
BIOINFORMATICS Vol. 19 no. 14 2003, pages 1837–1843
DOI: 10.1093/bioinformatics/btg251

The design of Jemboss: a graphical user
interface to EMBOSS

Tim Carver∗ and Alan Bleasby

MRC UK HGMP Resource Centre, Hinxton, Cambridge CB10 1SB, UK

Received on February 11, 2003; revised on March 15, 2003; accepted on April 20, 2003

ABSTRACT
Design: Jemboss is a graphical user interface (GUI) for the
European Molecular Biology Open Software Suite (EMBOSS).
It is being developed at the MRC UK HGMP-RC as part of the
EMBOSS project. This paper explains the technical aspects
of the Jemboss client–server design. The client–server model
optionally allows that a Jemboss user have an account on the
remote server. The Jemboss client is written in Java and is
downloaded automatically to a user’s workstation via Java Web
Start using the HTML protocol. The client then communicates
with the remote server using SOAP (Simple Object Access
Protocol). A Tomcat server listens on the remote machine and
communicates the SOAP requests to a Jemboss server, again
written in Java. This Java server interprets the client requests
and executes them through Java Native Interface (JNI) code
written in the C language. Another C program having setuid
privilege, jembossctl, is called by the JNI code to perform the
client requests under the user’s account on the server. The
commands include execution of EMBOSS applications, file
management and project management tasks. Jemboss allows
the use of JSSE for encryption of communication between the
client and server. The GUI parses the EMBOSS Ajax Com-
mand Definition language for form generation and maximum
input flexibility. Jemboss interacts directly with the EMBOSS
libraries to allow dynamic generation of application default
settings.
Results: This interface is part of the EMBOSS distribution
and has attracted much interest. It has been set up at many
other sites globally as well as being used at the HGMP-RC for
registered users.
Availability: The software, EMBOSS and Jemboss, is freely
available to academics and commercial users under the
GPL licence. It can be downloaded from the EMBOSS
ftp server: http://www.uk.embnet.org/Software/EMBOSS/,
ftp://ftp.uk.embnet.org/pub/EMBOSS/. Registered HGMP-RC
users can access an installed server from: http://www.uk.
embnet.org/Software/EMBOSS/Jemboss/.

∗To whom correspondence should be addressed.

INTRODUCTION
Jemboss is a graphical user interface (GUI) to the European
Molecular Biology Open Software Suite (EMBOSS) pack-
age, which contains over 200 programs for the molecular
biologist. The main design criteria for the Jemboss GUI were
ease of use and the ability to access all useful components
of the EMBOSS software. All EMBOSS programs can be run
from a command line which simplifies the design of a GUI.
Most GUIs for EMBOSS construct such command lines using
a point and click interface. They can therefore miss out the
ability of EMBOSS to provide sensible default values for pro-
grams depending on options a user has already selected. For
example, an alignment program should select a default pro-
tein scoring matrix if the user selects a protein sequence but a
different matrix if a nucleotide sequence is given. EMBOSS is
able to do this through its use of the Ajax Command Definition
(ACD) language. Each EMBOSS application has an ACD file
which defines all the parameters required to run the program.
There are a number of data types that can be used in the ACD
to describe the parameter, e.g. sequence, string, integer etc.

The ACD language allows the calculation of default val-
ues based on length, type and other attributes of a sequence.
Sometimes a program parameter need not be prompted for at
all, the prompting being conditional on user selections made
up to that point. Such dependencies within the EMBOSS ACD
language may be based on arithmetic calculation or Boolean
logic. Jemboss has been designed so that it can parse EMBOSS
ACD files and also communicate with the compiled EMBOSS
libraries to gather information about a sequence. This allows
the GUI to dynamically update prompts based on the sequence
or other information a user enters. Jemboss also uses ACD
information to organize its input forms into clearly defined
input, output and other types of sections.

