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Abstract

Motivation: Registration of histology images from multiple sources is a pressing problem in large-scale studies of
spatial -omics data. Researchers often perform ‘common coordinate registration’, akin to segmentation, in which
samples are partitioned based on tissue type to allow for quantitative comparison of similar regions across samples.
Accuracy in such registration requires both high image resolution and global awareness, which mark a difficult bal-
ancing act for contemporary deep learning architectures.

Results: We present a novel convolutional neural network (CNN) architecture that combines (i) a local classification
CNN that extracts features from image patches sampled sparsely across the tissue surface and (ii) a global segmen-
tation CNN that operates on these extracted features. This hybrid network can be trained in an end-to-end manner,
and we demonstrate its relative merits over competing approaches on a reference histology dataset as well as two
published spatial transcriptomics datasets. We believe that this paradigm will greatly enhance our ability to process
spatial -omics data, and has general purpose applications for the processing of high-resolution histology images on
commercially available GPUs.

Availability and implementation: All code is publicly available at https://github.com/flatironinstitute/st_gridnet.

Contact: adaly@flatironinstitute.org or rbonneau@flatironinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the study of tissue pathology, spatial context matters. Tissues are
composed of a variety of distinct cell types, often arranged in com-
plex spatial patterns and interacting with neighbors via an intricate
signaling network. As a result, measurements of cellular quantities
of interest, such as mRNA or protein, may have very different inter-
pretations depending on the precise location from which they were
drawn. For this reason, bulk or single-cell methods for measuring
the transcriptome or proteome, which can attain high yield of RNA/
protein targets but require dissociation of the tissue, may not be
ideal due to the substantial amount of contextual information they
discard (Hwang et al., 2018; Wang et al., 2009). While computa-
tional approaches have been developed to map single-cell measure-
ments back to coordinates in the original tissue (Edsgard et al.,
2018; Stuart et al., 2019), recently developed high-throughput tech-
niques for obtaining spatially resolved measurements of the tran-
scriptome of intact tissue sections—either through highly
multiplexed fluorescent in situ hybridization (FISH) (Sansone, 2019;
Xia et al., 2019) or solid-phase mRNA capture (Rodriques et al.,
2019; Ståhl et al., 2016)—provide an attractive alternative due to
their enhanced ability to observe pathological mechanisms at sub-

cellular scales within their native environment. As technical advan-
ces continue to increase both their throughput and resolution (Asp
et al., 2020; Stickels et al., 2020; Vickovic et al., 2019), these so-
called spatial ‘-omics’ methods promise an unprecedented view of
complex tissue function and dysfunction.

While spatial -omics measurements of single tissue sections can
be informative for applications such as patient-centered medicine,
detecting trends at the level of organ, individual, or even population
requires integrated analysis of data from multiple sources. Due to
biological and technical variation, however, this cannot be accom-
plished by a simple overlay of results, and requires an initial registra-
tion step: a transformation that maps coordinates in one system to
corresponding coordinates in another. When registering sequential

images of a single tissue, one can rely on cellular landmarks, such as
40,6-diamidino-2-phenylindole (DAPI)-stained nuclei, to define
homography transforms that either minimize distance or maximize
mutual information between images. When registering image data
from multiple sources, we cannot expect to define a direct homogra-
phy between samples, and instead define registration in terms of cor-
respondence of higher-level features. One such approach involves
segmenting tissue into distinct anatomical annotation regions
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(AARs) corresponding to conserved tissue types, effectively register-
ing tissue to a common coordinate system and allowing for the com-
parison of like regions across samples (Rood et al., 2019; Wang
et al., 2020).

This approach has inherent appeal in the field of spatial tran-
scriptomics, in which image data are either explicitly segmented dur-
ing downstream processing (FISH-based methods) or implicitly
segmented by the experimental protocol (solid-phase capture meth-
ods). In FISH-based methods, channels reserved for cellular markers
(such as DAPI) are used to segment cells, nuclei or other organelles
so that mRNA/protein reads can be attributed to distinct entities,
and thus contextualized by spatial co-occurrence. In this context,
segmented entities can be assigned an AAR based on cell type, ena-
bling comparison of similar entities across conditions. Solid-phase
capture methods, such as spatial transcriptomics (ST) (Ståhl et al.,
2016) or 10� Genomics’ more recent Visium platform, load tissue
onto slides specially printed with a regularly spaced array of discrete
capture areas, or ‘spots’, each spanning a fixed area of tissue
(100mm diameter spots spaced 200mm apart for ST; 55 mm diameter
spots spaced 100mm apart for Visium) and capable of capturing
thousands (ST) to tens of thousands (Visium) of reads. The accom-
panying histology images are implicitly segmented by the locations
of these spots, allowing the user to visualize the tissue microenviron-
ment associated with each distinct measurement. Taking advantage
of this inherent discretization, Maniatis et al. (2019)—in their study
of amyotrophic lateral sclerosis in mouse and human spinal cords—
and Maynard—in their morphological characterization of the
human dorsolateral-prefrontal cortex—were able to assign AARs
based on tissue type to each spot by visual inspection, allowing for
the integration and quantitative analysis of gene expression data
from multiple individuals.

As the volume of data generated by spatial -omics studies
increases, reliance on manual annotation quickly becomes infeasible.
Consequently, deep learning-based approaches to image registration
become attractive alternatives for their potential to speed through-
put and enable large-scale experimental designs. Histological image
data, however, present several unique challenges that merit consider-
ation and may hamper the application of existing deep learning
approaches. Accurate registration often requires information at a
sub-cellular scale in order to detect subtle textural differences indi-
cating changes in cellular composition, and additionally at a global
scale to detect large-scale patterns such as layering or symmetry. The
size of the images being considered, however—potentially tens of
millions of pixels—makes it difficult to maintain both high reso-
lution and global awareness when training neural networks on com-
mercially available hardware (Hekster et al., 2020). On a fixed
memory budget, this results in a tradeoff between global and local
information for deep learning approaches. On the global end of this
spectrum lie region segmentation approaches, which successively ab-
stract images (through operations such as strided convolution or
pooling) in order to partition them into distinct entities based on
high-level characteristics. Biologically motivated architectures such
as U-Net (Ronneberger et al., 2015) additionally employ lower-level
information into their segmentation output through the use of feed-
forward connections, though this increase in network complexity
commensurately limits the size of images that can be processed. One
may address these limitations by reducing the complexity of the net-
work (reducing the number of feature maps, increasing convolution
stride, employing dilated convolutions) or downsampling the input
images, thereby sacrificing an ability to detect local (sub-cellular)
features, or by dividing the image into tiles and processing each inde-
pendently, thereby sacrificing an ability to detect features spanning
multiple tiles. In order to avoid the loss of salient information during
segmentation, one must incorporate expert knowledge of the system
being studied into the design of the network, such as the length scale
of the largest and smallest features employed by pathologists during
manual annotation. When one is primarily interested in discrete
regions of interest (ROIs), such as ST spot locations, one may instead
employ a more local approach by extracting image patches and inde-
pendently applying an image classification convolutional neural net-
work (CNN) to each. This ‘patch classification’ approach is popular

in histopathology due to its ability to achieve high resolution with
low overhead and was employed by Maniatis et al. (2019) in their
development of the annotation tool Span (https://github.com/tare/
span). The lack of global information, however, makes patch classi-
fication susceptible to local errors, particularly in regions of dam-
aged tissue. This can be observed in the results of Tan et al. (2020),
who apply a CNN architecture to identify cancer state in dissociated
image patches from an ST study of prostate cancer biopsies. While
some of these errors could be corrected by the application of post
hoc denoising strategies for image segmentation such as conditional
random fields (Lafferty et al., 2001), a more powerful approach
would be able to learn characteristics of tissue organization in an
end-to-end manner, allowing the network to correct local predic-
tions from a birds-eye view.

