
Genetics and population analysis

TeraPCA: a fast and scalable software package

to study genetic variation in tera-scale

genotypes

Aritra Bose 1,†, Vassilis Kalantzis2,†, Eugenia-Maria Kontopoulou1,†,

Mai Elkady1, Peristera Paschou3,* and Petros Drineas1

1Computer Science Department, Purdue University, West Lafayette, IN 47907, USA, 2IBM Research, Thomas J.

Watson Research Center, Yorktown Heights, NY 10598, USA and 3Department of Biological Sciences, Purdue

University, West Lafayette, IN 47907, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

Associate Editor: Russell Schwartz

Received on August 8, 2018; revised on February 26, 2019; editorial decision on February 28, 2019; accepted on April 4, 2019

Abstract

Motivation: Principal Component Analysis is a key tool in the study of population structure in

human genetics. As modern datasets become increasingly larger in size, traditional approaches

based on loading the entire dataset in the system memory (Random Access Memory) become im-

practical and out-of-core implementations are the only viable alternative.

Results: We present TeraPCA, a Cþþ implementation of the Randomized Subspace Iteration

method to perform Principal Component Analysis of large-scale datasets. TeraPCA can be applied

both in-core and out-of-core and is able to successfully operate even on commodity hardware with

a system memory of just a few gigabytes. Moreover, TeraPCA has minimal dependencies on exter-

nal libraries and only requires a working installation of the BLAS and LAPACK libraries. When

applied to a dataset containing a million individuals genotyped on a million markers, TeraPCA

requires <5 h (in multi-threaded mode) to accurately compute the 10 leading principal compo-

nents. An extensive experimental analysis shows that TeraPCA is both fast and accurate and is

competitive with current state-of-the-art software for the same task.

Availability and implementation: Source code and documentation are both available at https://

github.com/aritra90/TeraPCA.

Contact: ppaschou@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Principal Component Analysis (PCA) is perhaps the most fundamen-

tal unsupervised linear dimensionality reduction technique. It was

invented by Pearson in the early 1900s (Pearson, 1901); and later

reinvented and named by Hotelling in the 1930s (Hotelling, 1933,

1936). In statistical parlance, PCA converts a set of observations of

possibly correlated variables into a set of linearly uncorrelated (or-

thogonal) variables called principal components (PCs). The seminal

work of Luca Cavalli-Sforza and collaborators in the late 1970s

(Chisholm et al., 1995; Menozzi et al., 1978) pioneered the applica-

tion of PCA for the study of human genetic variation.

PCA analyses and plots appear in virtually every single paper

that analyzes human genetic variation in order to make inferences

about population structures. Given m samples genotyped on n gen-

etic loci, it is well-known that applying PCA on the m � m covari-

ance matrix that emerges by computing any reasonable notion of

genotypic distance between every pair of samples using the n geno-

typed loci results in the observation that the leading PCs mirror

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3679

Bioinformatics, 35(19), 2019, 3679–3683

doi: 10.1093/bioinformatics/btz157

Advance Access Publication Date: 8 April 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3679/5430929 by guest on 23 April 2024

http://orcid.org/0000-0002-8665-056X
https://github.com/aritra90/TeraPCA
https://github.com/aritra90/TeraPCA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/


geography (Novembre et al., 2008; Paschou et al., 2014; Wang

et al., 2010) for detailed discussions and examples. This observation

was leveraged by Price et al. (2006, 2010) and Patterson et al.

(2006) to derive one of the most established methods to account

(and correct) for the confounding effects of population stratification

in genome-wide association studies (GWAS). The method in Price

et al. (2006, 2010) and Patterson et al. (2006) is essentially equiva-

lent to using a small number of leading PCs as covariates in order to

check for associations between genetic loci and affection status in

statistical tests, and is implemented in the EIGENSTRAT software

package which is routinely used in GWAS analyses to correct for

population stratification. Other applications of PCA include the

identification of sets of genetic loci that are ancestry-informative or

are under selective pressure (Paschou et al., 2007; 2008; Price et al.,

2006); and, when combined with other lines of evidence such as

social structure and linguistics, the extraction of complex popula-

tion histories and demographic structures (Bose et al., 2017).

