
Sequence analysis

ipyrad: Interactive assembly and analysis of

RADseq datasets

Deren A.R. Eaton1,* and Isaac Overcast2

1Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA and 2Department of

Biology, Graduate School, University Center of the City University of New York, New York, NY 10016, USA

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on September 17, 2019; revised on December 9, 2019; editorial decision on December 23, 2019; accepted on December 31, 2019

Abstract

Summary: ipyrad is a free and open source tool for assembling and analyzing restriction site-associated DNA se-
quence datasets using de novo and/or reference-based approaches. It is designed to be massively scalable to hun-
dreds of taxa and thousands of samples, and can be efficiently parallelized on high performance computing clusters.
It is available both as a command line interface and as a Python package with an application programming interface,
the latter of which can be used interactively to write complex, reproducible scripts and implement a suite of down-
stream analysis tools.
Availability and implementation: ipyrad is a free and open source program written in Python. Source code is avail-
able from the GitHub repository (https://github.com/dereneaton/ipyrad/), and Linux and MacOS installs are distrib-
uted through the conda package manager. Complete documentation, including numerous tutorials, and Jupyter
notebooks demonstrating example assemblies and applications of downstream analysis tools are available online:
https://ipyrad.readthedocs.io/.
Contact: de2356@columbia.edu

1 Introduction

Over the last decade molecular systematics has increasingly transi-
tioned from investigating phylogenetic and phylogeographic pat-
terns using datasets composed of one or only a handful of markers
to massive datasets containing thousands or tens of thousands of
loci. Among several methods that have been developed for subsam-
pling loci from the genome (McKain et al., 2018), restriction site-as-
sociated DNA sequencing (RADseq) and related methods have
become a popular choice for their flexibility and affordability
(Andrews et al., 2016; Baird et al., 2008; Davey et al., 2011; Elshire
et al., 2011; Miller et al., 2007; Peterson et al., 2012). RADseq (and
RADseq-like) protocols use restriction enzymes to digest (fragment)
a genome such that regions proximal to restriction enzyme recogni-
tion sequences can be consistently selected for short-read sequenc-
ing. In contrast to whole genome sequencing or re-sequencing
(Stratton, 2008), RADseq provides a more efficient way to gather
high depth comparative sequence data shared across large numbers
of samples, especially when genome sizes are large (Clugston et al.,
2019). For this reason, RADseq methods have been employed for di-
verse questions ranging from population genetics (Garcı́a-Olivares
et al., 2019), and phylogenetics (Eaton and Ree, 2013; Hipp et al.,
2014; Wagner et al., 2013), to constructing linkage maps (Amores
et al., 2011; Rubin and Moreau, 2016), QTL-mapping
(Palaiokostas et al., 2013) and investigating DNA methylation
(Schield et al., 2016; Trucchi et al., 2016). Even as future

technological improvements reduce the per read cost of sequencing,
reduced-representation methods will continue to offer advantages to
studies that benefit from sequencing many populations or individu-
als (e.g. phylogeography), or that do not require sampling the entire
genome (e.g. linkage mapping). Similarly, RADseq methods are like-
ly to continue to improve in ways that promote these benefits, as
with recent advances that reduce the cost of indexing and allow for
PCR duplicate removal (Glenn et al., 2019), and methods for enrich-
ing libraries to reduce missing data and increase multiplexing effi-
ciency (Hoffberg et al., 2016).

