure avoiding any potential
information leakage between training and test sets. Experimental

results demonstrated that HPOFiller outperformed state-of-the-art
methods by large margins under both cross-validation and temporal
validation. Particularly, the ablation study revealed that batch nor-
malization contributed the most to the performance. In addition, we
confirmed literature evidence for predictions highly ranked by
HPOFiller but not yet been added to the latest HPO annotations
database, implying potentially performance under-estimation.
Finally, using disease-HPO term associations, HPOFiller found
promising, unknown disease–gene associations, presenting the pre-
dictability of our method for possible genetic causes of human
diseases.

2 Related work

Completing protein-HPO term associations has been tackled mainly
by label propagation-based and matrix completion-based
approaches.

A well-known assumption is that similar proteins tend to be
related to similar abnormal phenotypes, which is consistent with
smoothness assumption in label propagation (LP) (Zhu et al., 2003).
Petegrosso et al. (2017) extended vanilla LP (Zhou et al., 2003) to
dual label propagation (DLP) by coupling smoothness term impos-
ing smoothness in PPI network and another term imposing smooth-
ness in the HPO hierarchy, which encouraged directly connected
phenotypes to be associated with the same protein. DLP was further
extended to tlDLP (Petegrosso et al., 2017) by adopting transfer
learning. It incorporated GO annotations and let proteins with simi-
lar functions be likely to be associated with similar phenotypes.

Matrix completion captured intrinsic relationships between pro-
teins and phenotypes in a latent space. Typically, AiProAnnotator
(Gao et al., 2018) imposed graph Laplacians on both PPI network
and HPO similarity to standard matrix completion (SMC) over the
protein–phenotype matrix to find better low-rank approximation
solution.

In general, the above methods were not competent enough to
capture non-linear relations underlying protein–phenotype associa-
tions. Recently, GCN (Defferrard et al., 2016; Kipf and Welling,
2017) has opened a new paradigm for graph learning and achieved
great success in numerous fields, such as disease gene prioritization
(Han et al., 2019), polypharmacy side effects prediction (Zitnik
et al., 2018) and drug repurposing (Wang et al., 2020), etc. We here
apply GCN to identifying missing protein–phenotype associations,
and to the best of our knowledge, this is the first work based on
GCN for this problem.

3 Materials and methods

3.1 Problem statement
Given m proteins P ¼ fp1; p2; . . . ; pmg and n HPO terms
T ¼ ft1; t2; . . . ; tng, the known associations between them are repre-
sented by a binary matrix ~Y, where ~Y ij ¼ 1 if protein pi is annotated
by HPO term tj, otherwise ~Y ij ¼ 0. However, ~Y ij ¼ 0 does not mean
that there must be no relation between pi and tj, but only that this
link has not been observed yet. Our objective is to identify those
missing HPO annotations (Fig. 2). Specifically, for protein pi, we
want to find the HPO term tj that ~Y ij ¼ 0 but tj may potentially be
related to pi. It is noteworthy that we are not to predict annotations
of novel proteins (i.e. proteins without any known annotations) but
rather to identify the missing annotations of those proteins with
known (but incomplete) annotations.

3.2 Key idea
We have two types of building blocks: proteins and HPO terms. Our
main procedure has two steps: (i) The two types of building blocks
are first combined together as a bipartite graph through HPO anno-
tations to preliminarily estimate the embeddings in the latent space,
(ii) which are then further refined by using similarity networks sep-
arately for each type of building blocks. To be more specific,
HPOFiller has two GCN modules: Bi-GCN and S-GCN. Bi-GCN

Fig. 1. For proteins that already existed in the HPO annotations released on March

9, 2018, the average number of annotations (including ancestors of the specific

annotations) per protein increased over time

HPOFiller 3329

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3328/6212045 by guest on 17 April 2024



first merges the information from both proteins and phenotypes
through HPO annotation bipartite network to estimate latent repre-
sentations, which are further refined by S-GCN separately for pro-
teins and HPO terms, particularly by using edge weights over
protein (and HPO terms) similarity network. We repeat this main
procedure and the resultant embeddings are transformed into low-
dimensional vectors through multi-layer perceptron, separately for
proteins and HPO terms, to be taken for prediction. Figure 3 illus-
trates the pipeline of this process.

3.3 Graph construction
3.3.1 Protein-HPO term bipartite graph

We construct a bipartite graph with m protein nodes and n HPO
term nodes for describing protein-HPO term associations. If a protein
has been annotated with an HPO term, an edge is added to link them.