We also note that PCA extracts the fundamental features of a data-

set without complex computational modeling. Interestingly, even

the output of model-based, more complex, methods to detect popu-

lation structure [such as ADMIXTURE (Alexander et al., 2009)]

typically exhibits high correlation with the output of PCA, rendering

further support to the significance of PCA in the analysis of human

genetics data.

From a computational viewpoint, PCA essentially amounts to

computing eigenvectors of the m � m (normalized) covariance ma-

trix associated with the dataset at hand. When m does not exceed a

few thousands, all eigenvectors can be computed by appropriate

dense linear algebra routines in LAPACK, a Fortran 90 matrix

factorization-based library which is widely used for solving systems

of linear equations, least-squares problems, eigenvalue problems

and singular value problems (Anderson et al., 1999). Matrix

factorization-based dense eigenvalue solvers return all m eigenvec-

tors with a time complexity in the order of Oðm3Þ, which becomes

impractical as m, the number of samples, increases. Practical appli-

cations of PCA in population genetics only require the computation

of those PCs determined by the eigenvectors associated with only a

few (say 10–20) of the largest eigenvalues. Computing a few of the

leading eigenvalues and associated eigenvectors of large (sparse or

dense) matrices is typically achieved by first projecting the original

eigenvalue problem onto a low-dimensional subspace which

includes an invariant subspace associated with the relevant eigenvec-

tors. This low-dimensional subspace can be formed in many differ-

ent ways, e.g. by means of subspace iteration or Krylov projection

schemes and much work in the Numerical Analysis community has

been devoted in understanding the theoretical properties of such

approaches (Parlett, 1998; Saad, 2011). In particular, a variant of

the family of Krylov projection schemes, the so-called Implicitly

Restarted Arnoldi method (IRA), is the projection scheme of choice

in FlashPCA2 (Abraham et al., 2017), a software package which has

been shown to outperform other PCA software packages, both in

terms of memory usage and wall-clock time. On the other hand, re-

cent advances in the design and analysis of Randomized Numerical

Linear Algebra (Drineas and Mahoney, 2016) algorithms have

yielded novel insights as well as fast and efficient alternatives to ap-

proximate the leading PCs of large matrices (Drineas et al., 2018;

Drineas and Mahoney, 2018; Halko et al., 2011; Musco and

Musco, 2015). Indeed, FastPCA (Galinsky et al., 2016) applied such

randomized algorithms to perform PCA analyses in population gen-

etics data.

This paper presents TeraPCA, a Cþþ software package to per-

form PCA of tera-scale genotypic datasets that cannot fully reside in

the system memory. TeraPCA is essentially an out-of-core imple-

mentation of the Randomized Subspace Iteration method (Halko

et al., 2011; Rokhlin et al., 2010) and features minimal dependen-

cies to external (in contrast to FlashPCA2 which relies on the IRA

implementation on the Spectra Cþþ library, TeraPCA comes with

an in-house implementation of the Randomized Subspace Iteration

algorithm.) libraries. As the amount of time spent on input/output

typically dominates the wall-clock time in out-of-core scenarios,

TeraPCA builds a high-dimensional initial approximation subspace

by loading the dataset from secondary storage exactly once. The di-

mension of this initial approximation subspace can be controlled

directly by the user. Each subsequent iteration of Randomized

Subspace Iteration ‘corrects’ the initial subspace so that an invariant

subspace associated with the leading target eigenvectors is com-

puted. The dataset needs to be accessed twice in each iteration, but,

fortunately, a few steps of Randomized Subspace Iteration are typic-

ally sufficient in practice in order to get highly accurate approxima-

tions to the leading eigenvectors. Note here that the above idea is

somewhat orthogonal to the ideas underlying IRA, which builds the

approximation subspace in a vector-by-vector manner, thus necessi-

tating a large number of dataset fetches from secondary storage to

even form an approximation subspace whose dimension is equal

to or slightly larger than the number of PCs that we seek to

approximate.