Jemboss can be set up in one of two ways. The first requires
that the Jemboss GUI and EMBOSS are installed and accessed
on the same machine. This is the standalone mode. The second
method uses a client–server model. Using this model only
one copy of EMBOSS need be maintained on a remote server.
This is likely to be the most widely used model, the client
(GUI) being able to be run on different operating systems,
but using the same server. It is, therefore, the client–server

Bioinformatics 19(14) © Oxford University Press 2003; all rights reserved. 1837

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

http://www.uk.embnet.org/Software/EMBOSS/
ftp://ftp.uk.embnet.org/pub/EMBOSS/
http://www.uk

T.Carver and A.Bleasby

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<service name="JembossAuthServer" provider="java:RPC">

<parameter name="className"
value="org.emboss.jemboss.server.JembossAuthServer"/>

<parameter name="allowedMethods" value="*"/>
</service>
<service name="EmbreoFile" provider="java:RPC">

<parameter name="className"
value="org.emboss.jemboss.server.JembossFileAuthServer"/>

<parameter name="allowedMethods" value="*"/>
</service>

</deployment>

Fig. 1. Example of a web services deployment descriptor (WSDD) used by Jemboss.

that has had most development. This article concentrates on
the client–server but the standalone mode shares a lot of the
design features. However, the standalone mode lacks some of
the functionality of the file and project management systems.

A design consideration for Jemboss was that client–server
communication could be started by clicking on a web page.
A client would be automatically downloaded if the user either
does not already have the software or if a more recent version
of the client is available from the server. It could also, however,
be launched by running a script.

Jemboss was conceived in June 2001 and the first Beta
release was in January 2002. Servers have subsequently been
installed at many sites worldwide and the feedback from these
has allowed us to add to the flexibility and functionality of both
the client and server.

JEMBOSS SERVER
The Jemboss software package consists of both the client
(GUI) and the server code. These are both parts of the
EMBOSS distribution which are GPL licensed and free. The
server can be set up in a number of ways. An installation
script is therefore provided to guide an administrator through
the set-up options of the Jemboss web server and all associated
components, including the EMBOSS software itself.

The Jemboss server can be run on any platform supported
by EMBOSS. Three downloads are required: the current
EMBOSS version, Apache Axis http://xml.apache.org/axis
(SOAP), and Apache Tomcat http://jakarta.apache.org/tomcat.
A Java version from the 1.4 series (or 1.3) is also a prerequisite
for installation of the server.

After prompting for the location of the source code, where
the software should be installed and a range of other choices
the script then compiles and installs EMBOSS. A web service
deployment descriptor (WSDD, see Fig. 1) file is created by
the installation script. This file describes the relevant Jemboss
services that can be accessed. The script starts the Tomcat
server and the Jemboss service methods are deployed so that
they can be queried by the GUI.

It is possible to configure the server to use UNIX authen-
tication (using the EMBOSS ajax library described later). If
authentication is selected then the user is required to provide
a username and password to login and use the EMBOSS
applications. This is suitable for sites that may have external
users logging onto their system. The option to use HTTPS for
the transfer of data ensures encrypted transfer of the username
and password. However, if the service is intended for internal
users only then the Axis service can be blocked by a firewall
and there is no need to use the authentication process.

There are two separate Java classes used for running an
authenticating or a non-authenticating server. JembossAu-
thServer.java and JembossFileAuthServer.java are compiled
for the authenticating server and JembossServer.java and
JembossFileServer.java are used by a non-authenticating
server.

Tomcat provides the Jemboss web services. The GUI calls
or queries these methods via SOAP. The methods are used,
for example to run the EMBOSS applications, create or delete
files and retrieve the results saved on the server machine. This
is done by the Jemboss server directly or indirectly depending
on the operation requested. Indirect operations are performed
through the Java Native Interface (JNI) described later.

The Jemboss installation script also allows the set-up of a
standalone version of the interface. This calls the EMBOSS
applications directly and not via a web server. This limits the
use of the GUI to a UNIX machine or network of NFS mounted
machines. This may be sufficient for individual users but is
a cut down version without the project management features
that the client–server installation provides.

AXIS AND SIMPLE OBJECT ACCESS
PROTOCOL (SOAP)
Apache SOAP was initially used to provide the client–server
data communication, see Figure 2. Apache Axis is the current
implementation of SOAP which is now used by Jemboss. Axis
promises to be faster and to provide more web development
tools. HTTP (or HTTPS) is the protocol used to send the data
as XML. The XML is built up using SOAP methods and little

1838

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

http://xml.apache.org/axis/wsdd/
http://xml.apache.org/axis/wsdd/providers/java
http://xml.apache.org/axis
http://jakarta.apache.org/tomcat

The design of Jemboss

Jemboss Client Graphical User Interface

Written in Java (runs on Java enabled machines e.g. Windows, MacOSX, Unix platforms)

(1) EMBOSS application
A form dynamically
generated from the EMBOSS
command definition file
(ACD) is displayed.