Formally, we denote its adjacency matrix A 2 f0; 1gðmþnÞ�ðmþnÞ as

A ¼ ½
0 ~Y

~Y
T

0
�: (1)

where ~Y 2 f0;1gm�n is the known annotation matrix, and 0 is all-
zero matrix.

3.3.2 Similarity of proteins

The PPI network has been demonstrated as one of the most inform-
ative data sources in the HPO prediction problem (Kahanda et al.,

2015; Liu et al., 2020). We utilize STRING (Szklarczyk et al., 2019)
to quantify the similarity of two proteins. The protein similarity
graph is denoted by Sp 2 R

m�m with entries being interacting scores.

3.3.3 Similarity of HPO terms

The HPO terms are organized as a Directed Acyclic Graph (DAG),
where each term can have multiple parents and multiple children.
Petegrosso et al. (2017) assumed that the connected phenotypes
(parent–child pairs) were likely to be associated with the same pro-
tein. However, the flow of information was strictly restricted to
these parent–child edges, and hence it hinders from finding similar
phenotypes in different branches. To address this issue, we compute
the semantic similarity between HPO terms by using the information
coefficient (SimIC) measure (Li et al., 2010), which is based on the
Information Content (IC) (Resnik, 1995) for HPO term t:

ICðtÞ ¼ �log
Nt

N
; (2)

where N is the total number of proteins and Nt is the number of pro-
teins annotated by term t and all its descendants. Then the SimIC is
defined as:

simICðt1; t2Þ ¼
2� ICðtMICAÞ
ICðt1Þ þ ICðt2Þ

� 1� 1

1þ ICðtMICAÞ

� �
; (3)

where tMICA is the Most Informative Common Ancestor (MICA)
(Resnik, 1999) of t1 and t2, i.e. the common ancestor with the high-
est IC. Here, we denote the HPO semantic similarity graph as St 2
R

n�n with entries being their information coefficients (Fig. 4).

3.4 Feature generation
Each row of protein similarity matrix Sp and HPO term similarity St

is able to act as the feature vector in fact, however, they may not suf-
ficiently capture the network structure, especially non-neighbouring,
higher-order connectivity. On this account, we run Random Walk
with Restart (RWR) (Tong et al., 2006) separately on Sp and St to
introduce topological context of each node into their initial vector
representations. The procedure can be formulated as the following
recurrence equation:

ptþ1
i ¼ ð1� aÞpt

i Ŝ þ aei; (4)

where pt
i is a row vector of node i, whose kth entry indicates the

probability of reaching node k after t steps. The initial probabilities
p0

i is one-hot vector ei where ei;i ¼ 1 and 0 otherwise. a is the restart
probability. Ŝ is the one-step probability transition matrix obtained
from S (i.e. Sp or St) by row-wise normalization. Here, S refers to Sp

(or St). After obtaining the steady state, we set feature vector xpi
¼

Fig. 2. An illustration of the prediction of missing HPO annotations problem. An

entry of 1 indicates the association between the corresponding protein and HPO

term is known, and an entry filled with question mark means an unobserved rela-

tionship. Our goal is to figure out which unidentified annotations may be true

Fig. 3. The overall framework of HPOFiller. The input features generated by random walk with restart are transformed into low-dimensional representations at first. After

that, we stack two modules to be comprised of Bi-GCN and S-GCN to refine the feature vectors. Finally, three fully connected layers are used to reduce the dimensions and out-

put the final representations. The prediction is made by multiplying protein’s and HPO term’s representations. Batch normalization is added between two consecutive layers
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p1i on Sp (or xtj
¼ p1j on St) for protein pi (or HPO term tj), captur-

ing high-order interactions of network nodes.

3.5 GCN blocks
3.5.1 Bi-GCN layer

As shown in Fig. 4(A), Bi-GCN refines the embeddings of proteins
and HPO terms by communicating information between proteins
and HPO terms. That is, Bi-GCN propagates the embedding over
protein-HPO term bipartite graph A. Let us take protein pi as an ex-
ample, in the lth layer, the process can be formulated as:

e
ðlÞ
pi
¼ r

�
e
ðl�1Þ
pi

HðlÞ1 þ
X

tj2NðpiÞ
e
ðl�1Þ
tj

HðlÞ2

�
: (5)