Here, we present ‘GridNet’, a novel deep learning architecture
for the registration of histology images to a common coordinate sys-
tem. This network achieves an ability to model complex data by
combining two CNNs: a classifier that is applied to full-resolution
image patches extracted at sparsely sampled locations in the original
histology image, and a segmentation network that operates on fea-
ture vectors extracted from each patch (Fig. 1b). The sparse feature
extraction in the first stage of our network is similar to the approach
of Tellez et al. (2021), though our network can be trained in an end-
to-end manner, with the classification CNN learning cellular and
sub-cellular features key to identifying tissue region and state, and
the segmentation CNN learning global tissue patterns to correct for
local errors. We explore several strategies for training GridNet, dem-
onstrating approaches that address the differing demands of the
component networks and are capable of being executed on a single
GPU. We apply GridNet, as well as competing architectures for
common coordinate registration, to two datasets with available
gold-standard manual labels: a mouse brain section reference hist-
ology dataset obtained from the Allen Brain Atlas (ABA) (Wang
et al., 2020), and the mouse spinal cord ST dataset detailed in
Maniatis et al. (2019). Using these data, we show that pure segmen-
tation and pure classification approaches suffer, respectively, from
limitations on model complexity and persistent local errors, while
GridNet is able to leverage elements of both paradigms to attain
consistently high-registration accuracy. Finally, we apply GridNet to
a dataset of human dorsolateral prefrontal cortex (DLPFC) tissue

Fig. 1. Common coordinate registration and the automation thereof by GridNet.

(a) An example of common coordinate registration using mouse spinal cord tissue

and 11 tissue classes. (b) Schematic of the proposed CNN architecture operating on

a cross-section of mouse brain tissue. An image classification CNN f is employed to

extract feature vectors from patches sampled from high-resolution histology images.

These feature vectors serve as input to a second CNN g which is trained to perform

semantic segmentation
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processed with 10� Genomics’ recently released Visium spatial tran-
scriptomics platform (Maynard et al., 2021), which achieves high
resolution by hexagonal packing of ST spots, in order to demon-
strate the generality of our approach to new spatial systems. We be-
lieve our hybrid approach, for which we provide a publicly available
Python implementation, presents a useful paradigm for general tasks
in large-scale histology image processing, due to its demonstrated
ability to blend information from both sub-cellular and global
scales.

2 Materials and methods

2.1 Data specification
In this section, we discuss the manner by which image data were col-
lected for this study, and how the points on the ‘registration grid’
from which we extract full-resolution image patches were chosen.
For each tissue, image patches are sampled at the points in this grid
and arranged into a five-dimensional array—height of registration
grid, width of registration grid, height of patch, width of patch,
number of image channels—that serves as an input to our tissue
registration neural networks.

2.1.1 ABA reference histology

The ABA dataset, summarized in Figure 2, was constructed from 235
Nissl-stained sequential coronal sections of the mouse brain, which
are publicly available at https://connectivity.brain-map.org/static/refer
encedata. For each image, we sampled patches from a two-dimension-
al (2D) Cartesian grid across the image, with a center-to-center dis-
tance of 192 pixels. This corresponds to �200mm, which simulates
the center–center distance in the 10� genomics standard ST array
used by Maniatis et al. (2019). This sampling strategy required a
49�33-sized grid to span the tissue area of the largest section, and as
such these dimensions were chosen as the fixed size of our simulated
ST array. Using each position in the array as a centroid, we sampled
patches of either 128� 128 pixels or 256�256 pixels, depending on

the input size of the architecture. For all patches, each image channel
was separately normalized according to xc ¼ ðxc � lcÞ=rc, where
lRGB ¼ ð0:485; 0:456;0:406Þ; rRGB ¼ ð0:229; 0:224;0:225Þ.

For each patch, an annotation was obtained by using the ABA’
Image Synchronization API (http://help.brain-map.org/display/api/
Image-to-ImageþSynchronization) to map the pixel coordinates of
the patch centroid either to coordinates within a structural atlas of
the mouse brain (http://atlas.brain-map.org/atlas?atlas¼2) or to the
slide background. Each position within the structural atlas is associ-
ated with a hierarchy of ontology terms, describing the location with
increasing degrees of specificity. We chose the level-5 ontology term
as label for each foreground patch, yielding 13 unique classes across
the dataset. The complete dataset consisted of 149 943 foreground
patches with 13 unique annotations across the 235 arrays. The num-
ber of patches belonging to each class is detailed in Figure 2(d). For
experiments exploring optimal training strategies for GridNet, the
patch size was set to 128 pixels, with 80% of the arrays used for
training and 20% used for validation. For experiments comparing
GridNet against competing methodologies for registration, the patch
size was set to 256 pixels, with 70% of arrays were used for training,
10% for validation and 20% for testing.

2.1.2 Maniatis mouse spinal cord ST

The Maniatis dataset, summarized in Figure 3, was constructed
from 416 whole-slide images of hematoxylin and eosin (HE)-stained
cross-sections of mouse spinal cord. Each of these imaged tissues
had been processed using the Spatial Transcriptomics workflow
described in Salmen et al. (2018), which employs 100mm diameter
mRNA capture probes arranged in a Cartesian grid at 200 lm
center-to-center distance. The dimensions of all ST arrays are 35
rows by 33 columns.

Annotation files for each tissue section specifying the spatial lo-
cation of each ‘foreground’ ST spot—spots which overlapped tissue
area and attained a minimum number of mRNA reads—along with

Fig. 2. ABA reference histology dataset. (a) Representative histology image depicting

a Nissl staining of a mouse brain coronal section. (b) Scatterplot displaying locations

of corresponding ST spot centroids colored according to AAR annotation. (c) Three

representative patches from each ontology region. (d) Adjacency matrix displaying

the frequency with which patches of class [row] neighbor patches of class [column].

The number of instances of each class in the dataset is indicated in parentheses next

to each row label in (d), as well as being displayed graphically in (e)

Fig. 3. Maniatis mouse spinal cord ST dataset. (a) Representative histology image

depicting HE staining of mouse spinal cord cross-section. (b) Scatterplot displaying

locations of corresponding ST spot centroids colored according to AAR annotation.

