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ABSTRACT
Motivation: A variety of tools are available to predict
the topology of transmembrane proteins. To date no
independent evaluation of the performance of these
tools has been published. A better understanding of the
strengths and weaknesses of the different tools would
guide both the biologist and the bioinformatician to make
better predictions of membrane protein topology.
Results: Here we present an evaluation of the perfor-
mance of the currently best known and most widely used
methods for the prediction of transmembrane regions in
proteins. Our results show that TMHMM is currently the
best performing transmembrane prediction program.
Contact: moeller@ebi.ac.uk; croning@ebi.ac.uk; ap-
weiler@ebi.ac.uk

INTRODUCTION
Genome sequencing projects provide the scientific
community with an ever-increasing rate of predicted
protein sequences. To analyze these biochemically
uncharacterized sequences, computer based methods
have been established to provide researchers with an
initial characterization. Many of these methods make
use of sequence similarity to already described proteins.
Other methods are used to predict certain properties like
membrane spanning regions.

In this paper we have analyzed the performance of
the different programs for the prediction of transmem-
brane regions in proteins. Such predictions are possible
because of distinctive patterns of hydrophobic (intra-
membraneous) and polar (loops) regions within the
sequence. The percentage of transmembrane proteins
does not differ too much in various organisms (Wallin and
Heijne, 1998; Stevens and Arkin, 2000) and about a fourth
of all proteins in SWISS-PROT and TrEMBL (Bairoch
and Apweiler, 2000) are predicted to be transmembrane-
ous. Membrane proteins play important roles in the cell
as key components of cell–cell signalling mechanisms,
initiating signalling cascades. They also mediate the trans-

membrane transport of many ions and solutes, as well
as being involved in the organism’s recognition of self.
The pharmaceutical industry has found them of particular
interest, since membrane-bound receptors and channels
have been repeatedly proven to be fruitful therapeutic
targets. Additionally, membrane proteins often mediate
acquired resistance to drugs.

Thorough structural analysis of membrane proteins is
difficult to achieve since it is very hard to determine the
structure due to the intrinsic difficulties involved in grow-
ing crystals of membrane proteins. It takes considerably
less effort to biochemically determine just the membrane
topology (Geest and Lolkema, 2000), which includes the
determination of the localization of membrane spanning
regions (MSRs) and the polarity of their integration into
the membrane (sidedness).

Still, the topology of the vast majority of membrane
proteins remains biochemically undetermined. Our group
provides a collection of proteins with known biochemical
characterizations of membrane topology (Möller et al.,
2000). However, this collection contains only ∼200
well-characterized sequences. Consequently, the charac-
terization of the remaining membrane proteins requires an
accurate method for the automated prediction of MSRs.

Reliable computational methods for topology predic-
tions are very valuable as they provide the basis for
further experimental analysis. A variety of tools have
been implemented, with the first being about 20 years
old. For an evaluation of predictions it is important not
only to look at individual MSRs but at the whole protein.
To make a prediction for proteins with seven MSRs
95% reliable, individual segments would need to be 99,
96% reliable, and additionally, the method must never
over-predict. Current tools are far away from achieving
this. The present study provides an evaluation of their
actual performance.

EVALUATION
The following methods for prediction of MSRs have been
evaluated: TMHMM 1.0, 2.0, and a retrained version
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of 2.0 (Sonnhammer et al., 1998; Krogh et al., 2001),
MEMSAT 1.5 (Jones et al., 1994), Eisenberg (Eisen-
berg et al., 1982), Kyte/Doolittle (Kyte and Doolittle,
1982), TMAP (Persson and Argos, 1997), DAS (Cserzo
et al., 1997), HMMTOP (Tusnády and Simon, 1998),
SOSUI (Hirokawa et al., 1998), PHD (Rost et al., 1996),
TMpred (Hofmann and Stoffel, 1993), KKD (Klein et
al., 1985), ALOM2 (Nakai and Kanehisa, 1992), and
Toppred 2 (Claros and Heijne, 1994). Alom2, Eisenberg
and Kyte/Doolittle, TMpred and DAS are methods in-
vestigating local properties of amino acid sequences to
decide which sub-sequences are most likely to span the
membrane, usually in a sliding window approach. PHD
uses a neuronal network and should still be regarded
as a local approach. Global approaches are HMMTOP
and TMHMM, which both implement circular Hidden
Markov Models. These approaches determine the sta-
tistically most probable topology for the whole protein
according to the underlying model. TMAP, Toppred2
and also MEMSAT represent combined forms, in which
results on a local level are evaluated by global heuristics
such as the positive-inside rule or other differences in
the distribution of amino acids. No additional input data
was given, i.e. we did not provide sequence alignments to
TMAP, to ensure the reproducibility of this evaluation.

