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ABSTRACT
Motivation: Alignment-free sequence comparison methods
are still in the early stages of development compared to those
of alignment-based sequence analysis. In this paper, we
introduce a probabilistic measure of similarity between two bio-
logical sequences without alignment. The method is based on
the concept of comparing the similarity/dissimilarity between
two constructed Markov models.
Results: The method was tested against six DNA sequences,
which are the thrA, thrB and thrC genes of the threonine oper-
ons from Escherichia coli K-12 and from Shigella flexneri ;
and one random sequence having the same base composi-
tion as thrA from E.coli. These results were compared with
those obtained from CLUSTAL W algorithm (alignment-based)
and the chaos game representation (alignment-free). The
method was further tested against a more complex set of 40
DNA sequences and compared with other existing sequence
similarity measures (alignment-free).
Availability: All datasets and computer codes written in
MATLAB are available upon request from the first author.
Contact: t.pham@griffith.edu.au

INTRODUCTION
There have been a number of computational and statistical
methods for the comparison of biological sequences
developed over the past decade. It still remains a challen-
ging problem for the research community of computational
biology (Ewens and Grant, 2001; Miller, 2001). Two dis-
tinct bioinformatic methodologies for studying the similarity/
dissimilarity of sequences are known as alignment-based
and alignment-free methods. The search for optimal solu-
tions using sequence alignment-based methods is encountered
with difficulty in computational aspect with regard to large
biological databases. Therefore, the emergence of research
into alignment-free sequence analysis is apparent and neces-
sary to overcome critical limitations of sequence analysis
by alignment. Till date, alignment-free sequence analysis is
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still in its early development with regard to alignment-based
sequence comparison. One of the most recent review (Vinga
and Almeida, 2003) on published methods for alignment-free
sequence comparison of biological sequences reports several
concepts of distance measures, such as the Euclidean dis-
tance (Blaisdell, 1986), Euclidean and Mahalanobis distances
(Wu et al., 1997), Markov chain models and Kullback–Leibler
discrepancy (KLD) (Wu et al., 2001), cosine distance (Stuart
et al., 2002), Kolmogorov complexity (Li et al., 2001) and
chaos theory (Almeida et al., 2001). Our present work exhibit
some strong similarity to the work by Wu et al. (2001), in
which statistical measures of DNA sequence dissimilarity as
the Mahalanobis distance and the standardized Euclidean dis-
tance under Markov chain model of base composition, as well
as the extended KLD. The KLD extended by Wu et al. (2001)
was computed in terms of two vectors of relative frequen-
cies of n-words over a sliding window from two given DNA
sequences. Whereas, our work presented here derives a prob-
abilistic distance between two sequences using a symmetrized
version of the KLD, which directly compares two Markov
models built for the two corresponding biological sequences.

Thus, among alignment-free methods for computing dis-
tances between biological sequences, there seems rarely
any work that directly computes distances between biolo-
gical sequences using Markov-chain-based measures. If a
Markov model can be constructed for each sequence, we
can measure the similarity between any two sequences by
computing the log-likelihood difference between two Markov
models with the same observation data. We have tested the
proposed method, which we call SimMM (SIMilarity of
Markov Models), with six DNA sequences and one ran-
domly generated sequence and then compared the results with
other methods including CLUSTAL W algorithm (Thompson
et al., 1994) and the chaos game representation (Almeida et al.,
2001). Our results using SimMM were in good agreement with
results obtained from the above two methods, but showed
better discrimination to a random sequence. We have also
further tested our method against a more complex set of 40
DNA sequences, and the results obtained from our proposed
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method were found to be more favorable than those obtained
from other distance measures (Wu et al., 2001).