(c) Three representative image patches from each AAR, each displaying a (150 mm)2

region. (d) Adjacency matrix displaying the frequency with which patches of class

[row] neighbor patches of class [column]. The number of instances of each class in

the dataset is indicated in parentheses next to each row label in (d), as well as being

displayed graphically in (e)
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the corresponding manually assigned tissue labels (AARs) were
obtained from Maniatis et al. (2019). Using these foreground ST
spot locations as centroids, patches were sampled to cover a 256� 256
pixel region, which corresponded to a physical area of �184mm �
184lm in each tissue. Due to variation in image resolution as a result of
the data being collected from several distinct workflows, the width of
the physical window size varied with a standard deviation of 34.5lm
across the dataset. For all patches, each image channel was separately
normalized according to xc ¼ ðxc � lcÞ=rc, where
lRGB ¼ ð0:485;0:456;0:406Þ; rRGB ¼ ð0:229;0:224;0:225Þ. The
complete dataset consisted of 101068 foreground patches with 11
unique classes across the 416 arrays. The number of patches belonging
to each class is detailed in Figure 3(d). For all experiments, 70% of the
arrays were used for training, 10% for validation and 20% for testing.

2.1.3 Maynard human DLPFC Visium

The Maynard dataset, summarized in Figure 4, was constructed
from of 12 whole-slide images of HE-stained cross-sections of
human DLPFC collected across three neurotypical patients. Each of
these imaged tissues had been processed using 10� Genomics’
Visium Spatial Transcriptomics workflow, which employs 50mm
diameter mRNA capture probes arranged in a hexagonal grid at
100mm center-to-center distance. The dimensions of all Visium
array are 78 rows by 64 columns.

Annotation files for each tissue section specifying the spatial location
of each foreground spot, along with manually assigned layer annotation,
were obtained from Maynard. Using these foreground ST spot locations
as centroids, patches were sampled to cover a 256�256 pixel region,
which corresponded to a physical area 185mm � 185mm in each tissue.
All three-channel image patches were normalized such that

lRGB ¼ ð0:485;0:456; 0:406Þ; rRGB ¼ ð0:229;0:224; 0:225Þ. The com-
plete dataset consisted of 47329 foreground patches with 7 unique classes
across the 12 arrays. The number of patches belonging to each class is
detailed in Figure 4(d).

For experiments in this article, the data were divided into six
equally sized folds for nested cross-validation. The following fold
compositions were chosen, using sample numbers from the original
publication: Fold 1¼ (151 507, 151 508), Fold 2¼ (151 509,
151 510), Fold 3¼ (151 669, 151 670), Fold 4¼ (151 671, 151 672),
Fold 5¼ (151 673, 151 674) and Fold 6¼ (151 675, 151 676).

2.1.4 Task specification

As the data being considered in this article are sampled according to
regular grids—either Cartesian or hexagonal—we represent inputs
to the registration model as a tensors of dimension
ðHST;WST;Hp;Wp;CÞ, where HST and WST represent the height and
width of the ST grid, Hp and Wp represent the height and width of
the patches and C represents the number of image channels. As all
data considered in this article are square patches sampled from RGB
images, we hold Hp ¼Wp and C¼3.

Labels are represented as 2D tensors of dimension ðHST;WSTÞ.
Thus, for input X and label Y, Xi;j yields the image patch (of dimension
Hp �Hp � 3) corresponding to row i, column j in the ST array, while
Yi;j yields the class label for that patch. All foreground patches are
assigned a label between 1 and Nclass—where Nclass represents the num-
ber of distinct foreground classes—while background patches are repre-
sented as zero-valued arrays and assigned a label of 0.

2.2 Model specification
In this section, we discuss several variants of the proposed ‘GridNet’
architecture for tissue registration, which is comprised of two com-
ponent networks—a patch classification CNN and a segmentation
CNN—that are connected and trained in an end-to-end manner. We
provide an outline of the operation of the network on inputs con-
structed as outlined in the previous section, and additionally intro-
duce a purely segmentation-based approach to tissue registration
that will serve as a baseline for comparison of GridNet’s
performance.

2.2.1 GridNet architectures

The GridNet model is comprised of two components CNNs: patch
classifier f and global corrector g. f accepts inputs of dimension
ðHp;Hp;3Þ and outputs a vector of predictions of length Nclass:

f ðXi;jÞ ! Y 0i;j; Xi;j 2 ð0; 1ÞHp�Hp�3; Y 0i;j 2 ð0;1Þ
Nclass ; (1)

and g accepts inputs of dimension ðHST;WST;NclassÞ and outputs a
matrix of the same dimension:

gðY 0Þ ! Y 00; Y 0;Y 00 2 ð0;1ÞHST�WST�Nclass ; (2)

where HST and WST are the height and width (in patches) of the ST
array, respectively.

The forward pass of the full model operates as follows: an input
batch of shape ðB;HST;WST;Hp;Hp; 3Þ (where B is the batch size) is
flattened to a list of patches of dimension ðB �HST �WST;Hp;Hp;3Þ.
Each patch X̂k in this list is then passed through the patch classifier
f, yielding an initial annotation f ðX̂kÞ. The resulting tensor of dimen-
sion ðB �HST �WST;NclassÞ is then reshaped to a tensor of dimension
ðB;HST;WST;NclassÞ. This tensor is then passed through the g net-
work to obtain the final, identically sized registration map. Prior to
output and error calculation, all background patches fXi;j s.t.
maxðXi;jÞ ¼ 0g are assigned class 0, while foreground patches are
given a classification between 1 and Nclass. By design, GridNet can-
not mistakenly classify background patches as foreground or vice
versa.

If the size of the input array is prohibitive for standard training
by back-propagation, in which all intermediate activation states
are stored in memory, the following strategy for gradient checkpointing

Fig. 4. Maynard human DLPFC Visium ST dataset. (a) Representative histology

image depicting HE staining of human DLPFC cross-section. (b) Scatterplot display-

ing hexagonally packed locations of corresponding Visium spot centroids colored

according to AAR annotation. (c) Three representative image patches from each

AAR, each displaying a (185 mm)2 region. (d) Adjacency matrix displaying the fre-

quency with which patches of class [row] neighbor patches of class [column]. The

number of instances of each class in the dataset is indicated in parentheses next to

each row label in (d), as well as being displayed graphically in (e)
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is adopted: after obtaining the flattened patch list X̂k;
0 < k � ðB �HST �WSTÞ,

1. Forward computation of mini-batch

f1 ¼ f ðX̂1Þ; . . . ; fD ¼ f ðX̂DÞ. Save f1; . . . ; fD.

2. Repeat for all D-sized mini-batches X̂k; . . . ; X̂kþD s.t. k > 1,

kþD � ðB �HST �WSTÞ.
3. Forward computation of Y ¼ gðf1; . . . ; fB�HST �WST

Þ.
4. Backward computation of the gradient to update parameters

of g.

5. Forward computation of mini-batch

f1 ¼ f ðX̂1Þ; . . . ; fD ¼ f ðX̂DÞ.
6. Backward computation of the gradient to update parameters in f

using only mini-batch X̂1; . . . ; X̂D. Save the gradients.

7. Repeat previous two steps for all mini-batches X̂k; . . . ; X̂kþD s.t.

k > 1, kþD � ðB �HST �WSTÞ.
8. Average gradients for all f1; . . . ; fB�HST �WST

and apply parameter

update.

This methodology effectively partitions the input array into mini-
batches of size D, where D can be chosen based on the size of the in-
put arrays and available GPU memory. For all experiments in this
article using sufficiently large inputs (Hp ¼ 256), D¼ 32 was chosen
as the mini-batch size after experimentation on NVidia V100 32GB
GPUs.