The process of organizing and making sense of the vast quanti-
ties of data that come off a modern sequencing instrument is non-
trivial, and of great consequence. Simple parameter misspecification
during the assembly process can have considerable impact on down-
stream analysis, potentially influencing the interpretation of the gen-
etic patterns in the data (Linck and Battey, 2019; Shafer et al.,
2017). Prior to the availability of unified assembly tools (Catchen
et al., 2013; Eaton, 2014; Rochette et al., 2019), these datasets were
typically assembled in an ad hoc fashion using scripts developed in-
house, leading to wide variability in the quality of assemblies being
performed by the community. Additionally, downstream analyses
typically involve writing complicated scripts to manage running
multiple iterations of statistical inference software, organizing and
post-processing the output and generating publication-ready plots.
This proliferation of methods and lack of community standards has
two significant consequences: (i) unnecessary complexity in

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2592

Bioinformatics, 36(8), 2020, 2592–2594

doi: 10.1093/bioinformatics/btz966

Advance Access Publication Date: 6 January 2020

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/8/2592/5697088 by guest on 25 April 2024

https://github.com/dereneaton/ipyrad/
https://ipyrad.readthedocs.io/
https://academic.oup.com/


assembly and analysis workflows which increases the potential for
errors and (ii) a lack of reproducibility or oversight when ad hoc
scripts are rarely reused or evaluated. What is needed is a user
friendly, computationally robust and scalable method for both
assembling and analyzing large-scale genomic datasets.

ipyrad was developed to address this need, and provides a sim-
ple, reproducible and well-documented RADseq assembly and ana-
lysis framework that is computationally efficient, massively scalable
across large computing clusters, flexible to accommodate all var-
iants of RADseq data types and suitable for population genetic scale
as well as phylogenetic scale datasets. The ipyrad application pro-
gramming interface (API) enables and encourages the creation of
reproducible scientific workflows by providing a uniform, well-
documented interface to several popular downstream phylogenetic
and population genetics programs. ipyrad is a ground-up reimple-
mentation of the RADseq assembly workflow implemented in
pyRAD (Eaton, 2014), and includes numerous new capabilities
which greatly extend the power, speed and utility of the original
program.

2 ipyrad assembly process

The ipyrad assembly workflow is fully self-contained, capable of
taking raw Illumina data from a sequencing facility and producing
assembled output files without the need for pre- or post-processing
by other software. The general workflow consists of seven steps: (i)
demultiplexing raw reads to samples (based on single or combina-
torial inline barcodes or indexed adapters) or alternatively import-
ing data which has already been demultiplexed; (ii) quality control,
filtering and trimming for adapter contamination; (iii) identifying
read copies from the same locus within samples using de novo clus-
tering or reference mapping. For paired-end data, the de novo
method first merges read pairs with VSEARCH (Rognes et al.,
2016) before clustering, and indels are then imputed during a
gapped alignment process which is performed by MUSCLE (Edgar,
2004). For reference assemblies, paired-end reads are mapped to the
reference to produce gapped alignments, and mate pairs that map
with incorrect orientation or to multiple locations (i.e. as paralogs)
are discarded; (iv) joint estimation of sequencing error rate and sam-
ple heterozygosity; (v) making consensus basecalls and haplotype
calls within samples; (vi) identifying orthology across samples by de
novo clustering or reference mapped positions; and (vii) applying a
final round of filtering and trimming to assembled loci, generating
informative assembly statistics and writing output files in numerous
useful formats for downstream analysis.

While ipyrad retains the general workflow of the original
pyRAD method, the codebase has been completely refactored and
rewritten with emphasis on performance and scalability. Even on a
comparatively small dataset the performance gains are substantial.
For example, using the original pyRAD (v.1.0) on a computer with
12 cores and 48 GB of RAM, the 13 Pedicularis samples from Eaton
and Ree (2013) assembled in �20 h. Using the same hardware,
ipyrad assembles the same data in <30 min. The Pedicularis dataset
has few samples, and is high-quality, single-end RAD data (Baird
et al., 2008). Paired-end data, very large datasets, low quality data
and reference assembly methods obtain even greater performance
improvements in the new implementation.