The previously mentioned collection of well-
characterized membrane proteins was used as the
reference annotation to evaluate the predictions of the
various methods. This test set contains 188 proteins
with 883 MSRs that have been determined from either
their elucidated structures or by fusion experiments. As
described in Möller et al. (2000) the interpretation of ex-
periments does not allow one to set unambiguous borders
for transmembrane regions. Therefore some deviation
of the prediction from the reference annotation must be
tolerated. In accord with a previous study (Sonnhammer
et al., 1998), for an MSR to be evaluated as correct,
we decided it must share at least nine residues with the
reference annotation’s MSR. This threshold is a little less
than half that the ∼20 residues expected for an MSR.

Each program was rated by three values. Firstly, it was
rated by the percentage of predicted transmembrane re-
gions that could be assigned to a reference MSR (true pos-
itive predictions). Secondly, it was rated by the percent-
age of reference MSRs that were not predicted (false neg-
atives) and thirdly, by the percentage of predicted MSRs
that are not existent as MSRs in the reference protein test
set (false positives). Also, but not applicable to all meth-
ods, we investigated the reliability of a prediction of the
sidedness of the protein’s membrane integration.

The reference annotation describes both mitochondrial
inner membrane proteins and plasma membrane proteins,
both of which are generally believed to be helical. For
this reason a minimum length of 15 residues would be

Table 1. Performance on transmembrane regions of all biochemically
characterized proteins

Method TP FN FP (FN + FP)

TMHMM 2.0 (Sonnhammer et al., 1998) 812 65 38 103
TMHMM 1.0 (Sonnhammer et al., 1998) 818 63 45 108
TMHMM-Retrain∗ 811 70 38 108
MEMSAT 1.5 (Jones et al., 1994) 772 110 78 188
Eisenberg (Eisenberg et al., 1982) 809 72 163 235
KKD (Klein et al., 1985) 719 164 72 236
KD5 773 139 125 259
TMAP (Persson and Argos, 1997) 675 191 82 273
DAS (Cserzo et al., 1997) 829 38 243 281
HMMTOP (Tusnády and Simon, 1998) 639 243 65 308
SOSUI (Hirokawa et al., 1998) 686 192 137 329
KD9 494 391 25 416
TMpred (Hofmann and Stoffel, 1993) 525 357 80 437
ALOM 2 (Nakai and Kanehisa, 1992) 429 545 17 471
PHD (Rost et al., 1996) 564 319 207 526
Toppred 2 (Claros and Heijne, 1994) 468 417 123 540
Total number of MSRs 883

TP stands for the number of correctly predicted MSRs, FN for MSRs that
where not predicted and FP for predictions that where not confirmed by the
reference annotation. The methods are sorted by the sum of false negative
and false positive predictions. False negatives and true positives should sum
up to the same number (883) for all the methods. This is not the case when
a predicted MSR spans two reference regions. Also two predicted MSRs
overlapping a single reference MSR would not be noticed in this table.
∗This version of TMHMM was developed for the current evaluation only
and is not available to the public.

expected in order to span the membrane. The default
parameter sets were used for the evaluation of all methods.
For the evaluation of TMpred, parameter values of a
minimum length of 15 and a maximum length of 25
residues for MSRs were utilized. It is likely that to achieve
optimal results these values should be varied, depending
on the organism (varying thickness of the membrane) or
organelle (hypothetical influence of the length of MSRs
on protein sorting). This optimization of parameters was
not performed in the present study, in order to keep
the evaluation straightforward, and subsequently easily
reproducible.