SIMILARITY MEASURE BY COMPARING
MARKOV MODELS
Let A = [aij ] denote the state transition probability matrix of
a discrete Markov process. Each state transition probability
aij is defined as:

aij = P [qtn = Sj |qtn−1 = Si], 1 ≤ i, j ≤ N , (1)

where qtn stands for the actual state at time tn (n = 1, 2, . . .),
Sj a state j of a set of N distinct states. In the context of DNA
sequences, the number of states N = 4, which correspond to
the four nucleotide symbols {a, c, g, t}. The state transition
probabilities are subject to

aij ≥ 0 ∀ i, j , (2)

N∑
j=1

aij = 1 ∀ i. (3)

Also, let π = {πi} be the initial state transition distribution
where

πi = P(qt1 = Si), 1 ≤ i ≤ N . (4)

This Markov chain involves two probabilistic measures A and
π , that can be denoted in a compact form as:

λ = (A, π). (5)

What we have presented above is the first-order Markov
model, the higher-order Markov models can be determined
as follows. Let {π(n=1)

j } (j = 1, 2, . . . , N ) be the absolute
(initial) probabilities that the system is in state Sj at t1. Given

the parameters {π(1)
j } and A of a Markov chain, the absolute

probabilities after a specified number of transitions (n-order)
are determined as follows:

π
(n)
j =

∑
i

π
(1)
i a

(n)
ij , (6)

where a
(n)
ij is the n-step or n-order transition probability given

by the recursive formula

a
(n)
ij =

∑
k

a
(n−m)
ik a

(m)
kj , 0 < m < n. (7)

Expressions (6) and (7) are known as Chapman–Kolomogorov
equations (Taha, 1982). Thus, for n = 2, 3, 4 we have the first-
order, second-order, third-order Markov models, respectively
and so on. We can see that the second-order Markov model
over the four nucleotide symbols {a, c, g, t} is equivalent to the
first-order Markov model with 16 states of the dinucleotides:
aa, ac, ag, at, ca, cc, cg, ct, ga, gc, gg, gt, ta, tc, tg and tt.

From now on, we will restrict our discussion to the context of
the first-order Markov model.

Let λ1 = (A1, π1) and λ2 = (A2, π2) be two Markov
models of the two bio-sequences, where each model is
constructed by the observed symbols of each correspond-
ing DNA sequence. Our interest is to find a similarity or
dissimilarity measure between two Markov models λ1 and λ2.
A well-known dissimilarity measure between two probability
distributions is the Kullback–Leibler divergence (Cover and
Thomas, 1991).

Let P1 and P2 be two probability distributions on a universe
X, the Kullback-Leibler divergence (KLD) or the relative
entropy, denoted as H(P1, P2), of P1 with respect to P2 is
defined by the Lebesgue integral (Kroupa, 2003).

H(P1, P2) =
∫

X

dP1

dP2
log

dP1

dP2
dP2. (8)

Expression (8) is equivalent to

H(P1, P2) =
∫

X

log
dP1

dP2
dP1. (9)

The discrete version of the KLD defined in (8) is

H(p1, p2) =
∑
x∈X

p1(x) log
p1(x)

p2(x)
. (10)

The integral (8) exists provided that P1 � P2. Although
H(p1, p2) is often called a distance, it is not a metric because
H(p1, p2) �= H(p2, p1). Moreover, H(p1, p2) = 0 iff
p1 = p2.

Given two Markov models, we now can define a probabil-
istic distance between two sequences, denoted by d(λ1, λ2),
as:

d(λ1, λ2) = 1 − exp[Ds(λ1, λ2)], (11)

where Ds is the symmetrized version of the approximate KLD
divergence of λ1 and λ2, which is expressed as:

Ds(λ1, λ2) = D(λ1, λ2) + D(λ2, λ1)

2
, (12)

where D(λ1, λ2) is the empirical KLD between λ1 and λ2,
which was originally introduced by Juang and Rabiner (1985)
using the Monte Carlo simulations. The models are assumed to
be ergodic, having arbitrary observation probability distribu-
tions; and the dissimilarity is defined as the mean divergence
of the observation sample. This approximate KLD is given by

D(λ1, λ2) = 1

T2
log

P(Oλ2 |λ1)

P (Oλ2 |λ2)
, (13)

where Oλ2 = (o1o2 · · · oT2) is a sequence of observations
generated by model λ2, and T2 is the length of sequence Oλ2 .