The above equation can be viewed as two steps. First, we con-
struct messages for pi’s neighboring nodes (i.e. its annotated HPO

terms) and itself, namely e
ðl�1Þ
tj

HðlÞ2 and e
ðl�1Þ
pi

HðlÞ1 , respectively. Here,

e
ðl�1Þ
pi

2 R
d
ðl�1Þ
GCN ; e

ðl�1Þ
tj

2 R
d
ðl�1Þ
GCN denote the node embeddings of pi and

tj in the ðl � 1Þth layer, respectively. HðlÞ1 2 R
d
ðl�1Þ
GCN
�d
ðlÞ
GCN ;

HðlÞ2 2 R
d
ðl�1Þ
GCN
�d
ðlÞ
GCN are the trainable weight matrices. Then we aggre-

gate the incoming messages by summing over all neighbors NðpiÞ
and pi itself, and pass the accumulated message to an activation
function rð�Þ. Note that we take the self-connection of pi into con-
sideration in order to retain the information of original features.

The representation e
ðlÞ
tj

for term tj can be obtained analogously. To

summarize, Bi-GCN allows to combine the information of proteins
and HPO terms explicitly.

3.5.2 S-GCN layer

Unlike Bi-GCN running on unweighted graph, S-GCN is designed to
make better use of the information lying in the weights on the simi-
larity network (Fig. 4(B)). Specifically, taking PPI network Sp as an
example, we define the lth S-GCN layer for protein pi as:

e
ðlÞ
pi
¼ r

�Xm
j¼1

ð~SpÞi;je
ðl�1Þ
pj

HðlÞp

�
; (6)

where ~Sp ¼ Dp0�
1
2S0pDp0�

1
2 is the symmetric normalized adjacency

matrix of S0p ¼ Sp þ I with inserted self-loops, and ðD0pÞii ¼
P

j ðS
0
pÞij

is diagonal degree matrix. Eq. (6) can also be viewed as two-steps
operation: the message of pi’s neighboring node pj is generated by

e
ðl�1Þ
pj

HðlÞp at first, and then those messages are summed up with the

edge weights of S0p and fed into an activation function rð�Þ.

HðlÞp 2 R
d
ðl�1Þ
GCN
�d
ðlÞ
GCN is the parameter matrix to learn. If we stack pro-

teins’ embeddings vertically, we can rewrite Eq. (6) in matrix form:

E
ðlÞ
p ¼ r Dp0�

1
2S0pDp0�

1
2Eðl�1ÞHðlÞp Þ:

�
(7)

This equation is consistent with that in (Kipf and Welling,
2017). We can produce embedding e

ðlÞ
tj

for term tj in an analogous
way. The S-GCN layer combines the information of neighbors based
on their contributions, which allows the weights (the most import-
ant part of similarity graph) to incorporate into our model.

3.6 Model architecture
Figure 3 shows the entire architecture of HPOFiller. Taking the in-
put of proteins’ feature vectors Xp 2 R

m�m derived from RWR on
protein similarity graph Sp and HPO terms’s feature vectors Xt 2
R

n�n derived from RWR on phenotype similarity graph St, we first
feed them to a dense layer, respectively, to reduce the dimension to
the same. The resultant vectors are fed into Bi-GCN and then S-
GCN. In Bi-GCN, the two separate information of proteins and
HPO terms can be combined by passing messages across them along
the edges (i.e. known annotations) in the bipartite graph. This pro-
cess of the lth layer can be written as follows:

½EðlÞp
�; E

ðlÞ
t
�� ¼ BNðlÞ

�
Bi�GCNðlÞ

�
½Eðl�1Þ

p ; E
ðl�1Þ
t �

��
: (8)

Those vectors are then fed to corresponding S-GCN blocks, re-
spectively, to refine the embeddings by leveraging the weights of
similarity network. Formally speaking, the output is computed as
follows:

E
ðlÞ
p ¼ BN

ðlÞ
p

�
S�GCN

ðlÞ
p

�
E
ðlÞ
p
�
��
;

E
ðlÞ
t ¼ BN

ðlÞ
t

�
S�GCN

ðlÞ
t

�
E
ðlÞ
t
�
��
:

(9)

By repeatedly performing above operations, we finally obtain the
embeddings of proteins and HPO terms that can sufficiently capture
the information on two similarity networks and known protein-
HPO term annotations. Subsequently, those GCN-generated embed-
dings are fed to a three-layers perceptron to distill low-dimensional
representations, separately for proteins and HPO terms. Specifically,
we have final representations as follows:

Uð3Þ ¼ Dense
ð3Þ
p

�
BN

ð2Þ
p

�
� � �Dense

ð1Þ
p

�
E
ð2Þ
p

�
� � �
��
;