We implemented a prediction upon the basis of the
Kyte/Doolittle hydropathy scale with window lengths
from 5 (KD5) to 9 (KD9) residues to the peak in
hydropathy. A threshold of 1.6 was required for the
predicition of an MSR. These were assumed to be of
length 20 amino acid residues.

RESULTS
Performance on transmembrane regions of all
biochemically characterized proteins
Table 1 shows the performance of the evaluated methods
on individual MSRs. The methods are ranked by the num-
ber of errors detected (FN + FP). The method TMHMM
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Table 2. Performance on proteins with characterized MSRs

Method All MSRs Additionally
found correct sidedness

TMHMM-Retrain∗ 129 (69%) 102 (79% of 129)
TMHMM 2.0 128 (68%) 89 (70%)
TMHMM 1.0 126 (67%) 91 (72%)
MEMSAT 1.5 100 (53%) 77 (77%)
KKD 85 (45%) n/a
HMMTOP 83 (44%) 68 (82%)
TMAP 80 (43%) 21 (26%)
Eisenberg 72 (38%) n/a
DAS 70 (37%) n/a
TMpred 70 (37%) 12 (17%)
SOSUI 68 (36%) n/a
KD5 61 (32%) n/a
KD9 49 (26%) n/a
PHD 49 (26%) 34 (69%)
Toppred 2 48 (26%) 23 (48%)
ALOM 2 14 (7%) n/a
Total number of proteins 188 (100%)

This table presents an analysis of the program’s performance in predicting
all MSRs within a transmembrane protein. It displays in the second column
the number of predictions that had all MSRs correctly assigned. This was
defined as being the case when a sequence had no false positives, no false
negatives and also the correct number of MSRs predicted. The third column
shows how often the sidedness of the integration was predicted correctly.
∗This version of TMHMM was developed for the current evaluation only
and is not available to the public.

in all its three versions is by far the best in this comparison.
MEMSAT is the second best method, although it produces
twice as many errors as TMHMM. The only additional in-
teresting result here is the low number of false positives
assigned by ALOM. Its FP/TP ratio is even slightly lower
than the one of TMHMM.

Performance on all MSRs within a protein
Table 2 shows the performance of the evaluated method
on all MSRs within a protein and basically confirms the
results of Table 1. The TMHMM versions predicted in ap-
proximately two thirds of the reference proteins all MSRs
correctly. In about 70–80% of these correctly predicted
proteins the sidedness was correctly predicted, too. The
retrained TMHMM performs better in the determination
of the sidedness. MEMSAT was able to predict all MSRs
correctly in 53% of the cases. While HMMTOP is the best
method to predict the sidedness of a transmembrane pro-
tein, Toppred, TMAP and TMpred decide the sidedness
less reliably than by random choice.

Performance on transmembrane regions of proteins
unknown to the method
Table 3 presents a variation of the analysis shown in
Table 1, by being based on only those MSRs that were
not presented to the respective program for its training or

Table 3. Performance on known MSRs not used in the training sets of the
method

Method TP + FN TP FN FP FN + FP % correct

TMHMM-Retrain∗ 322 294 28 20 48 85.1
TMHMM 2.0 469 415 54 27 81 82.7
TMHMM 1.0 471 413 58 36 94 80
MEMSAT 1.5 722 620 102 69 171 76.3
Eisenberg 881 809 72 163 235 73.3
KKD 883 719 164 72 236 73.3
KD5 907 773 134 125 259 71.4
TMAP 696 538 158 68 226 67.5
DAS 626 598 28 210 238 62
SOSUI 829 638 191 137 328 60.4
KD9 885 494 391 25 416 53
TMpred 882 525 357 80 437 50.5
HMMTOP 453 251 202 33 235 48.1
ALOM 2 883 429 454 17 471 46.7
PHD 883 564 319 207 526 40.4
Toppred 2 885 468 417 123 540 39