If run as ‘batch’ the Job
Management tool bar shows
the status of that process.

(2) File Management
Local and remote file
manager display.

(3) Project Management
Graphical display of previous
EMBOSS applications run
with details of parameter
used.

AXIS XML Messaging

 HTTP POST Request HTTP Response

Jemboss Server, e.g. HGMP-RC, on a unix platform

Apache Tomcat web server for the Jemboss server routines

Java : Non-authenticating server Unix authenticating Server

 Java Native Interface (JNI)

Ajax library (C), detailed in Figure 3

jembossctl

(1) EMBOSS application
-Java Runtime exec of applications
-returns results on completion to the client if
interactive or backgrounds the application.

(1) EMBOSS application
-returns the results on completion to the
client if interactive otherwise forks off a
batch process.

(2) Remote File Management
-of the users EMBOSS results directory
-file transfer to and from remote file manager
-file editing, renaming, deletion
-directory creation

(2) Remote File Management
-of the users unix home directory and their
EMBOSS results.
-file transfer to and from remote file manager
-file editing, renaming, deletion
-directory creation

(3) Project Management
-results are stored on the server
-retrieval of results

(3) Project Management
-results are stored on the server
-retrieval of results

Fig. 2. Illustration of the Jemboss web service and its components.

knowledge of the XML syntax is required by the programmer.
As SOAP uses HTTP it can access services provided behind
firewalls.

The use of SOAP allows the client to be on a different plat-
form to the server. EMBOSS and Jemboss are supported under
most UNIX platforms. The Jemboss GUI can also be run on
a Windows™ platform and, through SOAP, the applications
can be run on a UNIX based server.

When a SOAP call is made to a server method then any
associated input data and files are transferred to the server.
These are input parameters to the Jemboss server methods.
When a method completes then any resulting data is returned
to the GUI, again via SOAP. The interface waits for a response

that contains the results or data that was requested. If a request
to the server is to run an EMBOSS application a command line
is constructed from the fields in the Jemboss application form
and sent to the server.

SERVER AUTHENTICATION AND COMMAND
EXECUTION
Authentication
The Jemboss server must be able to perform both authentica-
tion and to execute commands including running EMBOSS
applications, see Figure 2. Authentication is performed for

1839

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

T.Carver and A.Bleasby

Jemboss Server

 command stdout and stderr
via byte arrays

JNI

Authentication
Application fork()/exec() stdin, stdout, stderr and File Commands
execution via pipe() and dup2()

JEMBOSSCTL

 fork()/exec() stdin, stdout, stderr
via pipe() and dup2()

EMBOSS APPLICATION

Fig. 3. Illustration of the unix authenticating part of the Jemboss
server. The Java routines in the server call the EMBOSS library
routines using the Java Native Interface (JNI). Authentication is
handled by the jembossctl script which is setuid and root owned. This
is responsible for running EMBOSS applications and file handling
commands.

each command that is executed. UNIX systems can use dif-
ferent authentication methods including open password files,
shadow password files, NIS/NIS+ and PAM. Some of these
methods require privilege. To avoid having the Tomcat server
run under a privileged account the authentication is done
by calling the setuid program jembossctl supplied with the
EMBOSS package. The Jemboss java server makes an authen-
tication request through the JNI interface, see Figure 3. The
JNI code makes a fork() system call and the child process
makes an exec() system call to run the jembossctl pro-
gram. Before the exec() call the stdin, stdout and stderr
file descriptors are duplicated using dup2() and pipe() calls
to allow two-way communication between the fork/exec’d
jemboss and the parent JNI process. This communication
control may use either select() or poll() system calls. The
username/password are piped through one of these channels
to jembossctl. The jembossctl program then authenticates the
user using a method selected by the Jemboss installation script.
The authentication results are then piped through another of
the open channels back to the JNI code. The JNI then trans-
mits the results back to the calling Jemboss server through a
byte array. Security is maintained by several checks, the most
notable being that the jembossctl program will exit immedi-
ately if has not been exec’d from the username/UID that is
running the Tomcat server.