TeraPCA was tested extensively on both real [Human Genome

Diversity Panel (HGDP), 1000 Genomes, etc.] and synthetic data-

sets. Our synthetic datasets were generated via the Pritchard–

Stephens–Donelly (PSD) model (Gopalan et al., 2016; Pritchard

et al., 2000). Our results suggest that TeraPCA is both fast and ac-

curate and in most cases outperforms other out-of-core PCA libra-

ries such as FlashPCA2. Specific highlights include the computation

of the 10 leading PCs of a dataset of 1 million samples genotyped on

1 million genetic markers (this dataset exceeds 3.5 TBs in uncom-

pressed format) in about 13 h (using a single thread) and in <4.5 h

(using 12 threads).

2 Materials and methods

2.1 Simulated datasets
The first group of the datasets used for our experiments was gener-

ated using the PSD model of simulating genotypes. In particular, a

recent study (Gopalan et al., 2016) simulated genotypic data by

obtaining individual ancestry proportions from the PSD model to fit

the 1000 Genomes dataset and then modeling the per-population al-

lele frequencies using Wright’s FST and the Weir and Cockerham

estimate (Weir and Cockerham, 1984). We developed a multi-

threaded Cþþ package which is essentially an efficient implementa-

tion of the R code developed in Tera-Structure (Gopalan et al.,

2016). We generated various datasets in order to evaluate

TeraPCA’s performance, with the number of markers ranging from

100 000 to 1 000 000 and the number of samples ranging from 5000

to 1 000 000.

2.2 Real datasets
The HGDP dataset consists of 1043 individuals genotyped at

660 734 single nucleotide polymorphisms (SNPs), across 51 popula-

tions across Africa, Europe, Middle East, South and Central Asia,

East Asia, Oceania and the Americas (Cann et al., 2002). We ran

Quality Control (QC) on the data by filtering SNPs with minor al-

lele frequency below 0.01 and subsequently pruning for LD using a

window size of 1000 kb. Moreover, we set the variance inflation

3680 A.Bose et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3679/5430929 by guest on 23 April 2024



factor to 50 and set r2 > 0:2, thus retaining 154 471 variants. We

applied the same parameters for LD pruning on the 1000 Genomes

dataset which has 2504 individuals sampled from 26 different popu-

lations across all continents genotyped at 39 million SNPs. After

QC, we retained �808 704 SNPs and ran our experiments on the

pruned dataset.

We also tested the performance of TeraPCA on case-control

data, which are ubiquitous in population genetics. We used the

Wellcome Trust Case Control Consortium’s Type 2 Diabetes (T2D)

and Parkinson’s (PRK) datasets. The T2D dataset had 6371 individ-

uals (1816 cases and 4555 controls) genotyped on 313 654 SNPs

and the PRK dataset had 5000 individuals (2000 cases and 3000

controls) genotyped on 500 000 SNPs. We removed related samples

from these datasets and pruned them using the aforementioned QC

parameters resulting in datasets with 6370 individuals genotyped on

72 457 SNPs for T2D and 4706 individuals genotyped on 111 831

SNPs for PRK.

2.3 TeraPCA
TeraPCA first normalizes the genotypes using the same procedure

that was used by both FlashPCA (Abraham and Inouye, 2014) and

FastPCA (Galinsky et al., 2016) (see our Supplementary Material

for details) and then applies Randomized Subspace Iteration in an

out-of-core fashion.

The main parameters of TeraPCA are as follows (see our

Supplementary Material for more details and our code release for

full documentation):

1. Number of PCs to be computed (denoted by k). Default value is

set to k :¼ 10.

2. Number of contiguous rows of the SNP-major input matrix

fetched from the secondary storage at each time unit (denoted by b).

This can be user-defined or automatically determined based on

the available system memory.

3. Dimension of the initial approximation subspace (denoted by s).

Default value is set to s :¼ 2k.

4. Convergence tolerance (denoted by tol). Default value is set to

tol :¼ 1e� 3.

The wall-clock time of TeraPCA is affected by all of the above

parameters. Clearly, reducing tol or increasing k results in an in-

crease of the wall-clock time. Using a higher-dimensional approxi-

mation subspace, i.e. increasing s, might reduce the corresponding

wall-clock time as it typically enhances convergence toward the

k-leading eigenvectors. On the other hand, increasing the value of

s also increases the amount of floating-point operations performed.