TP stands for the number of correctly predicted MSRs, FN for MSRs that
where not predicted and FP for predictions that where not confirmed by the
reference annotation. The methods are sorted by the percentage of correct
predictions. False negatives and true positives should sum up to the same
number (883) for all the methods. This is not the case when a predicted
MSR spans two reference regions. Also two predicted MSRs overlapping a
single reference MSR would not be noticed in this table. Sums larger than
883 are explained by two predicted MSRs overlapping with a single
reference MSR of the collection. In this case both predicted MSRs are
counted as true positive. Please be aware that the number of MSR differs
for different methods since the training/evaluation set of the methods differ.
The set is smallest for the newer versions of TMHMM and HMMTOP.
∗This version of TMHMM was developed for the current evaluation only
and is not available to the public.

analysis.
Again, the TMHMM versions performed best (80–85%

correct predictions), slightly ahead of MEMSAT, which
confirmed 76% of the MSRs correctly. The Eisenberg and
Kyte/Doolittle methods are very close runner-ups with
73.3% each. The low number of false negatives of the
Eisenberg method (8.1%) and especially of DAS (4.5%)
should be mentioned. The false negative rates of the best
performing TMHMM version and of MEMSAT are 8.6
and 14%, respectively.

Performance on all MSRs within the proteins that
were not used for training
Table 4a presents, like Table 2, a view upon the prediction
performance for whole proteins rather than on individual
MSRs. The intersection of proteins that were not used for
training or analysis by any of the programs contains only
87 proteins. A larger data set optimizes the reliability of
this analysis for all individual methods. Hence Table 4a
presents the analysis of Table 2 on the basis of different
protein sets, the respective maximal sets of proteins
unknown to the method.
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Table 4a. Performance on proteins with characterized MSRs not known to
the method

Method No. of All MSRs Additionally
proteins found correct sidedness

TMHMM 2.0 108 64 (59%) 40 (63%)
TMHMM 1.0 108 57 (53%) 21 (53%)
TMHMM-Retrain 69 35 (51%) 22 (62%)
MEMSAT 1.5 159 80 (50%) 58 (73%)
KKD 188 85 (45%) n/a
TMAP 156 69 (44%) 18 (26%)
Eisenberg 188 72 (38%) n/a
TMpred 188 70 (37%) 12 (17%)
KD5 188 61 (32%) n/a
SOSUI 147 53 (36%) n/a
HMMTOP 106 37 (35%) 29 (78%)
DAS 148 50 (33%) n/a
PHD 151 49 (33%) 34 (70%)
Toppred 2 188 48 (26%) 23 (48%)
KD9 188 48 (26%) n/a
ALOM 2 188 14 (7%) n/a
Total number
of proteins 188

This table presents an analysis of the program’s performance on the whole
transmembrane protein. Methods are sorted by the percentage of correctly
predicted proteins. The second column shows the number of proteins that
could be used for the evaluation since they were not presented to the
respective program for its training or analysis. The third column shows the
number of proteins whose MSRs were all correctly predicted. This was
defined as being the case when a sequence had no false positives, no false
negatives and also the correct number of MSRs predicted. The fourth
column shows how often the sidedness of the integration was predicted
correctly.

The drawback of this approach is that the methods are
not constrained to the identical weaknesses and difficulties
present in the evaluation set. Table 4b shows therefore
the same analysis on the set of 87 proteins that were not
involved in the training of any of these methods.

Both Table 4a and b confirm the dominance of
TMHMM. The three versions of this method predict all
MSRs within proteins that were not used for training
in 51–60% of the cases correctly. MEMSAT correctly
predicted 47% of all MSRs within proteins that are not
used for training of the program.

Influence of signal peptides and transit peptides
Transmembrane prediction programs have the tendency
to interpret the hydrophobic parts of signal sequences
and transit peptides as MSRs. The transmembrane test
set contains 34 proteins with a cleavable signal and eight
proteins with transit peptides. Table 5 shows that only
ALOM 2 correctly predicted not a single signal sequence
as transmembrane. ALOM 2 is followed by PHD with one
error and Toppred 2 with three errors. The seven errors
of TMHMM 2.0 account for 16% of the total TMHMM
false positives from Table 1. Only the Kyte/Doolittle

Table 4b. Comparison of performance on an identical set of proteins
unknown to methods