3 New capabilities implemented in ipyrad

3.1 Massive parallelization
Multi-process and multi-node computing (MPI; Gropp et al., 1996)
allows for efficient distribution of work across massive-scale com-
puting clusters. ipyrad utilizes the ipyparallel Python library to dis-
tribute jobs across cores of a single computer, and can leverage MPI
to distribute jobs across compute nodes on high performance com-
puting clusters, even while working interactively. By default, ipyrad
uses a load-balanced scheduler to distribute jobs among cores
(including across different host nodes), and efficiently distributes
threaded functions (e.g. VSEARCH clustering; Rognes et al., 2016)

across physical cores within compute nodes. Built on top of ipypar-
allel and MPI, ipyrad parallelization can easily and efficiently scale
to hundreds of cores. Although the codebase of ipyrad is written in
Python, it retains high performance through the use of just-in-time
compilation (Lam et al., 2015), and incorporation of industry stand-
ard compiled software into the assembly pipeline (Edgar, 2004; Li
et al., 2009; Li and Durbin, 2009; Martin, 2011; Quinlan, 2014;
Rognes et al., 2016).

3.2 Application programming interface
ipyrad provides a command line interface that is easy to use and
which inherits interaction logic from its predecessor (Eaton, 2014).
Additionally, ipyrad provides an API mode, which can be accessed
programmatically to run interactive assemblies in Jupyter notebooks
(Kluyver et al., 2016). The API mode allows researchers to docu-
ment, share and publish their assembly workflows, promoting re-
producibility in science. The API mode also serves as a starting point
for analyses using the downstream tools available through the
ipyrad-analysis toolkit.

3.3 De novo and reference-based assemblies
To assess orthology of sequenced reads ipyrad implements two core
assembly methods: de novo, in which a sequence similarity threshold
is applied during a seed and extend clustering algorithm; and refer-
ence, in which reads are mapped to a reference genome. In addition,
ipyrad can implement aspects of these methods in conjunction. For
example, if a reference genome is quite distant from sample taxa
then the de novoþ reference method can recover more data by
applying the reference workflow to mapped reads, and the de novo
workflow to non-mapping reads, with the final dataset compiled of
the two datasets together. Two alternative methods make use of a
reference genome in a contrasting way, as a filter. In de novo–refer-
ence and reference–reference any reads that map to a ‘filter-refer-
ence’ file are removed from the dataset, prior to de novo or
reference assembly of the remaining reads, which provides a useful
means for removing sequences from contaminants or symbionts.

3.4 Branching architecture
Methods for assembling RADseq data are sensitive to the parameter
settings used during filtering, mapping/clustering and base calling.
For example, Linck and Battey (2019) showed that different minor
allele frequency thresholds can produce significantly different infer-
ence of population structure. It is therefore critical to generate mul-
tiple datasets under a range of parameter settings for comparison
(Crotti et al., 2019; Paris et al., 2017). ipyrad implements an itera-
tive branching design that reduces redundancy and facilitates the
generation of multiple datasets exploring a range of parameters set-
tings, without the need to re-run the entire assembly. By saving
intermediate files, different named assemblies can be restarted from
intermediate steps of the assembly workflow. This vastly reduces re-
dundancy in computation; enforces a reproducible workflow in
which new branches do not overwrite earlier results; provides a con-
venient step in which to remove individuals from assemblies (failed
samples, outgroups, etc.), or to merge samples from different libra-
ries into a shared assembly.

3.5 Analysis tools
ipyrad includes an ‘analysis’ module which provides a powerful,
simple and reproducible interface to several widely used methods
for inferring phylogenetic relationships (RAxML; Stamatakis,
2014), population structure (STRUCTURE; Pritchard et al., 2000)
and admixture (TreeMix; Pickrell and Pritchard, 2012), among
many others. In typical usage the analysis API will use an internal
data structure generated by the ipyrad assembly process, but it is
also flexible enough to import genotypes (e.g. VCF files) generated
by other RADSeq assembly programs. Various population genetic
and phylogenetic methods can be differentially impacted by missing
data, therefore the analysis API provides simple options for filtering,
imputing, consensus sampling and/or running replicate analyses to

ipyrad 2593

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/8/2592/5697088 by guest on 25 April 2024



effectively quantify uncertainty around missing data. The analysis
API leverages the massive parallelization provided by the ipyrad
backend, manages organization of intermediate files and provides a
simple interface for generating publication-ready plots of results
(Eaton, 2019), contributing benefits of both usability and
reproducibility.