File commands
The JNI/jembossctl method is also used for other tasks such
as file deletion, directory creation, renaming of files, trans-
mission of files, retrieval of files etc. This is done in a
similar manner. First the authentication is performed as above.
Secondly the UID of the username making the request is

found. The jembossctl program then changes itself to become
that user, via a setuid() call, before executing the command.
This maintains security. It is also another reason why the
jembossctl program is setuid and owned by the root user. The
file command to be performed is encoded as a byte stream
and transmitted through a pipe. Jembossctl decodes the file
command and takes appropriate action. Any stdout or stderr
messages are piped back to the JNI and, from there, to the
java server as above.

EMBOSS application command
The remaining type of request is to execute an EMBOSS
application. Again authentication is the first step. A command
string, including an EMBOSS command line, is transmitted
through a pipe as above. Jembossctl becomes the appropriate
user and then uses the pipe(), dup2(), fork() and exec()
calls to execute the EMBOSS application. This allows any
stdout or stderr from the EMBOSS application to be piped to
the jembossctl program, then to the JNI and from there to the
java server.

BATCH PROCESSES
EMBOSS applications invoked by Jemboss can be submitted
to the server as either ‘interactive’ or ‘batch’ jobs. If ‘inter-
active’ is selected the GUI waits for the results to be returned
and displays them on the screen. If ‘batch’ is selected the pro-
cess is submitted to the server and the GUI does not await the
return of the results. It is free to do other tasks. An application
is automatically set to be either batch or interactive depending
on how CPU intensive the program is judged to be. This is
specified in the ACD file for the EMBOSS application.

The default behaviour for batch jobs is for them to be run in a
separate thread on the server machine. However, if a site has a
queuing system in place for batch processes then it is possible
to send the EMBOSS batch jobs to the queuing system. These
processes can be distributed across a cluster of machines. To
use a queuing system a different server method is called [i.e.
runAsBatch()]. This method creates a script with instructions
on how to run the EMBOSS application using the parameters
set by the user. This is then submitted to the queuing system.

Batch process management is an area in which a more
sophisticated system could be implemented in the future. The
application’s ACD file also allows the EMBOSS programmer
to specify its CPU requirements i.e. low, medium or high. So,
a load balancing queuing system could use this information
to send the batch jobs to different queues.

A ‘Job Manager’ on the GUI is used to monitor the status of
the batch processes. A separate thread is used to monitor any
batch processes submitted and is terminated when they are all
complete. The number of running and completed batch job
is displayed by the ‘Job Manager’ at the bottom of the main
window (see Fig. 4).

1840

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

The design of Jemboss

Fig. 4. Snapshot of Jemboss displaying the EMBOSS ‘emma’ application. On the left-hand side are the type of analysis menus and the
complete list of available applications.

JEMBOSS CLIENT INTERFACE DESIGN
Jemboss has been designed with the laboratory biologist in
mind. As far as possible a standard look and feel to the inter-
face has been implemented. The following sections describe
some of the elements of Jemboss that have gone into its design
and continuing development.

CLIENT–SERVER CONNECTION
The output of the EMBOSS application ‘wossname’ is dis-
tributed with the client Java jar files. This output provides
details of the available EMBOSS applications. On launch-
ing, the interface information is extracted from the output
of wossname to build the program menus and an alphabet-
ical program listing. At the same time the client is making
a SOAP call to the server to retrieve a list of the databases
and the matrixes currently available. For a secure connection
(using SSL) the initial handshake with the server can appear
slow. The first SOAP call of the client session is therefore
run in a separate thread so that the interface can be displayed

and the user can supply a username and password and select
applications.

Proxy settings for HTTP(S) used to make Axis SOAP
calls can be defined and adjusted by the user. The proxy
host (http.proxyHost) and port (http.proxyPort) are pro-
perties definable in the Java Virtual Machine and can be
set by the client in the following way if launched from the
command line:

java -Dhttp.proxyHost=wwwcache.blah.uk
-Dhttp.proxyPort=8080 org.emboss.jemboss.Jemboss.