Method All MSRs Additionally
found correct sidedness

TMHMM-Retrain 52 (60%) 43 (83% of 52)
TMHMM 2.0 48 (55%) 36 (75% of 48)
TMHMM 1.0 45 (52%) 33 (73% of 45)
MEMSAT 1.5 41 (47%) 33 (80% of 41)
KKD 39 (45%) n/a
TMAP 35 (40%) 12 (34% of 35)
KD8 33 (37%) n/a
Tmpred 29 (33%) 9 (31% of 29)
Eisenberg 27 (31%) n/a
SOSUI 27 (31%) n/a
KD5 26 (30%) n/a
KD9 25 (29%) n/a
DAS 24 (28%) n/a
HMMTOP 23 (26%) 19 (83% of 23)
KD6 21 (24%) n/a
PHD 18 (21%) 17 (94% of 18)
Toppred 2 16 (18%) 6 (38% of 16)
ALOM 2 9 (10%) n/a

This table presents an analysis of the program’s performance on the whole
transmembrane protein. The set of 87 proteins not involved in the training
of any of the prediction methods was used as the basis for this analysis.
Methods are sorted by the percentage of correctly predicted proteins. The
second column shows the number of proteins whose MSRs were all
correctly predicted. This was defined as being the case when a sequence
had no false positives, no false negatives and also the correct number of
MSRs predicted. The third column shows how often the sidedness of the
integration was predicted correctly.

Table 5. Discriminative performance on signal and transit peptides

Method No. of signal sequences predicted as MSRs

ALOM 2 0
PHD 1
Toppred 2 3
TMHMM 1.0 7
TMHMM 2.0 7
TMHMM-Retrain 9
MEMSAT 1.5 12
SOSUI 14
TMAP 20
HMMTOP 25
Eisenberg 26
KKD 26
TMpred 31
DAS 33
KD5 34
KD9 34
Maximum 34 of 34

The second column displays the number of proteins in which a signal
sequence was predicted to be an MSR.

hydropathy analysis methods (KD5–KD9) predicted the 8
mitochondrial transit peptides as transmembranous.
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Table 6. Membrane proteins whose MSRs were not correctly predicted by
any program

Trust Number of Number of Test set entries:
level problematic test set

proteins proteins SWISS-PROT ID
[SWISS-PROT AC]∗

A 1 (3%) 34 PGH1 SHEEP[P05979]
B 5 (22%) 23 ARSB ECOLI[P37310],

DTPT LACLA[P36574],
HLYB ECOLI[P08716],
PTNC ECOLI[P08187],
PTND ECOLI[P08188]

C 17 (15%) 108 ADT2 YEAST[P18239],
ALKB PSEOL[P12691],
B3AT HUMAN[P02730],
CYB RHOSH[Q02761],
CYDA ECOLI[P11026],
CYOE ECOLI[P18404],
FLO1 HUMAN[P41440],
PMA1 NEUCR[P07038],
RBSC ECOLI[P04984],
S61A YEAST[P32915],
SCAA RAT[P37089],
STE6 YEAST[P12866],
[LEP00030], [LEP00130],
[LEP00330], [LEP03300],
[LEP03303]

C∗ 3 (13%) 23 GAA4 BOVIN[P20237],
GRA1 HUMAN[P23415],
GRA3 RAT[P24524]

Sum 26 (14%) 188

Column one shows the category of trust as set in the collection of
transmembrane proteins for individual entries. Trust level A stands for an
available crystal structure, B for strong biochemical evidence and C for less
reliable biochemical evidence. C* denotes entries with MSR annotation
labelled in SWISS-PROT as highly reliable. The second column lists the
entries of the test set with their entry name and the accession number in
brackets.
∗The constructed LEP0xxx proteins are not in SWISS-PROT/TrEMBL.

Summary of evaluation based on reference TM
annotation
162 proteins (85%) of the reference test set’s 188 proteins
have their MSRs correctly predicted by at least one
program. When the sidedness is included in this analysis,
this reduces the number of correct predictions to 131
(70%). Table 2 shows TMHMM to be the best performing.
Its versions were able to predict at least 89 (48% of
all proteins) entries completely correctly, including their
sidedness. In its retrained variant, it was even predicting
54% of the entries completely correct, though this is only
due to the better performance of the retrained version
on the determination of the sidedness. Table 6 shows the
entries from the collection for which the MSRs could not
be correctly assigned by any method.