4 Conclusion

ipyrad is a user friendly, robust, efficient, scalable and flexible pro-
gram for assembling and analyzing RADseq datasets. The parallel-
ization backend allows ipyrad to scale up to the limit of
computational resources it is provided, facilitating the assembly of
very large-scale datasets encompassing hundreds of taxa and thou-
sands of samples. The API mode facilitates the creation of docu-
mented and shareable assembly workflows, promoting
reproducibility. The analysis module provides a unified and coher-
ent interface to many common downstream phylogenetic and popu-
lation genetic inference methods, reducing the friction and overhead
generated by file format conversion, configuration file creation and
execution which are typically associated with implementation of
these methods. This combination of API mode, parallelized backend
and analysis tools allows researchers to efficiently perform, docu-
ment and publish their full RADseq assembly and analysis work-
flows within a single computational framework, thus greatly
reducing cognitive overhead and promoting reproducibility.

Acknowledgement

We thank Laura Bertola and Ed Myers for useful comments on an early draft

of the manuscript.

Funding

This work was supported by grants from the National Science Foundation

[DEB-1253710; DEB 1745562; DEB-1557059], the S~ao Paulo Research

Foundation [BIOTA, 2013/50297-0] and the National Aeronautics and Space

Administration through the Dimensions of Biodiversity Program [DOB

1343578]. I.O. was supported by the Mina Rees Dissertation Fellowship

in the Sciences provided by the Graduate Center of the City University of

New York.

Conflict of Interest: none declared.

References

Amores,A. et al. (2011) Genome evolution and meiotic maps by massively par-

allel DNA sequencing: spotted gar, an outgroup for the teleost genome du-

plication. Genetics, 188, 799–808.

Andrews,K.R. et al. (2016) Harnessing the power of RADseq for ecological

and evolutionary genomics. Nat. Rev. Genet., 17, 81–92.

Baird,N.A. et al. (2008) Rapid SNP discovery and genetic mapping using

sequenced RAD markers. PLoS One, 3, e3376.

Catchen,J. et al. (2013) Stacks: an analysis tool set for population genomics.

Mol. Ecol., 22, 3124–3140.

Clugston,J.A.R. et al. (2019) RADseq as a valuable tool for plants with large

genomes—a case study in cycads. Mol. Ecol. Resour., 19, 1610–1622.

Crotti,M. et al. (2019) Causes and analytical impacts of missing data in

RADseq phylogenetics: insights from an African frog (Afrixalus). Zool. Scr.,

48, 157–167.

Davey,J.W. et al. (2011) Genome-wide genetic marker discovery and genotyp-

ing using next-generation sequencing. Nat. Rev. Genet., 12, 499–510.

Eaton,D.A.R. (2014) PyRAD: assembly of de novo RADseq loci for phylogen-

etic analyses. Bioinformatics, 30, 1844–1849.

Eaton,D.A.R. (2019) Toytree; a minimalist tree visualization and manipula-

tion library for Python. Methods Ecol. Evol.

Eaton,D.A.R. and Ree,R.H. (2013) Inferring phylogeny and introgression

using RADseq data: an example from flowering plants (Pedicularis:

Orobanchaceae). Syst. Biol., 62, 689–706.

Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res., 32, 1792–1797.

Elshire,R.J. et al. (2011) A robust, simple genotyping-by-sequencing (GBS) ap-

proach for high diversity species. PLoS One, 6, e19379.

Garcı́a-olivares,V. et al. (2019) A topoclimate model for Quaternary insular

speciation. J. Biogeogr., 46, 2769–2786.

Glenn,T.C. et al. (2019) Adapterama I: universal stubs and primers for 384

unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries

(iTru & iNext). Peer J, 7, e7755.