Finally, since only a part of the dataset can fit in the system memory

at any time unit, the choice of b is typically determined automatical-

ly by TeraPCA based on the size of the system memory. The total

amount of time spent on I/O is largely independent of the value of b
but we have observed that the value of b has an effect on the wall-

clock time of the LAPACK routines.

3 Results and discussion

The performance of TeraPCA was tested on both simulated and

real-world genotypic datasets. All our experiments were performed

at Purdue’s Brown cluster on a dedicated node which features an

Intel Xeon Gold 6126 processor running at 2.6 GHz with 96 GB of

Random Access Memory and a 64-bit CentOS Linux 7 operating

system. Table 1 lists the number of samples, number of SNPs, and

size of each dataset. Datasets S1 through S7 are synthetic datasets

and the remaining ones are real-world datasets. This section pro-

vides comparisons between TeraPCA and FlashPCA2. The latter has

already been shown to be faster than previous methods such as

FlashPCA (Abraham and Inouye, 2014), FastPCA (Galinsky et al.,

2016), etc. The results reported throughout the remainder of this

section were obtained by setting the amount of system memory

made available to TeraPCA (as well as FlashPCA2) to 2 GBs. This is

precisely the amount of memory allowed to FlashPCA2 in prior

work.

3.1 Synthetic datasets
Datasets S1 through S5 in Table 1 have a fixed number of SNPs (¼1

million) and a varying number of samples (from 5 000 to 1 million).

On the other hand, dataset S6 was used to fine-tune prior state-of-

the-art methods and contains 100 000 samples genotyped on

100 000 SNPs. S7 was used to test the performance of TeraPCA on

extremely rectangular matrices, where the number of SNPs heavily

outnumbers the number of individuals.

We first consider the plots of the three leading PCs returned by

both TeraPCA and FlashPCA2 for dataset S6 (see Supplementary

Fig. S1). TeraPCA and FlashPCA2 show a complete visual agree-

ment with each other and both libraries agree with the expected out-

come of the PSD model. For this particular example, TeraPCA

terminated in just under 40 min, while FlashPCA2 required 141 min

[to be fair in our comparisons between TeraPCA and FlashPCA2,

we performed multiple runs of FlashPCA2 on dataset S6 in order to

explore and understand its properties. In particular, we varied the

convergence criterion in FlashPCA2 and recorded the resulting

trade-off between wall-clock time and digits of accuracy for the top

10 computed eigenvalues. Fixing the convergence tolerance in

FlashPCA2 to three digits of accuracy and the maximum number of

iterations of FlashPCA2 to 100 was the best choice in terms of the

trade-off between running time and accuracy (see Supplementary

Material for more details)].

Table 2 lists the wall-clock times achieved by TeraPCA when

applied on datasets S1 through S7. For datasets S4 and S5, which

were the largest ones in our collection, TeraPCA terminated after

7.3 and 13.2 h, respectively. On the other hand, FlashPCA2 did not

terminate within the 50 h limit that we imposed. TeraPCA outper-

formed FlashPCA2 on all synthetic datasets, with a speed-up that

ranged between 1.3 and 4.5, at least for those datasets where

FlashPCA2 terminated within our 50 h limit. We note that for all

synthetic datasets the leading PCs returned by TeraPCA and

FlashPCA2 showed perfect correlation as measured by the Pearson

correlation coefficient (¼1 in all cases). To further test TeraPCA’s

performance on datasets where the number of SNPs heavily

Table 1. Our data sets (simulated and real)

Dataset Size (.PED file) Size (.BED file) # Samples # SNPs

S1 (simulated) 19 GB 120 MB 5000 1 000 000

S2 (simulated) 38 GB 239 MB 10 000 1 000 000

S3 (simulated) 373 GB 24 GB 100 000 1 000 000

S4 (simulated) 1.9 TB 117 GB 500 000 1 000 000

S5 (simulated) 3.7 TB 233 GB 1 000 000 1 000 000

S6 (simulated) 38 GB 2.4 GB 100 000 100 000

S7 (simulated) 150 GB 9.4 GB 2000 20 000 000

HGDP 615 MB 39 MB 1043 154 417

1000 Genomes 8.4 GB 483 MB 2504 808 704

PRK 2 GB 126 MB 4706 111 831

T2D 1.8 GB 111 MB 6370 72 457

TeraPCA 3681

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3679/5430929 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data


outnumbers the number of individuals, we applied it to S7 and

observed that even in a heavily under-determined system, TeraPCA

outperformed FlashPCA2 by a factor of 2.9, with similar accuracy

guarantees.