All proteins in the test set, except the LEP0xxxx pro-

Table 7. Membrane proteins whose sidedness was not correctly predicted by
any program but had their MSRs predicted correctly by at least one method

Trust Number of Number of Test set entries:
level problematic test set

proteins proteins SWISS-PROT ID
[SWISS-PROT AC]∗

A 3 (9%) 34 ATPL ECOLI[P00844],
CB22 PEA[P07371],
COX3 PARDE[P06030]

C 12 (11%) 108 CITN KLEPN[P31602],
CLC1 HUMAN[P35523],
CYOA ECOLI[P18400],
CYOC ECOLI[P18402],
GAB1 HUMAN[P18505],
IM23 YEAST[P32897],
MDFA ECOLI[Q46966],
ROM1 BOVIN[P52205],
[LEP00000], [LEP00003],
[LEP00300], [LEP00303]

C∗ 16 (70%) 23 GAA1 CHICK[P19150],
GAA2 HUMAN[P47869],
GAA3 HUMAN[P34903],
GAA5 HUMAN[P31644],
GAA6 MOUSE[P16305],
GAB2 HUMAN[P47870],
GAB3 HUMAN[P28472],
GAB4 CHICK[P24045],
GAC1 RAT[P23574],
GAC3 MOUSE[P27681],
GAC4 CHICK[P34904],
GAD MOUSE[P22933],
GAR1 HUMAN[P24046],
GAR2 HUMAN[P28476],
GRB RAT[P20781],
SSRG RAT[Q08013]

Sum 31 (16%) 188

Column one shows the category of trust as set in the collection of
transmembrane proteins for individual entries. Trust level A stands for an
available crystal structure, B for strong biochemical evidence and C for less
reliable biochemical evidence. C* denotes entries with MSR annotation
labelled in SWISS-PROT as highly reliable. The second column lists the
entries of the test set with their entry name and the accession number in
brackets.
∗The constructed LEP0xxx proteins are not in SWISS-PROT/TrEMBL.

teins, are SWISS-PROT entries. The LEP0xxxx proteins
are artificial proteins, resulting from fusions of the E.coli
leader peptidase with itself. Polar residues were intro-
duced in the loops, which led to topologically ‘frustrated’
membrane regions (Gafvelin and Heijne, 1994). These are
membrane spanning regions that maintained all their hy-
drophobicity but are not integrated after the modification
since the integrated polar residues in the connecting loops
are incompatible with the final topology of the insertion
process. None of the current methods seems sensitive
enough for these subtle changes.
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Table 8. Performance on G-protein coupled receptors

Program Number of proteins with specific number of predicted membrane spanning regions
(percentage of all GPCRs)

Number without correction of overlap with signal sequence
0 1 2 3 4 5 6 7 8 >8

MSRs correct
predicted

ALOM 2 0 6 20 57 176 291 248 29 6 0
(0) (1) (2) (7) (21) (35) (30) (3) (1) (0)
0 6 16 57 170 271 269 35 9 0

DAS 2 0 5 42 212 369 173 24 3 1
(0) (0) (1) (5) (25) (44) (21) (3) (0) (0)
2 0 5 42 194 357 156 62 9 4

HMMTOP 0 0 0 0 1 1 27 712 88 4
(0) (0) (0) (0) (0) (0) (3) (85) (11) (0)
0 0 0 0 1 1 25 644 154 8

MEMSAT 1.5 0 23 21 22 14 40 100 551 56 6
(0) (3) (3) (3) (2) (5) (12) (66) (7) (1)
0 23 21 0 16 33 106 531 73 10

TMHMM 1.0 0 0 1 0 2 12 98 707 13 0
(0) (0) (0) (0) (0) (1) (12) (85) (2) (0)
0 0 1 0 2 12 96 696 26 0

TMHMM 2.0 0 0 0 1 3 12 98 711 8 0
(0) (0) (0) (0) (0) (1) (12) (85) (1) (0)
0 0 0 1 3 12 96 698 23 0

The table is set up according to the correct number of predicted MSRs. All GPCR proteins should have seven MSRs, this ‘correct’ group is showin in bold.
The first number shows the number of MSRs that do not overlap with a signal sequence as annotated in the SWISS-PROT database. The second number gives
the percentage of the first value of all 833 GPCRs. The third number shows the original number of predicted MSRs before correcting for signal peptides.