EMBOSS APPLICATION FORM BUILDING
All available programs are listed alphabetically in a scroll list.
To display the input form an application is selected from the
list or its name typed into the ‘Go To’ field, see Figure 4.
However, it is not always obvious from the naming of the pro-
grams what they actually do. So a short description of each
program is given on the menus. This is taken from the short

1841

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

T.Carver and A.Bleasby

application description provided in the ACD file. Alternat-
ively, the EMBOSS application ‘wossname’ can be used to
search the application documentation for keywords.

The ACD file for an EMBOSS application contains all the
required information necessary to produce prompts for the
user. When a program is selected in Jemboss the ACD file is
parsed to extract the input parameter information and produce
the input form in the Jemboss window. If the ACD file is not
found as part of the client jar file (wrapped as acdstore.jar in the
client jar) then the server is queried to return a copy of the file.

DYNAMIC ASSIGNMENT OF DEFAULT
PARAMETERS
The ACD files contain dependency information for the
prompts. EMBOSS applications, when executed from the
command line, can take an input sequence, other parameters,
and can then calculate suitable default values for each sub-
sequent prompt based upon them. This aspect of EMBOSS
benefits novice users. Jemboss supports this feature by extract-
ing the information from the ACD file ‘on the fly’. Other
web interfaces to EMBOSS (e.g. PISE) do not communicate
directly with the EMBOSS libraries in this way.

Whenever a prompt can depend on the sequence type or
length a ‘LOAD SEQUENCE ATTRIBUTES’ button, below
the sequence input field, is provided in the Jemboss win-
dow. Clicking on this will update any dependent prompts.
Dependency information is not restricted to sequence input.
It is a general feature of ACD and it is satisfied within
Jemboss.

EMBOSS supports over 40 sequence formats. To re-
implement this in Jemboss would be non-trivial and unne-
cessary. Instead it makes use of the existing EMBOSS Ajax
library. On clicking the ‘LOAD SEQUENCE ATTRIBUTES’
button the sequence or database entry information is sent to
the server and a call made to the C library using the JNI.
This returns the attributes to the interface and any changes to
dependent prompts are made. Non-sequence dependences do
not require a JNI call and can be satisfied within the client.
A user can always override any default values in the Jemboss
application form.

The dynamic assignment of the default parameters is a
common feature to both the client–server and the standalone
models. The former model accesses the Ajax library, located
on the server, via a SOAP call and the latter makes a call to
the library mounted locally.

PROJECT MANAGEMENT
All EMBOSS output, using the Jemboss interface, is stored on
the server. On installation of the Jemboss server the admin-
istrator provides the path to a disc location for storing the
Jemboss projects. If authentication is required in order to use
the web service then a directory is created for that user and
owned by that user. If a non-authenticating web service is

being used then the username at the client end is used to
create a directory to contain the results for that user. Each
time an EMBOSS application is run a project sub-directory
is created to store the results. The data is stored until the user
no longer needs it. They can delete it using the ‘Saved Res-
ults’ Jemboss window. The set of results in this window can
either be displayed in the order in which they were run or
alphabetically by application name.

Each application run through Jemboss is given its own work-
ing area. Information about a particular run, e.g. sequence,
parameters used, run date, is stored there. This information
can be retrieved by the user at any time. Laboratory notes
can be added to each project. A complete record of the find-
ings and any report can be kept and retrieved for each set of
results.

FILE MANAGEMENT
Jemboss allows both local (client-side) and remote (server-
side) files to be dragged and dropped into an EMBOSS
application form. There is no need to manually transfer files.
As directory structures and names on local and remote file
systems are unlikely to be the same, Jemboss can straight-
forwardly test whether it is a local file (to be transferred via
SOAP) or a remote file.

Local and remote sequence and data files can be used and
manipulated with Jemboss using the file manager. Files can
be dragged between file manager panes. Files can be deleted
and folders created. The file system windows automatically
update to display files saved within Jemboss and can be forced
to refresh if files or folders have been created outside the inter-
face. Files can be opened by double clicking on them in the
file manager and then edited and saved to the local disc.

The local file manager initially shows the user’s home dir-
ectory file structure, which they can navigate through with
the scrollbar and by clicking on the directory names to open
subdirectories. It is also possible to change to a more con-
venient working directory and save such information between
sessions.