3.2 Real datasets
We first considered the HGDP dataset (Cann et al., 2002). TeraPCA

was marginally faster than FlashPCA2 and both libraries required

about 7 s. A plot of the projection of the HGDP dataset along the two

leading PCs computed by TeraPCA is shown in Supplementary Figure

S2. Given the relatively small size of this dataset, we were able to

compute the exact 10 leading eigenvectors using LAPACK. Figure 1

reports the entry-wise error of the 10 leading eigenvectors returned by

TeraPCA. As expected, eigenvectors associated with the largest eigen-

values are captured more accurately since they converge faster.

In addition, Supplementary Table S1 reports the relative and ab-

solute errors of the 10 leading eigenvalues returned by TeraPCA and

FlashPCA2. For TeraPCA, the (much) higher accuracy in the ap-

proximation of the 3–4 leading eigenvalues is due to the fact that

these approximate eigenvalues kept improving as Randomized

Subspace Iteration kept iterating to approximate the trailing eigen-

values and eigenvectors. On the other hand, the accuracy in the ap-

proximation of the eigenvalues returned by FlashPCA2 was

somewhat uniform for all eigenvalues.

TeraPCA and FlashPCA2 showed similar qualitative and compu-

tational performance on the pruned 1000 Genomes dataset (see

Fig. 2), with FlashPCA2 terminating slightly faster than TeraPCA.

Notice that this dataset is also the one in which the number of SNPs

outnumbered the number of individuals by the largest factor.

PCA is an essential tool to detect population stratification in

GWAS. In order to evaluate TeraPCA’s performance on real-world

case-control studies, we applied it on Wellcome Trust Case Control

Consortium’s T2D and PRK datasets. Like other real-world data-

sets, both FlashPCA2 and TeraPCA performed similarly, needing

roughly the same wall-clock time. Execution of TeraPCA on these

datasets can also be done in-core, as they fit in the system memory,

leading to comparatively faster computation.

3.3 Multi-threading
The wall-clock times of TeraPCA and FlashPCA2 can significantly

improve by executing the associated linear algebra computations

using more than one threads. This is indeed the most obvious way to

speed-up software such as ours. To test the performance of TeraPCA

as a function of the number of threads, we focused on datasets

S1; S2; S4; S6; S7, and the 1000 Genomes dataset. The number of

threads was set to 4, 8 and 12 and the speedups reported in Figure 3

are against the single-thread execution of TeraPCA. Generally speak-

ing, we observed a 1.6� to 2.8� speed-up, which is somewhat sub-

optimal. The reason underlying this non-optimality is that we used

multi-threading only for the linear algebraic operations. However,

much of the wall-clock time is spent on I/O operations in order to

load the dataset from secondary memory, a procedure that cannot be

multi-threaded. We emphasize that FlashPCA2 did not demonstrate

comparable improvements when multi-threading was enabled. In par-

ticular, when applied to the dataset S6, the wall-clock time of

FlashPCA2 reduced only by 2 min, i.e. from 141 to 139 min.

In all of the above experiments we set s :¼ 2k and k :¼ 10.