Vð3Þ ¼ Dense
ð3Þ
t

�
BN

ð2Þ
t

�
� � �Dense

ð1Þ
t

�
E
ð2Þ
t

�
� � �
��
:

(10)

Lastly, the probability of protein pi being annotated with HPO
term tj can be predicted by

yi;j ¼ u
ð3Þ
i v

ð3Þ
j

T: (11)

It is noteworthy that we add Batch Normalization (BN) module
(Ioffe and Szegedy, 2015) between two consecutive layers in order
to mitigate internal covariate shift and thus increase the stability.
Given a batch of input vectors B ¼ fx1; . . . ; xmg, the empirical mean
and variance are computed as:

lB ¼
1

m

Xm
i¼1

xi and r2
B ¼

1

m

Xm
i¼1

ðxi � lBÞ2: (12)

After normalization by re-centering and re-scaling:

x̂i ¼
xi � lBffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
B þ �

q ; (13)

where � is an arbitrarily small constant for numerical stability, the
BN transformed output is obtained by

x0i ¼ cx̂ i þ b � BNðxiÞ; (14)

where c and b are subsequently learned in the optimization process.

Fig. 4. Schematic information propagation in two types of GCN blocks. (a) Bi-GCN

block is run on protein-HPO term association graph with bipartite structure. The

embedding for protein pi (yellow node highlighted by gray box) is generated by ag-

gregation of incoming messages from the connected HPO terms. (b) S-GCN block is

run over similarity graph. In the illustration of message propagation on protein simi-

larity graph, the output embedding of protein pi (central node with gray box) is

obtained by the weighted sum over the messages from its connected proteins
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From our experiments, we could see that BN contributes greatly to
our model (see Section 4.4.2).

3.7 Model training
We adopt classical loss function that minimizes the Frobenius norm
of the difference between known annotation matrix and predicted
matrix, while the high sparsity of HPO annotations hinders the
straight-forward application of ~Y. To alleviate the problem, inspired
by (Han et al., 2019), we propose the �-enhanced loss function
which controls the margin between the predicted score and the label
with hyper-parameter �. That is, we use the enhanced annotation
matrix ~Y

0
as the target:

~Y 0i;j ¼ f
� if ~Y i;j ¼ 1;
0 otherwise:

(15)

Accordingly, the loss function can be written as:

‘ ¼k X�ðY�~YÞjj2F þ kjjHjj22; (16)

where X is the mask of observed entries: Xij ¼ 1 when ~Y i;j is in the
training set and 0 otherwise, 8 denotes the Hadamard product (a.k.a
element-wise product), and k is the decay factor to balance the regu-
larization term of all trainable model parameters H in order to pre-
vent overfitting. Through properly tuning � by grid search, we
enlarge the margin between the predicted score and the label to im-
prove the influence of relatively few positive samples.

4 Experiments

4.1 Data
We examined the performance of HPOFiller by two evaluation man-
ners: (i) cross-validation and (ii) temporal validation.

4.1.1 Data preparation for cross-validation

We downloaded human gene-HPO term associations released by
February 12, 2019 from HPO project website (http://compbio.char
ite.de/jenkins/job/hpo.annotations/). Then the genes in raw HPO
annotations were mapped into proteins using the UniProt ID map-
ping tool (https://www.uniprot.org/mapping/). To keep a high data
quality, we filtered out proteins that were not stored in Swiss-Prot.
The true-path-rule was applied to propagate annotations. In this
work, we focused on the biggest sub-ontology in HPO, Phenotypic
Abnormality (PA). Therefore, only HPO terms belonging to PA
remained. After processing, the dataset consisted of 3 884 proteins
and 8 289 HPO terms. Note that we only remained the terms cur-
rently used to annotate at least one protein.

We conducted 10-fold cross-validation in this work. Specifically,
we randomly split all protein-HPO term pairs into ten equal-sized
parts, where one was held out for test set, and the remaining nine
parts constituted the training set. However, it would lead to poten-
tial information leakage: if a known HPO annotation (p, t) appears
in the test set, while the descendant of t named t0 is put into the
training set, then we can imply the relation between p and t by sim-
ply propagating the known annotation ðp; t0Þ according to the true-
path-rule. To plug the loophole, for each pair of annotations be-
tween protein p and HPO term t in the test set, the associations be-
tween p and all the descendants of t were all removed from the
training set. Despite such processing in (Gao et al., 2018; Petegrosso
et al., 2017), the information leakage still existed. Considering a
negative sample (p, t) in the test set that protein p has no known re-
lation with HPO term t, if there exists a negative annotation ðp; t0Þ
in the training set where t0 is the ancestor of t, then we can derive
the negative associations (p, t) by propagating negative annotation
downward. Therefore, for each negative association (p, t) in the test
set, we further removed the negative annotations between p and the
ancestors of t in the training set. It is noteworthy that in the cross-
validation, we set Xij ¼ 1 for the training set and Xij ¼ 0 for the test
set.