The E.coli leader peptidase in its native form is among
the proteins of the test set and gets correctly predicted. The
LEP-LEP fusions though irritate the prediction methods,
especially for the determination of their sidedness.

Other proteins involved in the integration of membrane
proteins into the membrane, e.g. SecY and SecE, seem
to be reliably predicted. Exceptions are the yeast Sec61A
(Table 6) and the mitochondrial IM23 (Table 7).

It is not too surprising that proteins within larger
membrane complexes are harder to predict, since their
properties are less constrained by the membrane than by
their interaction with other proteins within their complex.
Also it is not clear if they are integrated into the membrane
by the same mechanism. The problems with COX and
CYO proteins can possibly be explained in this way.

The remaining problematic proteins of Tables 6 and 7
have in common that they have at least four transmem-
brane regions. Most of them are ion transporters, which
have polar residues within their MSRs. This may have
contributed to the difficulty of an automated prediction of
MSRs and the sidedness.

Evaluation on seven-transmembrane proteins
In the following analysis we have used a subset of
the available methods to predict the MSRs of a set of
833 G-protein coupled receptors (GPCRs). They are
determined by the database reference of SWISS-PROT
to the GPCRDB (Horn et al., 1998). Table 8 shows the
prediction results of ALOM 2, DAS, HMMTOP, MEM-
SAT, TMHMM 1.0 and TMHMM 2.0. MSRs predicted
N-terminal of a potential signal peptide cleavage point (as
annotated in SWISS-PROT) were ignored.

One should note that the numbers of MSRs possessed
by these proteins have not been biochemically determined.
However, GPCRs are generally accepted to have seven
transmembrane regions with an extracellular N-terminus.

The Hidden Markov Model based methods TMHMM
and HMMTOP performed well in this evaluation, reaching
85% correct MSR assignments. MEMSATs performance
was less satisfying with 66%. Alom 2 and DAS failed
completely with only 3% correct MSR assignments.
An explanation may be that the membrane topology of
GPCRs is rather hard to predict, possibly reflecting a high
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proportion of polar residues within their transmembrane
helices (Ji et al., 1998).

Negative set of soluble proteins
We mentioned before that MSR prediction methods often
predict hydrophobic parts of the N-terminal signal as
transmembraneous. This error can easily be corrected
by an additional run of a tool for signal prediction.
What should not happen, though, is that hydrophobic
regions within soluble proteins or globular loops of
transmembrane proteins are predicted as transmembrane.
To evaluate the ability of transmembrane prediction pro-
grams in their discrimination of transmembrane proteins
from soluble proteins, all the programs were run on a set
of 634 known cytoplasmic or periplasmic soluble proteins
derived from the SWISS-PROT release 38. Accordingly,
not a single MSR should have been assigned to any one
of these proteins.

The performance of the majority of these tools in Table 9
seems disappointing. Except for TMHMM (8 = 1% false
annotations) and SOSUI (19 = 3%) they all have the
tendency to strongly over-predict. Even ALOM 2 (61 =
10%), which has the lowest FP rate on real MSRs, does not
perform well in this evaluation against soluble proteins.

DISCUSSION
We compared the performance of current methods for
the prediction of MSRs and their sidedness. The tools
were run on a set of well-characterized transmembrane
proteins as a positive control, a set of GPCRs for which
only the total number of MSRs within each protein
could be compared, and a set of soluble proteins as a
negative control. We found that the performance of some
of these tools is good, while not perfect, in determining
the location of transmembrane regions. Though it seems
that the determination of the sidedness of transmembrane
proteins is not well modelled by most of the tools.

Overall, TMHMM performs best, followed by MEM-
SAT. TMHMM is especially good at reliably distinguish-
ing between soluble and transmembrane proteins. Also for
proteins known to be transmembrane it performs best, fol-
lowed by MEMSAT. ALOM 2 performed well in confirm-
ing transmembrane regions with a very low number of
false positives.