Finally, Supplementary Figure S6 reports the amount of time

required to multiply the (normalized) covariance matrix by a set of s

vectors using the DGEMM BLAS routine of MKL and a varying

number of threads for different values of s and b for datasets S6 and

HGDP. It is worth noting that while an exhaustive analysis lies out-

side the goals of this paper, it is easy to verify that doubling the

value of s does not double the amount of time required to perform

the multiplication, while larger values of s also lead to higher

Table 2. Wall-clock running times comparisons for the datasets of

Table 1 using a single thread and 2 GB of system memory (* indi-

cates no convergence after 50 h)

Dataset TeraPCA FlashPCA2 Speed-up

S1 26.2 min 33.3 min 1.27

S2 39.3 min 87.5 min 2.22

S3 7.9 h 35.6 h 4.50

S4 7.3 h n/a* 1
S5 13.2 h n/a* 1
S6 39.5 min 141.1 min 3.57

S7 37.3 min 106.5 min 2.86

HGDP 6.5 sec 7.7 s 1.22

1000 Genomes 4.3 min 3.5 min 0.81

T2D 96 s 119 s 1.24

PRK 76 s 73 s 0.96
200 400 600 800 1000

10-10

10-5

100

PC1
PC2

PC3
PC4

PC5
PC6

PC7
PC8

PC9
PC10

Fig. 1. Entry-wise relative error of the top 10 leading eigenvectors returned by

TeraPCA for the HGDP dataset, compared to the eigenvectors returned by

LAPACK. The y-axis shows the relative error; recall that each eigenvector has

1043 entries. We observe that the relative error is roughly the same for each

entry of a specific eigenvector

Fig. 2. Projection of the samples of the 1000 Genomes dataset on the top two

left singular vectors (PC1 and PC2), as computed by TeraPCA

3682 A.Bose et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3679/5430929 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz157#supplementary-data


speedups when multiple threads are used. Similarly, very small val-

ues of b are likely to penalize the performance of DGEMM due to

non-optimal cache utilization.

4 Summary and future work

In this paper we presented TeraPCA, a Cþþ library to perform out-

of-core PCA analysis of massive genomic datasets. It is based on

Randomized Subspace Iteration, building upon principled and

theoretically sound methods to approximate the top PCs of massive

covariance matrices. TeraPCA returns highly accurate approxima-

tions to the top PCs, while taking advantage of modern computer

architectures that support multi-threading and it has minimal

dependencies to external libraries. TeraPCA can be applied both in-

core and out-of-core and is able to successfully operate even on per-

sonal workstations with a system memory of just a few gigabytes.

Numerical experiments performed on synthetic and real datasets

demonstrate that TeraPCA performs similarly or better when com-

pared to state-of-the-art software packages such as FlashPCA2, on a

single thread and significantly better with multi-threading.

Future work will focus on implementing a distributed memory

version of TeraPCA using the Message Passing Interface standard.

Another interesting research direction would be to combine

TeraPCA with block Krylov subspace techniques.

Acknowledgements

The authors are grateful to P. Gopalan and W. Hao for sharing their R script to

generate the simulated datasets as well as for their valuable comments. The authors

are also thankful to P. Anappindi for contributing to the code in the pilot phase.

Author contributions

A.B., V.K., E.K. and P.D. conceived and designed the work. A.B., V.K. and

E.K. developed the TeraPCA Cþþ package. E.K., M.E. and A.B. developed the

Cþþ package to generate the simulated datasets from the PSD model. P.D. and

P.P. participated in and discussed analyses. A.B. and V.K. ran the experiments.

A.B., V.K., E.K., P.D. and P.P. wrote and revised the manuscript.

Funding

This work was partially supported by the National Science Foundation [IIS-

1661760, IIS-1661756, IIS-1715202 to P.P. and P.D.].

Conflict of Interest: none declared.

References

Abraham,G. and Inouye,M. (2014) Fast principal component analysis of

large-scale genome-wide data. PLoS One, 9, 1–5.

Abraham,G. et al. (2017) FlashPCA2: principal component analysis of

Biobank-scale genotype datasets. Bioinformatics, 33, 2776–2778.

Alexander,D.H. et al. (2009) Fast model-based estimation of ancestry in unre-

lated individuals. Genome Res., 19, 1655–1664.

Anderson,E. et al. (1999) LAPACK Users’ Guide. 3rd edn. Society for

Industrial and Applied Mathematics, Philadelphia, PA.

Bose,A. et al. (2017) Dissecting Population Substructure in India via

Correlation Optimization of Genetics and Geodemographics. bioRxiv.

Cann,H.M. et al. (2002) A human genome diversity cell line panel. Science,

296, 261–262.