For the PPI network, we downloaded STRING v11 (https://
string-db.org/) released by January 19, 2019. For the HPO semantic
similarity, to avoid information leakage, we calculated based on the
HPO annotations in the training set rather than the whole set.

4.1.2 Data preparation for temporal validation

In the temporal validation, we adopted a similar strategy as pro-
posed in the CAFA challenge (Jiang et al., 2016; Radivojac et al.,
2013). The training set comprised HPO annotations released by
February 12, 2019, and the test set comprised the new annotations
added from February 12, 2019 to June 8, 2020. HPO annotations in
the test set were aligned to February 12, 2019 version and thus the
newly created HPO terms were discarded. The statistics of the data-
set are shown in Table 1. In order to avoid information leakage, we
adopted STRING v11 which released before February 12, 2019 and
computed HPO similarity using the training dataset. Note that we
set Xij ¼ 1 for all i ¼ 1; . . . ;m and j ¼ 1; . . . ;n.

4.2 Evaluation metrics
We used three metrics for evaluating pairs of protein-HPO term
associations in the test set: (i) AUC: area under the receiver-operat-
ing characteristic curve, (ii) AUPR: area under the precision-recall
curve and (iii) AP@K: average precision at the top K measuring the
precision at all ranks before position K that hold a relevant item,
which was adopted by (Krichene and Rendle, 2020; Li et al., 2019;
Zitnik et al., 2018), that is,

AP@K ¼ 1

minðjRj;KÞ
XK

i¼1

dði 2 RÞP@K; (17)

where R refers to the set of rankings of all relevant items, jRj is the
size of R, dði 2 RÞ ¼ 1 if the ith prediction is correct and 0 other-
wise, P@K is the precision at position K measuring the fraction of
relevant items among the top K predicted items:

P@K ¼ jfr 2 R : r 	 Kgj
K

: (18)

Additionally, we evaluated the performance separately on the
leaf HPO terms (i.e. the specific annotations) and the internal HPO
terms (i.e. the ancestors of specific terms), named AUC-leaf, AUPR-
leaf, AUC-internal and AUPR-internal.

4.3 Competing methods and implementation details
We evaluated the performance of HPOFiller against six state-of-the-
art methods which were introduced in Section 2: LP, DLP
(Petegrosso et al., 2017), tlDLP-BP and tlDLP-MF (Petegrosso et al.,
2017), SMC and AiProAnnotator (Gao et al., 2018). Note that
tlDLP used GO annotations of either biological process (tlDLP-BP)
or molecular function (tlDLP-MF). Hyperparameters of each
method were determined by internal 10-fold cross-validation with
grid search. We were extremely careful of information leakage, so
the versions of data sources utilized in temporal validation were all
early than February 12, 2019.

For our method, we set a ¼ 0:9 in the RWR step empirically
(Long et al., 2020). The dimensions of embeddings generated by
GCNs were fixed to 800, i.e. d

ðlÞ
GCN ¼ 800 (l¼0, 1, 2), while the

sizes of embeddings produced by MLP were set as follows: d
ð1Þ
MLP ¼

Table 1. Statistics of dataset used for temporal validation

Proteins HPO terms Training set Test set

3884 8797 Before February 12,

2019

February 12, 2019 to

June 8, 2020

474 487 pos.

(1.39%)

71 835 pos. (0.21%)

33 621 226 neg. (98.40%)

Note: ‘pos.’ refers to positive sample, while ‘neg.’ refers to negative sample.
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400; d
ð2Þ
MLP ¼ 200 and d

ð3Þ
MLP ¼ 100. We optimized our model with

RmsProp optimizer for 3 000 epochs with initial learning rate as
0.0001 and weight decay factor as 1.0, and the learning rate would
decrease by half every 1000 epochs. We adopted LeakyReLU activa-
tions with negative slope being 0.01 for GCN blocks and ReLU for
MLP. We set � ¼ 5 in MSE loss function. The model was imple-
mented by PyTorch and PyTorch Geometric.