Gropp,W. et al. (1996) A high-performance, portable implementation of the

MPI message passing interface standard. Parallel Comput., 22, 789–828.

Hipp,A.L. et al. (2014) A framework phylogeny of the American oak clade

based on sequenced RAD data. PLoS One, 9, e93975.

Hoffberg,S.L. et al. (2016) RAD cap: sequence capture of dual-digest RAD seq

libraries with identifiable duplicates and reduced missing data. Mol. Ecol.

Resour., 16, 1264–1278.

Kluyver,T. et al. (2016) Jupyter Notebooks—A Publishing Format for

Reproducible Computational Workflows. ELPUB, pp. 87–90.

Lam,S.K. et al. (2015) Numba: A LLVM-based Python JIT Compiler. In:

Proceedings of the Second Workshop on the LLVM Compiler Infrastructure

in HPC. ACM, New York, NY, USA.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009) The se-

quence alignment/map format and SAMtools. Bioinformatics, 25,

2078–2079.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.

Linck,E. and Battey,C.J. (2019) Minor allele frequency thresholds strongly af-

fect population structure inference with genomic data sets. Mol. Ecol.

Resour., 19, 639–647.

Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet J., 17, 10–12.

McKain,M.R. et al. (2018) Practical considerations for plant phylogenomics.

Appl. Plant Sci., 6, e1038.

Miller,M.R. et al. (2007) Rapid and cost-effective polymorphism identifica-

tion and genotyping using restriction site associated DNA (RAD) markers.

Genome Res., 17, 240–248.

Palaiokostas,C. et al. (2013) Mapping the sex determination locus in the

Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC

Genomics, 14, 566.

Paris,J. et al. (2017) Lost in parameter space: a road map for stacks. Methods

Ecol. Evol., 8, 1360–1373.

Peterson,B.K. et al. (2012) Double digest RADseq: an inexpensive method for

de novo SNP discovery and genotyping in model and non-model species.

PLoS One, 7, e37135.

Pickrell,J.K. and Pritchard,J.K. (2012) Inference of population splits and mix-

tures from genome-wide allele frequency data. PLoS Genet, 8, e1002967.

Pritchard,J.K. et al. (2000) Inference of population structure using multilocus

genotype data. Genetics, 155, 945–959.

Quinlan,A.R. (2014) BEDTools: the Swiss-army tool for genome feature ana-

lysis. Curr. Protoc. Bioinformatics, 47, 11–12.

Rochette,N.C. et al. (2019) Stacks 2: analytical methods for paired-end

sequencing improve RADseq-based population genomics. Mol. Ecol.

Resour., 28, 4737–4754.

Rognes,T. et al. (2016) VSEARCH: a versatile open source tool for metage-

nomics. PeerJ, 4, e2584.

Rubin,B.E.R. and Moreau,C.S. (2016) Comparative genomics reveals conver-

gent rates of evolution in ant–plant mutualisms. Nat. Commun., 7, 12679.

Schield,D.R. et al. (2016) Epi RAD seq: scalable analysis of genomewide pat-

terns of methylation using next-generation sequencing. Methods Ecol.

Evol., 7, 60–69.

Shafer,A.B.A. et al. (2017) Bioinformatic processing of RAD-seq data dramat-

ically impacts downstream population genetic inference. Methods Ecol.

Evol., 8, 907–917.

Stamatakis,A. (2014) RAxML version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Stratton,M. (2008) Genome resequencing and genetic variation. Nat.

Biotechnol., 26, 65–66.

Trucchi,E. et al. (2016) BsRADseq: screening DNA methylation in natural

populations of non-model species. Mol. Ecol., 25, 1697–1713.

Wagner,C.E. et al. (2013) Genome-wide RAD sequence data provide unprece-

dented resolution of species boundaries and relationships in the Lake

Victoria cichlid adaptive radiation. Mol. Ecol., 22, 787–798.

2594 D.A.R.Eaton and I.Overcast

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/8/2592/5697088 by guest on 25 April 2024


