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Abstract

Summary: BLAST creates local sequence alignments by first building a database of small k-letter sub-sequences
called k-mers. Identical k-mers from different regions provide ‘seeds’ for longer local alignments. This seed-and-
extend heuristic makes BLAST extremely fast and has led to its almost exclusive use despite the existence of more
accurate, but slower, algorithms. In this paper, we introduce the Basic Local Alignment for Networks Tool (BLANT).
BLANT is the analog of BLAST, but for networks: given an input graph, it samples small, induced, k-node sub-graphs
called k-graphlets. Graphlets have been used to classify networks, quantify structure, align networks both locally
and globally, identify topology-function relationships and build taxonomic trees without the use of sequences.
Given an input network, BLANT produces millions of graphlet samples in seconds—orders of magnitude faster than
existing methods. BLANT offers sampled graphlets in various forms: distributions of graphlets or their orbits; graph-
let degree or graphlet orbit degree vectors, the latter being compatible with ORCA; or an index to be used as the
basis for seed-and-extend local alignments. We demonstrate BLANT’s usefelness by using its indexing mode to find
functional similarity between yeast and human PPI networks.
Availability and implementation: BLANT is written in C and is available at https://github.com/waynebhayes/BLANT/
releases.
Contact: whayes@uci.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A k-graphlet is an induced sub-graph g on any set of k connected
nodes from a larger graph G, where k has typically been between 2
and 5 (Pr�zulj et al., 2004). Graphlets have been used to compare and
classify networks (Hayes et al., 2013; Yavero�glu et al., 2014), to
identify structure-function relationships (Davis et al., 2015) and for
global alignment (Kuchaiev et al., 2010). Supplementary Figure S1
shows all the graphlets on 2, 3, 4 and 5 nodes including their auto-
morphism orbits (Pr�zulj, 2007). Many existing methods that use
graphlets for any purpose first perform an exhaustive enumeration
of all graphlets in the network being analyzed. However, the time
complexity for counting all k-graphlets is O(ndk–1), where d is the
maximum degree in G and n is the number of nodes in G
(Shervashidze et al., 2009), this cost is already prohibitive on exist-
ing networks. For example, ORCA (Shervashidze et al., 2009)
requires 18 h to process the BioGRID human PPI network released
in 2018. For many applications, a statistical sample would probably
suffice (Chen et al., 2016).

Using a pre-computed lookup table allows graphlet isomorphism
to be done in constant time for k-graphlets up to size k¼8 (Hasan
et al., 2017). Basic local alignment for networks tool (BLANT) lever-
ages this speed, and rather than taking 18 h, it can produce output
statistically indistinguishable from ORCA’s in minutes. Furthermore,
while most other tools only maintain a count of graphlets or orbits,

BLANT is unique in being able to create a statistically sampled index
of nodes belonging to each type of graphlet; this index can form the
‘seed’ part of seed-and-extend local alignments, or be used to search
for structure-function relationships. BLANT has five sampling algo-
rithms with a variety of trade-offs between speed and bias. BLANT
provides different output formats: graphlet distributions, sampled
indexed graphlet lists, graphlet degree vectors and orbit degree vec-
tors, the latter being compatible with the output format of ORCA. In
addition, BLANT supplies a graphlet drawing tool for any k-graphlet,
k�11.

2 Features

BLANT’s command-line interface allows the user to select: (1)
graphlet size 3�k�8 nodes; (2) number of samples; (3) number of
threads for additional speedup; (4) graphlet sampling technique; (5)
output format; (6) graphlet ID representation and (7) file name.

Four of the sampling techniques implemented in BLANT each
begin by selecting an edge uniformly at random to start the graphlet.
Then, (1) Edge Based Expansion (EBE): the next edge is selected uni-
formly at random from edges emanating from the previously
selected vertices; this method is fastest on dense networks but produ-
ces graphlet distributions with significant bias; (2) Node Based
Expansion (NBE): the next node is selected uniformly at random