Figure 5 details several variants of the GridNet architecture,
defined by their choices for f and g. In GridNetSimple, a modified
version of ResNet18 (He et al., 2016) is employed for f, in which
batch normalization layers are removed and the number of filters in
each convolutional layer is reduced by a factor of four. In the more
sophisticated GridNet and GridNetHex models, DenseNet-121
(Huang et al., 2016) is employed for f instead. The choice of archi-
tecture for g is dependent upon the data being considered. When per-
forming registration on either the ABA or Maniatis datasets, in
which image patches are sampled according to a Cartesian grid,
standard 2D convolutional kernels are employed to update the clas-
sification of a patch based on the classification of its neighbors.
When considering the hexagonally sampled Maynard dataset, spe-
cially formulated hexagonal kernels are employed instead to accur-
ately capture the six-neighborhood around each spot. In this study,
this was accomplished through the use of hexagonal convolution
operations as implemented in the HexagDLy (Steppa and Holch,
2019) extension to PyTorch.

2.2.2 Segmentation architectures

As a baseline for comparison of the registration accuracy of
GridNet, we formulated a modified version of ResNet-34 adapted to

the registration task presented in this article (Supplementary Fig.
S1). Inputs to this network were transformed from the inputs to
GridNet, flattened along each ST dimension to yield a single
‘stitched’ image of dimension ðHST �Hp;WST �Hp;3Þ. Though a
choice of Hp not equal to the center–center distance between spots
will result in discontinuities in the input image, we have found that
this does not affect network performance in any meaningful manner
(Supplementary Fig. S7).

The ResNet-34 architecture was modified in two significant
ways in order to process these data. First, the fully connected layers
were discarded, and the final 2D adaptive average pooling layer was
modified to output tensors of dimension ðHST;WST;Nf Þ, where Nf is
the number of filters at this layer in the network. A final 1�1 2D
convolution with stride 1, same padding and Nclass output filters was
applied to this intermediate, yielding an output of dimension
ðHST;WST;NclassÞ. This enabled us to train the model on the same
inputs and outputs as GridNet. The second modification was the re-
duction of the number of filters in each layer by a factor of four,
which was required to fit even a single array from the ABA dataset
into memory during training on a 32GB NVIDIA V100 GPU. As we
had difficulty fitting even such a simple network in the memory of
the GPU, we did not use U-Net style networks Ronneberger et al.
(2015), which would require more memory.

2.3 Training regimens
For all models discussed in this study, the optimization criterion is
the cross-entropy loss between the predicted class probabilities and
their true labels.

When training the f network alone, the problem reduces to
simple image classification. For an input batch of image patches
X̂ ¼ fX̂0; . . . ; X̂Bg (where all X̂b 2 ð0; 1ÞHp�Hp�3) and associated
labels Ŷ ¼ fŶ 0; . . . ; Ŷ Bg (where all Ŷ b 2 ½1; . . . ;Nclass�), the object-
ive function is given as:

‘ðX̂; ŶÞ ¼ 1

B

XB

b¼0

�log
�

f ðX̂bÞ½Ŷ b�
�
; (3)

where f ðX̂bÞ½k� indicates the predicted probability of patch b belong-
ing to class k, and Ŷ b indicates the index of the true class of patch b.

When training the g network alone, or both networks together,
image patches and their tensors are arranged into 2D tensors as
described in the previous section. For an input batch of image patch
arrays X ¼ fX0; . . . ;XBg (where all Xb 2 ð0;1ÞHST�WST�Hp�Hp�3)
and their associated labels Y ¼ fY0; . . . ;YBg (where all
Yb 2 ½1; . . . ;Nclass�HST�WST ), the objective function is given as:

‘ðX;YÞ ¼ 1

B

XB

b¼0

� X
ði;jÞ2FGðYbÞ

�log
�

gðXbÞi;j½Yb;i;j�
��
; (4)

where FGðYbÞ indicates the set of foreground patch coordinates in
array b, gðXbÞi;j½k� indicates the predicted probability of the patch at
location (i, j) in array b belonging to class k and Yb;i;j indicates the
index of the true class of the patch at location (i, j) in array b.

Three competing training strategies were investigated for experi-
ments on GridNet, all employing the Adam optimizer:

2.3.1 Two-stage training

1. Train f on the set of all foreground patches in the training set

using batch size B �HST �WST patches for E1 epochs.

2. Fix parameters of f.

3. Train g using a batch size of B image arrays for E2 epochs.

4. Return the best-performing model on the validation set.

2.3.2 At-once training

1. Train f and g simultaneously, using learning rate of lr for g and

a � lr for f, using a batch size of B image arrays for E epochs.

2. Return the best-performing model on the validation set.

Fig. 5. Three variant convolutional model architectures employed in image registra-

tion. ResNet18* indicates the modified ResNet architecture described in Section 2.2.

Conv k� k layers indicate 2D standard convolutional layers with kernel size k,

stride 1 and same padding. ConvHexk layers indicate 2D hexagonal convolutional

layers with kernel size 1, stride 1 and same padding. ReLU arrows indicate a rectified

linear unit activation function
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2.3.3 Fine-tuning training

1. Initialize f and g with parameter values obtained from two-stage

training approach. Save the state of the optimizer for the param-

eters in g.

2. Load the state of the optimizer for the parameters in g, and re-

initialize the optimizer for f. Train f and g simultaneously, using

learning rate of lr for g and a � lr for f, using a batch size of B

image arrays for E3 epochs.

3. Return the best-performing model on the validation set.

2.4 Implementation details
All code is written in PyTorch (Paszke et al., 2019) and is publicly
available at https://github.com/flatironinstitute/st_gridnet/.

3 Results

In this section, we investigate several regimens for training the pro-
posed GridNet model, then compare the registration performance
attained by our model against competing approaches. We provide a
schematic illustration of GridNet in Figure 1b, as well as summary
figures of the three datasets considered in Figures 2–4.

3.1 Determining optimal training strategy
Due to the complexity of the GridNet architecture, we began by
exploring training procedures for the network. For this analysis, we
considered a simplified form of the architecture, GridNetSimple
(Section 2.2, Fig. 5), which removes batch normalization layers from
the patch classifier f [see Ioffe and Szegedy (2015) for a discussion of
batch normalization in neural network training] in order to account
for the different effective batch sizes of f and g. We trained the
GridNetSimple architecture using the ABA reference histology data-
set (Section 2.1.1, Fig. 2) with a patch size of 128 pixels. This
smaller patch size was chosen in order to limit the size of input
images and fit a batch size of B¼ 2 arrays into GPU memory during
training.

3.1.1 Two-stage training

We first considered a two-stage training approach, in which we first
train f alone on the set of all image patches in the training set for
E1 ¼ 50 epochs, then fix the parameters of f and train g for E2 ¼ 50
epochs. Initially, we employed the same learning rate for both train-
ing phases, and repeated the fitting for 10 random samples from the
interval logðlrÞ � Uniformð�4;�3Þ (Fig. 6a). During these experi-
ments, we ensured that training batches for f and g contained the
same number of total image patches in order to remove batch infor-
mation content as a confounding factor. In Figure 6a, we see that the
best model obtained after training f alone attains 59% registration
accuracy on the validation set, while the best model obtained after
training g using fixed f attains 84% registration accuracy on the
same validation set. We note that this large increase in validation set
performance is observed whether the weights of f are initialized ran-
domly or by pre-training on a corpus such as ImageNet (Deng et al.,
2009). Such pre-training merely reduces the number of training
epochs required to attain the same performance in f (Supplementary
Fig. S2). This finding is consistent with those in Raghu et al. (2019),
who determined that transfer learning from ImageNet is more im-
portant for the correct initialization of the magnitudes of medical
image network parameters, rather than their specific values. As a re-
sult, and due to the relatively large scale of the ABA dataset, we
relied on models trained from randomly initialized weights for the
remainder of this study.