4.4 Results of cross-validation
4.4.1 Performance comparison

Table 2 shows the results of 10-fold cross-validation. HPOFiller
achieves the best prediction performance with AUPR of 0.4345,
which is 11.3% higher than that of the second-best method tlDLP-
MF which utilizes more information (i.e. GO annotations of MF).
The inferior performance of tlDLP implies that multiple data sources
might not be properly integrated into their models. Moreover, the
AUPR of HPOFiller is 13.7% and 17.1% higher than DLP and
AiProAnnotator, respectively, which both use the PPI network and
HPO term similarity (despite calculated in different ways). This re-
sult demonstrates the effectiveness of GCN to exploit network infor-
mation. In addition, HPOFiller outperforms others for predicting
not only internal annotations but also specific annotations that are
more informative. Furthermore, Supplementary Figure S1 shows
that HPOFiller keeps the highest precision, except for extremely low
recall, indicating that HPOFiller can accurately return the relevant
results. Regarding AUC, HPOFiller is moderate, which might be
caused by drastic label imbalance (Saito and Rehmsmeier, 2015). As
for AP@K where we choose K ¼ 5k; 10k;20k; 50k, HPOFiller con-
sistently outperforms the competing methods at all K with signifi-
cant margins.

4.4.2 Ablation study

To investigate the effectiveness and necessity of components of
HPOFiller, we conduct ablation study by removing one component
from the model and evaluate the performance using 10-fold cross-
validation. The results are shown in Figure 5. We notice that AUPR
drastically drops by 88.0% without batch normalization, implying
its importance on stability. What’s more, removing the output MLP
layers also results in performance degradation, indicating the role of
distillation. Finally, we observe that models without GCN blocks
are all defeated, which again demonstrates the ability to refine high-
quality representations from the network which in turn benefits the
overall performance.

4.4.3 Parameter analysis

There are many hyper-parameters in our model, each of which will
have an influence on the performance. Thus, we conduct parameter
sensitivity analysis by varying one hyper-parameter with others fix-
ing. Supplementary Figure S2 shows the test AUPR and AUC w.r.t
epoch of HPOFiller. We can see that, as the number of iterations in-
crease, AUPR has converged but AUC begins to slowly decrease,
implying the over-fitting. Therefore, we terminate the learning pro-
cess at 3000 iterations to avoid performance degradation.
Supplementary Figure S3 presents the performance changes w.r.t

multiple hyper-parameters. In particular, continuously increasing
the depth of GCN layers leads to over-fitting. This might be caused
by applying a too deep architecture might introduce more noises on
graph to the representation learning and causes over-smoothing.
Moreover, stacking multiple output MLP layers can consistently en-
hance the predictive performance, but further appending layers also
leads to over-fitting. Similar trend also appears in the dimension of
the embeddings. All these indicate that too complex models do not
necessarily lead to the best performance. As for the restart probabil-
ity a in RWR, a larger a yields better performance, suggesting that
capturing local context may be needed at the preliminary stage.
Finally, we investigate the effect of � in Eq. (15). From
Supplementary Figure S3c, we find that appropriate enhancement
on positive samples can mitigate the impact of label imbalance and
hence boost the performance.

4.5 Results of temporal validation
4.5.1 Performance comparison

Table 3 summarizes the results of temporal validation. HPOFiller
outperforms all other methods in terms of AUC and AUPR, demon-
strating the advantage of our model in predicting missing HPO
annotations. Compared with matrix completion-base methods, label
propagation-based methods achieve better performance. The matrix
completion integrates information underlying networks into low-
rank matrices with loss, while GCN would make better use of the
network information and hence help improve the performance. It is
noteworthy that AUPRs in temporal validation are relatively lower
than those in cross-validation. It might be attributed to a lot of
annotations in the test set that are still missing, and as a result, the
performance is potentially under-estimated (Liu et al., 2020).

Table 2. Performance comparison under 10-fold cross-validation

Method AUC AUPR AUC-leaf AUPR-leaf AUC-internal AUPR-internal AP@5k AP@10k AP@20k AP@50k

LP 0.9318 0.3776 0.7903 0.2837 0.9353 0.4643 0.6426 0.5198 0.3976 0.2446

DLP 0.9319 0.3823 0.7904 0.2872 0.9355 0.4694 0.6570 0.5304 0.4051 0.2492

tlDLP-BP 0.8855 0.3557 0.7881 0.2753 0.8797 0.4158 0.6137 0.5051 0.3906 0.2406

tlDLP-MF 0.9260 0.3903 0.8169 0.2941 0.9317 0.4765 0.6640 0.5426 0.4181 0.2588

SMC 0.8636 0.3857 0.7542 0.3093 0.8445 0.4179 0.7638 0.6641 0.4858 0.2617

AiProAnnotator 0.9461 0.3711 0.8014 0.2960 0.9433 0.4119 0.6600 0.5678 0.4146 0.2212

HPOFiller 0.9288 0.4345* 0.7693 0.3311* 0.9356 0.5244* 0.8347* 0.7138* 0.5423* 0.3109*

*Statistical significance (P< 0.001) by pairwise t-test. The boldface items in the table represent the best performance.