It was surprising to see that the KKD analysis (Klein
et al., 1985), or the analysis of the hydrophobic moment
(Eisenberg et al., 1982), are relatively reliable predictors
for the MSRs of membrane proteins. Their main weak-
ness, which they share with other window-based methods,
is their lack of specificity for membrane proteins.

No method was able to predict more than 52% of the
proteins correctly. However, 86% of the proteins had all
their MSRs correctly predicted by at least one method and

Table 9. Performance on set of soluble proteins

Method No. of No. of FP No. of
FP proteins MSR (−signals) entries/100s

TMHMM 1.0 8 (1.26%) 8 (−1) 37
TMHMM 2.0 8 (1.26%) 8 (−2) 37
SOSUI 19 (2.99%) 27 (−3) 10
KD9 49(7.73%) 53(−1) 3963
ALOM 2 61 (9.6%) 65 (−0) 2438
HMMTOP 70 (11.0%) 84 (−9) 72
Eisenberg 84 (13.0%) 290 (−2) 3993
PHD 120 (18.9%) 212 (−1) 18
KKD 136 (21.5%) 166 (−7) 5835
Tmap 203 (32.0%) 276 (−6) 352
TMpred 350 (55.2%) 434 (−3) n/a
MEMSAT 1.5 431 (68.0%) 784 (−8) 84
Toppred 2 472 (76.0%) 1198 (−8) 40
KD5 489 (77.1%) 1034 (−7) 1650
DAS 524 (82.6%) 1257 (−9) 5

The first column presents the method’s name, the second the number of
proteins that are false positive and the third presents the number of false
positive MSRs. The number of signal sequences predicted as
transmembrane is stated as a negative number in parentheses behind the
total number of false positive MSRs. The fourth column compares the CPU
time.

for 70% a correct prediction that includes the sidedness
could be achieved by at least one method.

From a technical standpoint, there is no difference
between TMHMM 1.0 and TMHMM 2.0 except for
the latter being retrained on the identical data set. The
developers of TMHMM kindly provided us with an
additional version, TMHMM-Retrain, that was retrained
on a non-redundant subset of the reference annotation
used for this evaluation. This version had some slight
advantages over the versions 1.0 and 2.0, especially
for the prediction of the sidedness, but otherwise this
demonstrates that the choice of training data has only a
limited impact on the performance. This study does not
confirm any significant superiority of TMHMM 2.0 over
its predecessor.

Our results from the prediction of MSRs within GPCRs
reveal how varying the performance of the prediction
methods can be. It also demonstrates that Hidden Markov
Models have a superiority over sliding window approaches
in such difficult cases.

Although TMHMM proves fairly robust against sig-
nal sequences, the topology prediction should not be
performed without the consultation of signal sequence
prediction methods like SignalP 2.0 (Nielsen and Krogh,
1998; Nielsen et al., 1999). TMHMM is the first choice
to decide if a protein is transmembraneous or not. It
has the best overall performance but with a tendency to
underpredict. When there is doubt in the correctness of the
TMHMM prediction, additional evidence like determined

652



Evaluating prediction of membrane spanning regions

protein domains or post-translational modifications should
be considered and additional tools should be consulted
to arrive at a consensus. The strongly underpredicting
tool ALOM 2 might serve to increase the degree of
confidence in individual MSRs, while more sensitive
tools can be used to increase the number of candidates for
an MSR. Recently an integration of multiple prediction
methods evaluated in this paper was published (Nilsson
et al., 2000). SPLIT (Juretic and Lucin, 1998; Juretic et
al., 1999) and TM Finder (Deber et al., 2001) integrate
multiple scales for amino acids for the prediction of
MSRs. This suggests an evaluation of strategies for the
integration of multiple predictors should be carried out.

Finally, we suggest all the tools should be considered
merely an aid to the biologist in making an educated guess
as to the whereabouts of MSRs with a protein.

ACKNOWLEDGEMENTS
Many thanks go to Anders Krogh, Henrik Nielsen, Miklos
Cserzo, Kenta Nakai and G.E.Tusnády for their comments
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