3.1.2 End-to-end training

While the results from the two-stage approach are encouraging,
demonstrating the power of this hybrid classification approach even
when both component models are extremely simple, training both
components simultaneously is conceptually more appealing. Such an

‘end-to-end’ training approach would allow local learning rules to
be updated in response to observed global patterns.

With this in mind, we next attempted training all model parame-
ters at once from randomly initialized weights for E¼ 300 epochs.
While the parameters from f and g would be updated simultaneously
under this regimen, it merited further consideration as to whether
their parameters should change at the same rate. In the two-stage
regimen, we held the learning rate for f and g to be equal for simpli-
city, but observe that higher learning rates lead to strong fluctuations
in both training and validation set performance during optimization
f (Fig. 6a). We hypothesized that this was due to the fact that param-
eters of f are coupled across all input image patches, thus impacting
model predictions disproportionately when stepped at the same rate
as the parameters of g. To address this, we allowed for the learning
rate of f to be set at some fraction a of the learning rate for g during
training. We found that this strategy gave the best results when a <
0:1 (Supplementary Fig. S3), and as such sampled a �
Uniformð0;0:1Þ in subsequent analyses.

Accounting for this difference in learning rate, we see in Fig. 6(b)
that the best-performing model trained in the at-once regimen (76%
validation accuracy) still fails to match the validation set accuracy
attained by the two-stage model, despite surpassing the accuracy
attained by training f alone. In order to better guide the joint opti-
mization in this large parameter space, we considered a new ‘fine-
tuning’ approach to training, in which f and g are pre-trained follow-
ing the two-stage regimen (E1 ¼ E2 ¼ 50 epochs), then jointly
trained as in the at-once approach for an additional E3 ¼ 100
epochs. In Fig. 6(c), we see that the best-performing model under
this training regimen (86% validation accuracy) slightly outperforms
the top models obtained by the two-stage approach, indicating the
model may correct some errors arising from performing classifica-
tion and segmentation in disjoint steps. While the at-once approach
is appealing due to its simplicity, the relative success of the fine-
tuning approach suggests that such an optimization is difficult even
for simple models, and proper initialization of the parameters of f
and g will be vital for success.

3.2 Registration of Cartesian ST data
Encouraged by our findings in the previous section, we increased the
complexity of both f and g and applied the GridNet architecture
(Section 2.2, Fig. 5) to both the ABA and the Maniatis datasets. For
these analyses, we consider wider image patches (256 pixels) so that
we may provide more information to our patch classification net-
work and investigate the added benefit of the global segmentation
layer under these conditions.

This increase in input size (�1GB per tissue in each dataset)
quickly exhausted the limits of memory on an NVidia V100 32GB
RAM GPU during training with back-propagation, even when
employing a batch size of just one array. In order to accommodate

Fig. 6. Registration accuracy attained by GridNetSimple architecture on ABA data

under (a) two-stage (b) at-once and (c) fine-tuning training regimens (see Section

2.3). Each sub-plot shows training (top) and validation (bottom) accuracy as a func-

tion of training epoch, with a separate trace for each of 10 randomly sampled learn-

ing rates. Across all plots, ‘lr’ denotes learning rate for parameters of g, and ‘alpha’

denotes fraction of lr used as learning rate for parameters of g. Individual traces are

color-coded from cool to warm according to the value of logðlr � aÞ
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these large data, we implemented gradient checkpointing, described
detail in Section 2.2.2., which allows the model to process input
arrays in GPU-friendly mini-batches, and enables end-to-end train-
ing in instances where input arrays prohibitively large for standard
back-propagation. In order to simulate batch sizes greater than one,
we additionally implemented a gradient accumulation step, in which
back-propagated gradients are summed over a number of input
batches (five, in our experiments) before updating model parame-
ters. This allows us to reduce noise in the parameter update step and
aids in convergence to a local optimum. While multiple GPUs could
be employed to alleviate some memory burden, particularly that
associated with increased batch size, we have chosen to limit our ex-
perimentation to single GPUs in the interest of hardware
accessibility.

We then sought to compare the performance of the improved
GridNet against approaches based purely on classification or segmenta-
tion. For a pure classification approach, we applied the f network from
GridNet (DenseNet-121) to all foreground image patches in the dataset
independently. For a pure segmentation approach, we employed
‘ResNet-34-Seg’, a ResNet-34 architecture modified to produce registra-
tion maps from whole-slide images (see Section 2.2.3). Due to the size
of the images, the number of filters in each layer of ResNet-34-Seg had
to be reduced by a factor of four in order to accommodate a single input
during training on a 32GB RAM GPU. For each model and dataset
combination, we performed hyperparameter optimization by sampling
10 learning rates (and a’s, if applicable) according to
logðlrÞ � Uniformð�4;�3Þ; a � Uniformð0;0:1Þ. From the five best-
performing models on the validation set (Supplementary Table S1), we
constructed an ensemble classifier by unweighted voting to yield an

estimate of best-case performance. We additionally calculated the mean
and standard deviation of accuracy and area under both the receiver op-
erator curve (AUROC) and the precision-recall curve (AUPRC) across
the component models to yield an estimate average-case performance.

In Table 1 (ABA) and Table 2 (Maniatis), we see that across both
datasets, GridNet greatly outperforms both DenseNet-121 and
ResNet-34-Seg in average-case and best-case registration accuracy,
as well as per-class and macro average AUPRC and AUROC.
Between the competing approaches, we see that registration by
ResNet-34-Seg performs worse than registration by DenseNet-121
along the same metrics for both datasets, despite the fact that
DenseNet-121 only operates on dissociated patches. We attribute
this to the reduction in complexity of the ResNet-34-Seg architecture
necessitated by the size of input images, and highlights the difficulty
of performing segmentation for images of this size. We additionally
note that the patch classification accuracy attained by DenseNet-121
is much lower in the Maniatis dataset than the ABA dataset. This is
likely due to properties of the data themselves: the ABA dataset is a
well-curated reference histology dataset, with highly consistent
staining and sample orientation. The Maniatis dataset, on the other
hand, presents variability in both tissue orientation and stain inten-
sity (Supplementary Fig. S4), both of which can be confounding to
image classification architectures. The predictive power of DenseNet
may be enhanced by preprocessing images with stain normalization
techniques, and additionally by the application of data augmenta-
tion to introduce robustness to orientation. Despite this variability,
we see that the segmentation layer of GridNet adds substantially to
the generalized registration accuracy on the Maniatis dataset (almost
12%), indicating that this approach is beneficial even when built on

Table 1. Accuracy, AUROC and AUPRC attained by registration models on ABA independent test set

Densenet-121 GridNet ResNet-34-Seg

Ensemble Mean (SD) Ensemble Mean (SD) Ensemble Mean (SD)

Accuracy 0.861 0.826 (4.4e�3) 0.912 0.892 (3.7e�3) 0.731 0.678 (3.08e�2)