Fig. 5. Ablation study between HPOFiller and its variants derived by removing one

of component from the model. The percentage refers to the rate of change in AUPR

or AUC by leaving out the particular component relative to that obtained by the full

model

HPOFiller 3333

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3328/6212045 by guest on 17 April 2024



4.5.2 Case study 1: top predictions with literature evidence

The annotations in the test set for temporal validation are still in-
complete, and so a lot of predictions by HPOFiller might be true
annotations even if they are not annotated yet. Table 4 presents sev-
eral top predictions that are not in the HPO annotations released by
June 2020 but supported by literature.

The TP53 gene provides instructions for making a protein called
cellular tumor antigen p53, which acts as a tumor suppressor to
regulate cell division. Pandya et al. (2018) found that p53 protein
over-expression and p53 mutations were responsible for dysplastic
oral lesions. Recently, Caponio et al. (2020) reports that mutations
of TP53 are the most frequent somatic genomic alterations in head
and neck squamous cell carcinoma (HNSCC), and more than 90%

Table 3. Performance comparison under temporal validation

Method AUC AUPR AUC-leaf AUPR-leaf AUC-internal AUPR-internal

LP 0.8916 0.0461 0.7800 0.0387 0.8694 0.0534

DLP 0.8913 0.0472 0.7797 0.0392 0.8694 0.0540

tlDLP-BP 0.8900 0.0472 0.7997 0.0397 0.8747 0.0549

tlDLP-MF 0.8885 0.0471 0.8016 0.0391 0.8729 0.0540

SMC 0.8326 0.0224 0.7262 0.0194 0.8241 0.0246

AiProAnnotator 0.8404 0.0211 0.7329 0.0181 0.8306 0.0238

HPOFiller 0.9013 0.0483 0.8046 0.0401 0.8804 0.0550

Note: The boldface items in the table represent the best performance.

Table 4. Top predictions of protein–phenotype associations with literature evidence

Rank UniProt ID Gene Protein name HPO term ID HPO term name Reference Evidence

32 P04637 TP53 Cellular tumor

antigen p53

HP:0000153 Abnormality of the mouth Pandya

et al. (2018)

‘Progressive accumulation of gen-

etic errors (including mutations

in TP53 and CDKN1A) is asso-

ciated with the initiation and

progression of potentially malig-

nant oral lesions toward frank

malignancy.’

45 HP:0031816 Abnormal oral

morphology

47 HP:0000163 Abnormal oral cavity

morphology

4 P00533 EGFR Epidermal

growth factor

receptor

HP:0000707 Abnormality of the ner-

vous system

Ahluwalia

et al. (2018)

‘Central nervous system (CNS)

metastases are a common com-

plication in patients with epider-

mal growth factor receptor

(EGFR)-mutated non-small cell

lung cancer (NSCLC), resulting

in a poor prognosis and limited

treatment options.’

6 HP:0012638 Abnormality of nervous

system physiology

41 HP:0012639 Abnormality of nervous

system morphology

94 HP:0002011 Morphological abnormal-

ity of the central ner-

vous system

4263 P35222 CTNNB1 Catenin beta-1 HP:0010461 Abnormality of the male

genitalia

Lin

et al. (2008)

‘The fact that both endodermal

and ectodermal b-Catenin

knockout animals develop se-

vere hypospadias in both sexes

raises the possibility that deregu-

lation of any of these functions

can contribute to the etiology of

congenital external genital

defects in humans.’

4665 HP:0000811 Abnormal external

genitalia

5280 HP:0000032 Abnormality of male ex-

ternal genitalia

4759 Q6PI48 DARS2 Aspartate-tRNA

ligase,

mitochondrial

HP:0001252 Muscular hypotonia Köhler

et al. (2015)

‘At the age of 10 months, he show-

ed. . . no active moving with

muscular hypotonia. . .. A homo-

zygous mutation in the DARS2

gene is most probably the cause

of the disease (LBSL).’