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5363

Bioinformatics, 35(24), 2019, 5363–5364

doi: 10.1093/bioinformatics/btz603

Advance Access Publication Date: 2 August 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/24/5363/5542947 by guest on 19 April 2024

http://orcid.org/0000-0002-8702-0578
https://github.com/waynebhayes/BLANT/releases
https://github.com/waynebhayes/BLANT/releases
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz603#supplementary-data
Deleted Text: &hx2013;
Deleted Text: have 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz603#supplementary-data
Deleted Text: ,
Deleted Text:  
Deleted Text: ours
Deleted Text: BLANT (
Deleted Text: ours
Deleted Text: ;
https://academic.oup.com/


from neighbors of currently selected nodes (Hayes and Maharaj,
2018); this method is fastest on less dense networks and is also less
biased than EBE; (3) Neighbor Reservoir (RES): starts with NBE
and then further reduces bias by erasing its memory via a random
walk for some number of steps. All three of EBE, NBE and RES out-
put a graphlet once k nodes have been found, and then the process
starts afresh with a new randomly chosen edge. Thus, all three of
EBE, NBE, and RES are equally likely to sample a graphlet from
anywhere in G; (4) MCMC: a sliding window of k – 1 edges is kept
during a single random walk on the network to form a k-graphlet
(Chen et al., 2016); this method produces asymptotically correct
graphlet concentrations, but since it is a single long walk, it produ-
ces sequences of graphlets in which adjacent graphlets have as many
as k – 1 overlapping nodes and so it may not ‘see’ the entire graph G
unless the walk is extremely long. Finally, the fifth method is
impractical but included for completeness: Accept/Reject selects k
nodes uniformly at random and rejects if the resulting graphlet is
not connected (Lu and Bressan, 2012); this method is guaranteed to
produce unbiased samples but is extremely slow since the majority
of k-node sets are disconnected. Full details of these sampling meth-
ods are discussed in Supplementary Section S3. Supplementary
Table S1 shows the time taken to sample differently sized graphlets
from various networks using each sampling method. Figure 1 (top)
shows the difference in proportion from the true proportion (com-
puted by ORCA), of each graphlet obtained by using each of these
five sampling techniques on various synthetic networks described in
Supplementary Section S5.

The sampled graphlets may be output in various formats:
(1) indexed k-graphlet lists: each line contains kþ1 columns; the
first column contains the graphlet IDs and the next k columns are
the vertices forming the graphlet, (2) k-graphlet counts: the total of
each type of k-graphlet sampled from the network or the concentra-
tion of each k-graphlet in the case of MCMC sampling, (3) sampled
graphlet degree vectors: a vector for each node representing the
number of sampled graphlets to which it belongs, (4) sampled orbit
degree vectors: a vector for each node representing the number of
orbits it touches from the sample. BLANT’s setup instructions are in
Supplementary Section S4, its options and interface are shown in
Supplementary Figure S4.

3 Biological relevance

GO Term Prediction: In a PPI network, a large clique suggests a pro-
tein complex whose members share common function. Finding large
cliques is NP-complete. By sampling 107 8-node graphlets from the
2017 BioGRID human network, and analyzing overlapping 8-node cli-
ques (see bottom left of Fig. 1), we found a 60-node near-clique (hav-
ing 97% of all possible edges). Using GO terms (The Gene Ontology
Consortium, 2008) of 2016, and assuming any GO term appearing in
more than half the 60 nodes should be transferred to the rest, resulted
in 213 GO term predictions, 46 of which were corroborated by GO
terms of 2018. None of the remaining predictions were contradicted,
suggesting they may be corroborated by future GO discoveries.

Topology-function relations: We indexed 106 6-node graphlets
from both the 2018 BioGRID yeast and human PPI networks.
Whenever the same graphlet appeared in both networks, we
imposed the resulting local alignment between them. If function is
related to topology, then we expect a pair of frequently aligned
nodes (one from yeast, one from human) to share functional similar-
ity. Figure 1 (bottom right) shows that mean Resnik similarity
increases with pairwise alignment frequency. To our knowledge,
this is the first demonstration of such a broad correlation between
local network topology and functional similarity.

Conflict of Interest: none declared.
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Fig. 1. Top: The error in proportion of each 3, 4 and 5-graphlet obtained from 106

graphlet samples using each of BLANT’s implemented sampling methods (except

AR for which we sampled 104 graphlets due to the long run time), on various types

of sparse synthetic networks. The error bars represent 1r of proportion difference.

The proportion differences and error bars are smallest for RES and MCMCs, indi-

cating that these methods produce more accurate graphlet concentrations. Our

MCMC receives the same results as the original MCMC implementation, indicating

correct implementation as shown in Supplementary Figure S2. The sampling error is

reported in Supplementary Table S2. Bottom Left: Given two k-cliques g1 and g2

with overlapping nodes, we can test for the existence of a larger clique Q by examin-

ing all remaining connections (e.g. red edge). Bottom Right: The number of times a

pair of nodes (one in yeast, one in human) are locally aligned in a 6-graphlet orbit is

binned on a log scale on the x-axis. Error bars depict the 1r SD of GO-term similar-

ity for node pairs in each frequency bin. (Color version of this figure is available at

Bioinformatics online.)
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