AUPRC 1. Midbrain 0.905 0.861 (1.07e�2) 0.963 0.944 (6.04e�3) 0.641 0.552 (6.7e�1)

2. Isocortex 0.978 0.973 (8.57e�4) 0.993 0.990 (1.51e�3) 0.962 0.942 (1.08e�2)

3. Medulla 0.947 0.920 (9.09e�3) 0.984 0.976 (2.27e�3) 0.659 0.575 (4.81e�2)

4. Striatum 0.863 0.837 (7.94e�3) 0.931 0.913 (1.08e�2) 0.709 0.612 (5.71e�2)

5. Cerebellar nuclei 0.841 0.789 (2.34e�2) 0.914 0.787 (8.84e�2) 0.513 0.364 (6.08e�2)

6. Cerebellar cortex 0.986 0.980 (1.84e�3) 0.994 0.991 (1.32e�3) 0.947 0.931 (5.66e�3)

7. Thalamus 0.942 0.914 (4.28e�3) 0.979 0.967 (4.23e�3) 0.778 0.664 (8.88e�2)

8. Olfactory areas 0.898 0.866 (8.00e�3) 0.948 0.938 (6.82e�3) 0.893 0.783 (1.58e�2)

9. Cortical subplate 0.647 0.573 (6.06e�3) 0.747 0.696 (1.51e�3) 0.364 0.254 (5.46e�2)

10. Pons 0.836 0.762 (3.75e�2) 0.937 0.898 (2.32e�2) 0.398 0.307 (3.60e�2)

11. Pallidum 0.540 0.447 (2.49e�2) 0.667 0.564 (7.14e�2) 0.253 0.164 (3.36e�2)

12. Hippocampal formation 0.936 0.911 (3.67e�3) 0.980 0.966 (8.53e�3) 0.882 0.822 (3.31e�2)

13. Hypothalamus 0.860 0.794 (1.92e�2) 0.945 0.915 (1.13e�2) 0.481 0.363 (5.96e�2)

Macro average 0.860 0.818 (0.149) 0.922 0.888 (0.128) 0.648 0.564 (0.254)

AUROC 1. Midbrain 0.988 0.981 (2.30e�3) 0.996 0.994 (8.79e�4) 0.935 0.921 (1.91e�2)

2. Isocortex 0.988 0.985 (7.34e�4) 0.997 0.995 (1.27e�3) 0.980 0.970 (5.79e�3)

3. Medulla 0.994 0.992 (1.37e�3) 0.998 0.998 (1.10e�3) 0.959 0.942 (8.00e�3)

4. Striatum 0.978 0.971 (1.40e�3) 0.991 0.989 (2.61e�3) 0.943 0.915 (2.04e�2)

5. Cerebellar nuclei 0.998 0.996 (1.32e�3) 0.999 0.998 (1.25e�3) 0.980 0.959 (9.38e�3)

6. Cerebellar cortex 0.998 0.997 (2.71e�4) 0.999 0.999 (2.08e�4) 0.985 0.978 (2.93e�3)

7. Thalamus 0.994 0.990 (1.33e�3) 0.998 0.997 (7.22e�4) 0.966 0.948 (1.36e�2)

8. Olfactory areas 0.986 0.980 (7.38e�4) 0.994 0.993 (1.20e�3) 0.971 0.953 (3.93e�3)

9. Cortical subplate 0.971 0.962 (3.22e�3) 0.983 0.981 (1.27e�3) 0.935 0.894 (1.98e�2)

10. Pons 0.989 0.982 (4.08e�3) 0.996 0.995 (1.10e�3) 0.930 0.908 (1.36e�2)

11. Pallidum 0.973 0.964 (4.71e�3) 0.988 0.984 (2.62e�3) 0.931 0.897 (1.36e�2)

12. Hippocampal formation 0.991 0.987 (6.55e�4) 0.997 0.995 (1.25e�3) 0.977 0.960 (8.81e�3)

13. Hypothalamus 0.992 0.987 (1.47e�3) 0.997 0.995 (4.77e�4) 0.947 0.928 (1.56e�2)

Macro average 0.988 0.983 (1.09e�2) 0.995 0.993 (5.4e�3) 0.957 0.937 (2.99e�2)

Note: Results shown were calculated using the five best-performing models obtained during hyperparameter optimization using the validation set. ‘Ensemble’

denotes results obtained by ensemble classifier built by unweighted voting of the five best models, while mean and standard deviation (SD) for performance metrics

are calculated using the independent predictions from said models. AUROC and AUPRC are reported for each class (one-vs-rest) and for macro average across all

13 classes.
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top of an imperfect classifier. While providing additional spatial con-
text to f by doubling the size of the receptive field (Hp ¼ 512) does
increase the registration performance of the model during the f-
phase of training, we observed that the final registration accuracy
attained by such models after two-stage training was identical to the
models presented in this section under all investigated hyperpara-
meters (Supplementary Fig. S5). To alleviate the quadratic increase
in computational cost associated with increasing patch size, one may
sample wider window and then downsample the image, affording
greater context at decreased resolution. We found that increased
window sizes of 512 and 1024 px do lead to increased accuracy in
the f network on the Maniatis dataset, but still fail to meet the per-
formance attained by our two-stage approach while also risking the
loss of sub-cellular information (Supplementary Fig. S6). As such,
we believe that more complex, multi-resolution approaches to patch
classification may not warrant the increased memory burden and
training time, as the neighborhood information learned by the g net-
work appears to be much more important for final registration
performance.

We note that in both datasets, GridNet displays uniformly high
AUROC across all one-vs-rest class predictors and high AUPRC
across most (Tables 1 and 2), though the macro average AUPRC is
hampered by relatively poor performance on select classes (cortical

subplate and pallidum in ABA; ventral lateral white, central canal
and lateral edge in Maniatis). To understand this, we generated con-
fusion matrices for each dataset to get a more granular view on the
types of errors being made by GridNet (Fig. 7). In both ABA and
Maniatis datasets, we notice that there is substantial overlap

Table 2. Accuracy, AUROC and AUPRC attained by registration models on Maniatis independent test set

Densenet-121 GridNet ResNet-34-Seg

Ensemble Mean (SD) Ensemble Mean (SD) Ensemble Mean (SD)

Accuracy 0.691 0.666 (3.6e�3) 0.806 0.782 (8e�4) 0.665 0.622 (1e�2)

AUPRC 1. Ventral medial

white

0.610 0.567 (4.64e�3) 0.851 0.826 (3.54e�3) 0.635 0.549 (3.0e�2)

2. Ventral horn 0.851 0.836 (2.96e�3) 0.917 0.904 (2.18e�3) 0.827 0.792 (1.18e�2)

3. Ventral lateral

white

0.554 0.516 (1.024e�2) 0.789 0.752 (3.77e�3) 0.536 0.484 (1.21e�2)

4. Medial gray 0.807 0.791 (5.88e�3) 0.896 0.877 (3.94e�3) 0.774 0.731 (1.68e�2)

5. Dorsal horn 0.869 0.855 (3.03e�3) 0.883 0.863 (2.01e�3) 0.853 0.816 (5.28e�3)

6. Dorsal edge 0.820 0.801 (1.02e�2) 0.890 0.874 (4.88e�3) 0.771 0.719 (8.66e�3)

7. Medial lateral

white

0.630 0.585 (1.169e�2) 0.853 0.824 (2.13e�3) 0.565 0.507 (1.5e�2)