Table 5. Runtime comparison of different methods under temporal

validation

Method Runtime

LP 1.90 s

DLP 588.11 s

tlDLP-BP 2764.68 s

tlDLP-MF 2914.81 s

SMC 1932.56s

AiProAnnotator 3199.52 s

HPOFiller 1041.41 s
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of HNSCCs involve the mucosal surfaces of the oral cavity, orophar-
ynx and larynx.

The epidermal growth factor receptor (EGFR) is a transmem-
brane protein that regulates cell proliferation, apoptosis, angiogen-
esis, adhesion and metastasis. Ahluwalia et al. (2018) suggested that
patients with EGFR-mutated non-small cell lung cancer (NSCLC)
were more likely to suffer central nervous system (CNS) metastases.

In addition to the cancers, there are some predictions related to
rare phenotypic abnormalities. b-catenin is a dual function protein,
involved in regulation and coordination of cell-cell adhesion and
gene transcription. Lin et al. (2008) implied that the deregulation of
b-catenin could contribute to the etiology of congenital external
genital defects in humans based on the experiments on the mice.

The mitochondrial aspartyl-tRNA synthetase is an important en-
zyme in the synthesis of mitochondria, the energy-producing centers
in cells. Köhler et al. (2015) reported a 2.5-year-old baby suffering
from leukoencephalopathy with brainstem and spinal cord involve-
ment and lactate elevation (LBSL). He showed muscular hypotonia
at the age of 10 months. The authors believed that a homozygous
mutation in the DARS2 gene is most probably the cause of LBSL.

4.5.3 Case study 2: typical example

To demonstrate the practical advantage of HPOFiller, we use menin
(UniProt ID: O00255) as a typical example. Menin is the protein
product encoded by MEN1 gene, which serves as a putative tumor
suppressor associated with multiple endocrine neoplasia type 1.
Although menin is believed to be likely implicated in several import-
ant cell functions, the exact role of menin is yet to be elucidated
(Kamilaris and Stratakis, 2019). Supplementary Figure S4 presents
the HPO annotations predicted by different methods. There are 47
newly added HPO annotations of menin, and HPOFiller successfully
predicts 17 of them (36.2%), comparing to only 8 for the next-best
method. Furthermore, from Supplementary Figure S4, we observe
that HPOFiller can find more specific HPO terms, implying the
highly positive effect of GCN to capture the semantic relationships
between HPO terms from HPO semantic similarity network.

4.5.4 Runtime analysis

The runtime of comparing methods is given in Table 5. The experi-
ments are conducted on CentOS 7.5.1804 with Intel(R) Xeon(R)
Silver CPU and 256GB RAM, and our model is run on NVIDIA(R)
GeForce(R) GTX 1080 Ti GPU. HPOFiller needs half an hour to
finish the computation, which is two to three times faster than four
out of all six competing methods.

4.5.5 Application to find disease–gene associations

We present a further usage of HPOFiller: using known disease-HPO
term associations as well as predicted HPO annotations can identify
new disease–gene/proteins relationships. We obtain predicted dis-
ease-related genes/proteins by building a bridge between HPO anno-
tations of diseases released in February 2019 and predicted protein-
HPO term associations generated by HPOFiller. Table 6 lists three
top predictions that are added to the latest OMIM gene-disease rela-
tionships database. It demonstrates that by using the standardized
description of the abnormal phenotypes of the disease by clinicians

and other biocurators, HPOFiller can reveal possible genetic causes
of diseases.

5 Conclusion

We presented HPOFiller, a GCN-based approach for identifying
missing HPO annotations. The key idea of HPOFiller is to repeti-
tively integrate the information between proteins and HPO terms
through protein-HPO term bipartite network by Bi-GCN to provide
preliminary embeddings in the latent space, which are then refined
by S-GCN on PPI network and HPO semantic similarity network
separately. Empirical experiments under stringent conditions
showed that HPOFiller significantly outperformed state-of-the-art
methods. Besides, we could show evidence from literature for some
predicted (unknown) associations, implying the under-estimation of
performance. Furthermore, HPOFiller could discover potential dis-
ease–gene associations by using known disease-HPO term associa-
tions. Due to the utilization of PPI network, HPOFiller was
currently limited to gene-coded proteins. Since HPO included a
number of disease related non-coding RNAs, we could extend our
work to identify missing annotations of non-coding RNAs.
Additionally, exploring a more efficient architecture using GCN for
predicting HPO annotations would be interesting future work.
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