Chisholm,B. et al. (1995) The history and geography of human genes. J. Asian

Stud., 54, 490.

Drineas,P. and Mahoney,M.W. (2016) RandNLA: randomized numerical lin-

ear algebra. Commun. ACM, 59, 80–90.

Drineas,P. and Mahoney,M.W. (2018) Lectures on randomized numerical lin-

ear algebra. In: The Mathematics of Data, IAS/Park City Mathematics

Series. Vol. 25. American Mathematical Society, Providence, RI, pp. 1–45.

https://dblp.org/rec/bib/journals/corr/abs-1712-08880.

Drineas,P. et al. (2018) Structural convergence results for low-rank approxima-

tions from block Krylov spaces. SIAM J. Matrix Anal. Appl., 39, 567–586.

Galinsky,K.J. et al. (2016) Fast principal-component analysis reveals convergent evo-

lution of ADH1B in Europe and East Asia. Am. J. Hum. Genet., 98, 456–472.

Gopalan,P. et al. (2016) Scaling probabilistic models of genetic variation to

millions of humans. Nat. Genet., 48, 1587–1590.

Halko,N. et al. (2011) Finding structure with randomness: probabilistic algo-

rithms for constructing approximate matrix decompositions. SIAM Rev.,

53, 217–288.

Hotelling,H. (1933) Analysis of a complex of statistical variables into princi-

pal components. J. Educ. Psychol., 24, 417–441.

Hotelling,H. (1936) Relations between two sets of variates. Biometrika, 28,

321–377.

Menozzi,P. et al. (1978) Synthetic maps of human gene frequencies in

Europeans. Science, 201, 786–792.

Musco,C. and Musco,C. (2015) Randomized block Krylov methods for stron-

ger and faster approximate singular value decomposition. In: Cortes,C.

et al. (eds) Advances in Neural Information Processing Systems 28. Curran

Associates, Inc., Montreal, Canada, pp. 1396–1404.

Novembre,J. et al. (2008) Genes mirror geography within Europe. Nature, 456, 98.

Parlett,B. (1998) The Symmetric Eigenvalue Problem. Society for Industrial

and Applied Mathematics, Philadelphia, PA.

Paschou,P. et al. (2007) PCA-correlated SNPs for structure identification in

worldwide human populations. PLoS Genet., 3, 1–15.

Paschou,P. et al. (2008) Tracing sub-structure in the European American

population with PCA-informative markers. PLoS Genet., 4, 1–13.

Paschou,P. et al. (2014) Maritime route of colonization of Europe. Proc. Natl.

Acad. Sci. USA, 111, 9211–9216.

Patterson,N. et al. (2006) Population structure and eigenanalysis. PLoS

Genet., 2, 1–20.

Pearson,K. (1901) On lines and planes of closest fit to systems of points in

space. Lond. Edinb. Dubl. Phil. Mag., 2, 559–572.

Price,A.L. et al. (2006) Principal components analysis corrects for stratifica-

tion in genome-wide association studies. Nat. Genet., 38, 904.

Price,A.L. et al. (2010) New approaches to population stratification in

genome-wide association studies. Nat. Rev. Genet., 11, 459–463.

Pritchard,J.K. et al. (2000) Inference of population structure using multilocus

genotype data. Genetics, 155, 945–959. [pmid].

Rokhlin,V. et al. (2010) A randomized algorithm for principal component

analysis. SIAM J. Matrix Anal. Appl., 31, 1100–1124.

Saad,Y. (2011) Numerical Methods for Large Eigenvalue Problems. Society

for Industrial and Applied Mathematics, Philadelphia, PA.

Wang,C. et al. (2010) Comparing spatial maps of human population-genetic vari-

ation using procrustes analysis. Stat. Appl. Genet. Mol. Biol., 9, 13.

Weir,B.S. and Cockerham,C.C. (1984) Estimating f-statistics for the analysis

of population structure. Evolution, 38, 1358–1370.

Fig. 3. Speed-up of TeraPCA over single-threaded execution

TeraPCA 3683

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3679/5430929 by guest on 23 April 2024

https://dblp.org/rec/bib/journals/corr/abs-1712-08880