8. Ventral edge 0.730 0.703 (1.02e�2) 0.872 0.849 (4.30e�3) 0.615 0.562 (4.46e�3)

9. Dorsal medial

white

0.740 0.706 (1.05e�2) 0.881 0.854 (4.54e�3) 0.779 0.712 (2.67e�2)

10. Central canal 0.795 0.795 (8.04e�3) 0.790 0.739 (1.88e�2) 0.758 0.694 (5.34e�2)

11. Lateral edge 0.393 0.368 (4.75e�3) 0.606 0.560 (9.82e�3) 0.324 0.289 (2.51e�2)

Macro average 0.709 0.684 (0.149) 0.839 0.811 (9.31e�2) 0.676 0.623 (0.153)

AUROC 1. Ventral medial

white

0.939 0.930 (1.17e�3) 0.980 0.976 (1.17e�3) 0.934 0.918 (5.77e�3)

2. Ventral horn 0.958 0.953 (9.41e�4) 0.976 0.971 (8.60e�4) 0.949 0.937 (3.33e�3)

3. Ventral lateral

white

0.934 0.927 (1.49e�3) 0.975 0.970 (4.08e�4) 0.934 0.922 (3.43e�3)

4. Medial gray 0.950 0.945 (1.60e�3) 0.972 0.967 (6.87e�4) 0.944 0.932 (4.01e�3)

5. Dorsal horn 0.972 0.970 (1.45e�3) 0.980 0.976 (1.00e�3) 0.969 0.960 (1.45e�3)

6. Dorsal edge 0.973 0.970 (1.25e�3) 0.985 0.983 (6.29e�4) 0.962 0.952 (2.49e�3)

7. Medial lateral

white

0.931 0.920 (2.56e�3) 0.974 0.968 (9.00e�4) 0.916 0.900 (4.10e�3)

8. Ventral edge 0.973 0.969 (1.76e�3) 0.988 0.985 (7.72e�4) 0.963 0.957 (8.58e�4)

9. Dorsal medial

white

0.961 0.955 (3.27e�3) 0.986 0.982 (1.17e�3) 0.971 0.959 (3.13e�3)

10. Central canal 0.978 0.976 (2.80e�3) 0.984 0.984 (7.47e�4) 0.977 0.973 (6.73e�3)

11. Lateral edge 0.951 0.947 (1.01e�3) 0.974 0.969 (7.91e�4) 0.939 0.928 (4.75e�3)

Macro average 0.956 0.951 (1.86e�2) 0.980 0.976 (6.7e�3) 0.951 0.940 (2.13e�2)

Note: Results shown were calculated using the five best-performing models obtained during hyperparameter optimization using the validation set. ‘Ensemble’

denotes results obtained by ensemble classifier built by unweighted voting of the five best models, while mean and standard deviation (SD) for performance metrics

are calculated using the independent predictions from said models. AUROC and AUPRC are reported for each class (one-vs-rest) and for macro average across all

11 classes.

Fig. 7. Confusion matrices for GridNet model on (left) ABA and (right) Maniatis

datasets. Results shown were calculated on the held-out test set using the best-per-

forming model on validation set. Rows are normalized such that each entry contains

the proportion of patches with true label [row] that are classified as [column]

GridNet 4223

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/22/4216/6299384 by guest on 18 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab447#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab447#supplementary-data


between the large off-diagonal elements of the confusion matrices,
which indicate persistent errors mistaking one class for another, and
the large off-diagonal elements in the class adjacency matrices
(Figures 2d and 3d). This suggests that many of the errors made by
GridNet involve mistakes between classes that are frequently neigh-
bors, such as pallidum and striatum in ABA, and central canal and
medial gray matter in Maniatis. Furthermore, we note that GridNet
most frequently misclassifies patches belonging to rare classes, such
as cerebellar nuclei, cortical subplate and pallidum in ABA, and cen-
tral canal and lateral edge in Maniatis. This suggests that in such
boundary cases, GridNet may default to making predictions close to
the class prior (the frequency of each class in the training data) in
order to minimize the chance of making costly mistakes.

These prevalent boundary errors may be influenced by the pres-
ence of noisy labels, resulting from the inherent difficulty of drawing
hard boundaries on continuously varying tissue. In Figure 8, we
visualized the probability of misclassifying each patch—
1� PðcorrectÞ, where PðcorrectÞ is calculated using the classification
probabilities output by the best-performing model and the index of
the true label—across representative tissue arrays from each dataset.
For predictions made using the f network only, we see a rather uni-
form distribution of misclassification probability density, as well as
a ‘spiking’ behavior where patches are far more likely to be misclas-
sified in regions of mono-class tissue when compared to predictions
made using the full network. In Supplementary Fig. S8, we demon-
strate that the full network is best able to address such errors when a
majority of the neighboring patches are correctly classified, confirm-
ing that the g network demonstrates the ‘corrector’ behavior that we
have posited. Using the full network, we see that the misclassifica-
tion density is greatly reduced overall, and the remaining uncertainty
is highly concentrated near boundaries between tissue classes, or
boundaries between foreground and background patches. This sug-
gests that GridNet is able to learn from the context of surrounding
tissue to correct errors, and when properly trained, persistent error
may simply reflect inescapable error in tissue labeling.

3.3 Registration of non-Cartesian ST data
Finally, we sought to demonstrate the utility of GridNet for spatial
data which are sampled in a non-Cartesian grid—namely, the recently
released Visium ST platform from 10� Genomics. The hexagonal
spot array used in this assay yields greater packing density (see Fig.
4b), increasing spatial resolution, but precludes the use of standard
2D-convolutional operations in g. Our GridNet approach can still be
applied to these data through the modification of g to employ hex-
agonal convolution operations, which take into account the true six-

neighborhood of each spot (see Section 2.2.1). Using this modified
form of GridNet, GridNetHex (Section 2.1, Fig. 5), we assessed the
registration performance on the Maynard human DLPFC Visium
dataset (Fig. 4). While the increased resolution of the Visium arrays
yields a corresponding increase in the number of patches (4992 spots
per array in Visium compared to 1155 in standard ST), the small num-
ber of tissues processed by this study (12) limits the amount we can ex-
pect to learn from these data alone. As a result, we applied two-stage
training with E1 ¼ E2 ¼ 100 training epochs in each phase to minim-
ize over-fitting, and initialized the parameters of f with the optimal
values obtained from our ABA experiment (Section 3.2) in order to
speed convergence. Furthermore, for this analysis we chose to assess
the generalized performance of our model using 6-fold nested cross-
validation, rather than employing a fixed train-validation test partition
as we have for larger datasets. During nested cross-validation analysis,
each fold was held out as a test set exactly once, while hyperpara-
meters were separately optimized for each fold by performing cross-
validation on the remaining five folds. For each fold of the cross-
validation analysis, five parameters were drawn from the ranges
logðlrÞ � Uniformð�4;�3Þ; a � Uniformð0;0:1Þ. The models with
the best validation performance for each cross-validation fold were
used to generate an ensemble predictor for the corresponding test fold.