Part of the file management design is the ‘Sequence List’
window. This allows the user to build up a collection of
sequences in one convenient graphical container in the GUI.
From the sequence list window a default sequence can be
specified. This will then be the sequence that is automatic-
ally displayed in the sequence field whenever a new program
application is selected.

EMBOSS HELP
Each application form displays the application name and a
brief description of what it does. Each parameter on the form
may have help text. This is shown in the form of tooltips which
pop up whenever the mouse is placed over a prompt. EMBOSS
provides a more extensive form of help documentation for
each application. Jemboss displays this as a web page when

1842

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

The design of Jemboss

the applications help button is clicked. Hyperlinks to related
applications and other web sites can be followed. If a site uses
a proxy server then the values for this can be defined by the
user in the GUI (under Preferences -> Settings -> Browser
Proxies).

ACCESSING AND LAUNCHING THE
JEMBOSS INTERFACE
One method of providing access to the Jemboss interface
is through a web launch page (http://www.hgmp.mrc.ac.uk/
Software/EMBOSS/Jemboss/). This requires the user to
download the Java Web Start (JWS) Java Web Start
http://java.sun.com/products/javawebstart/ tool for Java1.3
but is part of the latest Java1.4 release from Sun. Open source
alternatives to JWS are becoming available. The advantage
of this method lies in the ability of the JWS to recognize any
updates to the interface that have been made available on the
server. JWS downloads, caches and runs the interface as dir-
ected by the Java Network Launching Protocol (JNLP) file.
A script is distributed with Jemboss to create the necessary jar
files, a template JNLP file and a template html page to assist
in creation of a web launch site.

The client jar files include a ‘jemboss.properties’ file that
contains information about the server. The Tomcat server and
name of the web service is included in this file. It defines
whether the server is expecting a username and password, in
which case the calls to the server will contain them.

Alternatively, the client can be downloaded and unpacked.
On a Windows™ system, as long as Java is in the user’s path,
then double clicking on the ‘Jemboss.bat’ file will launch
the application. On a unix system a ‘runJemboss’ script is
provided which launches the interface.

FUTURE WORK AND FEEDBACK
From the outset of this project feedback has been encour-
aged from both the laboratory biologists using the GUI and
the sites deploying this as a service for their user. This has
meant improvements in facilitating the installation process
and defined the direction for enhancing the GUI. The emphasis
in the future will become more directed to providing a more
user friendly environment to run EMBOSS applications and

the ability to run a number of EMBOSS applications in a work
flow manner.

Jemboss can be extended to incorporate other bioinformatic
software by providing description files (ACD) which can be
used to generate forms in the GUI. It is also possible to use the
existing server for other interfaces that can query it via SOAP
calls.

SUMMARY
The design criteria described in this paper allow Jemboss to
use the full functionality of the EMBOSS package. Its ability
to parse ACD files ‘on the fly’ and to access sequence informa-
tion by directly calling EMBOSS libraries enable an intuitive
and complete GUI to be presented to a user. Its ability to run
in either client–server or standalone modes allow its use on
systems ranging from large bioinformatics service sites or as
a self-contained installation on a Linux laptop.

Jemboss uses SOAP as the protocol to transfer data and
results between the client and the server. This has several
advantages but mainly that EMBOSS applications can be
accessed via the GUI from any Java enabled machine. It also
allows the service to be provided from behind a firewall.

The authentication has extra built in security features. Also,
SSL can be used to provide security in the transfer of data
by SOAP. Alternatively, if the service is intended for local
users only then plain HTTP can be used and the Tomcat port
blocked.

ACKNOWLEDGEMENTS
The authors wish to acknowledge all the EMBOSS developers
and EMBnet nodes for their suggestions and, in particular,
Lisa Mullan.

REFERENCES
Carver,T.J. and Mullan,L.J. (2002) A new graphical user inter-

face to EMBOSS. Comparative and Functional Genomics,
3, 75–78.

Letondal,C. (2001) A Web interface generator for molecular biology
programs in Unix. Bioinformatics, 17, 73–82.

Rice,P. et al. (2000) EMBOSS: the european molecular biology open
software suite. Trends Genet., 16, 276–277.

1843

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/14/1837/246064 by guest on 19 April 2024

http://www.hgmp.mrc.ac.uk/
http://java.sun.com/products/javawebstart/