In Table 3, we see that across the six folds, the ensemble network
built from the full GridNetHex model yields small gains in registra-
tion accuracy over the ensemble network built from the f network
alone. The negligible magnitude of improvement over patch classifi-
cation alone suggests, unsurprisingly, that more samples will be
needed in order for the g network to learn global patterns that can
refine local predictions. This is supported by the largely identical
AUROC and AUPRC performance, though these metrics do indicate
that the model performs worst on Layers 2 and 4, which are the
most infrequent and least contiguous tissues (Fig. 4d). The relatively
low accuracy of the patch classifier can be further understood by
examining the quality of the Maynard data (Fig. 4c), which were col-
lected using a confocal microscope instead of the higher-resolution
slide scanner employed in the other datasets. This resulted in lower-
resolution patch images in which few sub-cellular features besides
the size and placement of nuclei can be visibly distinguished. With
higher-resolution imaging, as well as expansion of the number of

Fig. 8. Misclassification probability density maps for representative images from

(left) ABA and (right) Maniatis mouse spinal cord datasets. Each pixel is colored

according to 1�P(correct), as estimated by either the full GridNet model (top row)

or the f component only (bottom row), for the corresponding image patch. Patches

indicating slide background are rendered in black, and class boundaries are denoted

by white outlines

Table 3. Performance of ensemble GridNetHex models on held-out

test folds during nested cross-validation analysis of the Maynard

dataset

f g

Accuracy 0.544 0.564

AUPRC 1. Layer 1 0.652 0.661

2. Layer 2 0.287 0.227

3. Layer 3 0.665 0.655

4. Layer 4 0.173 0.191

5. Layer 5 0.370 0.386

6. Layer 6 0.399 0.446

7. White matter 0.826 0.843

Macro average 0.482 0.487

AUROC 1. Layer 1 0.841 0.849

2. Layer 2 0.746 0.711

3. Layer 3 0.781 0.763

4. Layer 4 0.704 0.704

5. Layer 5 0.778 0.781

6. Layer 6 0.794 0.804

7. White matter 0.952 0.960

Macro average 0.799 0.796

Note: Each column details the performance of an ensemble model created

using the best-performing models found during cross-validation on the

remaining five folds. Sub-columns distinguish between the performance of the

ensemble created with the f network only or the full model (g). AUPRC and

AUROC are reported for each class (one-vs-rest) and for macro average across

all seven classes.
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tissue being trained upon, we will be able to increase the generalized
accuracy of our DLPFC registration network. Despite this, our pre-
liminary analysis demonstrates how GridNet may be applied to the
registration of data collected from the Visium platform.

4 Discussion

We present GridNet, a novel deep learning network for common co-
ordinate registration of high-resolution histology images. GridNet
balances the need for sub-cellular resolution and awareness of spa-
tial context by applying a hybrid classification-segmentation archi-
tecture to high-resolution image patches sampled sparsely across the
tissue. Using this architecture, our models can predict tissue type for
ROIs in large tissues while respecting the memory limits of commer-
cially available GPUs.

Through experimentation on both simulated and experimental
spatial datasets, we demonstrated that the hybrid classification-
segmentation architecture consistently out-performed competing
approaches in the registration of spatial transcriptomic data.
Compared to a pure segmentation approach based on ResNet-34
(which required substantial reduction in complexity in order to pro-
cess the histology images being considered) and a pure classification
approach based on DenseNet-121, we saw significant reduction in
error across the tissue, and notably a reduction in the chance of mis-
classifying tissue within a contiguous region. Most remaining error
was concentrated on class boundaries, reflecting the difficulty of
assigning discrete labels to a continuously varying input. Near such
boundaries, predictions made by GridNet or competing registration
architectures may skew toward the class prior in an attempt to minim-
ize average-case misclassification error. While this behavior may be
expected even in the presence of perfect training labels, and may be
addressed in future iterations by weighting the loss function based on
observed class frequency, the presence of noisy labels may greatly ex-
acerbate it. The incorporation of replicate labeling data gathered
from independent pathologists may help in the reduction of labeling
noise, though a robust solution to this problem will require modifica-
tion of the training objective function to explicitly model label noise,
rather than assuming a gold standard. Methods for training neural
networks in the presence of noisy labels is an active area of research
(Song et al., 2020; Vahdat, 2017; Zhang and Sabuncu, 2018), and
may benefit future iterations of the GridNet model.

While the hybrid classification-segmentation approach is capable
of attaining high-registration accuracy, the complex nature of the
network architecture demands specific consideration during train-
ing. We found that the coupling of parameters in the f network
across all input image patches yielded a different ideal learning rate
from g, adding an additional hyperparameter during model training
that must be tuned to the data at hand. Furthermore, we determined
that pre-training of both component networks prior to end-to-end
fine-tuning is instrumental in attaining high performance. Through
experimentation on the ABA dataset, we developed a two-stage pre-
training approach that yielded consistently strong results: parame-
ters of local predictor f are initialized with values that yield the high-
est performance on the stand-alone task of foreground patch
classification, then parameters of the global corrector g are opti-
mized using f as a fixed feature extractor. While this method was
sufficient to produce models exceeding the performance of compet-
ing approaches, we hope that further study of the network properties
will reveal end-to-end training strategies that are more robust to ini-
tial parameter values.

In our brief analysis of ST data gathered with 10� Genomics’
Visium platform, we demonstrated that the GridNet paradigm could
be applied when patches are sampled in non-Cartesian grids. The lo-
gical extension is the application of GridNet to data in which
patches are sampled in an irregular manner. In FISH-based ST data,
for example, the ROIs are not defined by the fixed grid capture
probes, but instead by the locations of cell nuclei. One may imagine
f being applied to classify extracted nuclei into discrete cell types,
and g leveraging information from neighboring cells to correct said
predictions. This could be accomplished by modeling nuclei as an
undirected graph with edges weighted by Euclidean distance

between them, and converting g to a graph CNN to aggregate infor-
mation from neighbors. Such a formulation can be thought of as a
super-set of GridNet, although standard or hexagonal convolutional
operations should be used for g when possible due to their relative
efficiency.

Finally, we are interested in developing future iterations of
GridNet that leverage data from multiple modalities at once. As the
ST experimental workflow produces paired measurements of both
histology and gene expression, we may seek to combine information
from these two modalities in our patch prediction network. A recent
study by Tan et al. (2020) explored how integration of these two
modalities within a single classifier may yield increased ability to
predict tissue when considering ST spots independently, but did not
consider how surrounding context could be used to refine these pre-
dictions. We believe that future iterations of GridNet could build off
of such multi-modal feature extractors to build even stronger models
for tissue registration. Furthermore, such multi-modal models could
be adapted to the task of predicting one data modality from the
other. Using a set of ST data, models could be trained to predict the
expression of key genes from histology data alone, allowing
researchers to predict expensive gene expression measurements from
inexpensive histology images. Our architecture is well adapted for
multi-modal contexts where orthogonal sensors, assays or tests are
applied sparsely to an instance with a corresponding high-resolution
image. Here we focus on spatial genomics, but applications for such
a context and resolution hierarchy abound. Thus, we believe the
GridNet paradigm will be a useful and generalizable approach to
making predictions on a variety of spatial biological data, and build-
ing upon the implementation presented in this article, can scale with
the increasing size and resolution of spatial data being acquired
today.
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