It can be interpreted that expression (13) implies how well
model λ1 scores the observation sequence that is used to con-
struct model λ2, relative to how well model λ2 scores the
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observations used to construct itself (Rabiner, 1989; Rabiner
and Juang, 1993).

Because D(λ1, λ2) and D(λ2, λ1) are not symmetrical, we
can define D(λ2, λ1) as:

D(λ2, λ1) = 1

T1
log

P(Oλ1 |λ2)

P (Oλ1 |λ1)
, (14)

where Oλ1 = (o1o2 · · · oT1) is a sequence of observed symbols
generated by model λ1.

Finally, the probability of the observation sequence
O = {ot , t = 1, . . . , T }, given a Markov model λ can be
evaluated as:

P(O|λ) = P(o1, . . . , oT |λ)

= P(o1) · · · P(ot |ot+1) · · · P(oT −1|oT )

= π(qt1 =o1) · · · aqtn ,qtn+1
· · · aqtT −1 ,qtT

. (15)

RESULTS
Experiment no. 1
The algorithm was tested with six DNA sequences, taken from
the threonine operons of Escherichia coli K-12 (gi:1786181)
and Shigella flexneri (gi:30039813). The three sequences
taken from each threonine operon are thrA (aspartokinase
I-homoserine dehydrogenase I), thrB (homoserine kinase)
and thrC (threonine synthase), using the open reading
frames (ORFs) 337–2799 (ec-thrA), 2801–3733 (ec-thrB)
and 3734–5020 (ec-thrC) in the case of E.coli K-12, and
336–2798 (sf -thrA), 2800–3732 (sf -thrB) and 3733–5019
(sf -thrC) in the case of S.flexneri. All the sequences were
obtained from GenBank (www.ncbi.nlm.nih.gov/Entrez). In
addition, we compared all six sequences with a randomly gen-
erated sequence (rand-thrA), using the same length and base
composition as ec-thrA.

The probabilistic distances among the seven sequences
obtained using SimMM are shown in Table 1. To compare
SimMM with other methods, we calculated the sequence sim-
ilarity or sequence distance using alignment-based methods.
All seven sequences have been aligned using CLUSTAL W
(Thompson et al., 1994). The multiple sequence alignment
has then been used to calculate an identity matrix, which is
represented in Table 2 as a distance (converted identity) mat-
rix; and the distance matrix, shown in Table 3, using DNADist
from the PHYLIP package (Felsenstein, 1993) and the modi-
fication of the Kimura distance model (Kimura, 1980). The
DNADist program uses nucleotide sequences to compute a
distance matrix, under the modified Kimura model of nuc-
leotide substitution. Being similiar to the Jukes and Cantor
(1969) model, which constructs the transition probability mat-
rix based on the assumption that a base change is independent
of its identity, the Kimura ‘2-paramter’ model allows for a
difference between transition and transversion rates in the
construction of the DNA distance matrix. Figures 1–3 show
the phylogenetic trees of SimMM, CLUSTAL W using the

Table 1. Probabilistic distance matrix (symmetric) using SimMM

ec-thrA ec-thrB ec-thrC sf-thrA sf-thrB sf-thrC rand-thrA

ec-thrA 0 0.0074 0.0053 0.0002 0.0072 0.0054 0.0272
ec-thrB 0 0.0103 0.0074 0.0004 0.0109 0.0331
ec-thrC 0 0.0059 0.0110 0.0001 0.0401
sf-thrA 0 0.0073 0.0058 0.0208
sf-thrB 0 0.0116 0.0214
sf-thrC 0 0.0318
rand-thrA 0

Table 2. Distance (converted identity) matrix (symmetric) using
CLUSTAL W alignment

ec-thrA ec-thrB ec-thrC sf-thrA sf-thrB sf-thrC rand-thrA

ec-thrA 0 0.8490 0.8030 0.0250 0.8510 0.8040 0.7140
ec-thrB 0 0.6710 0.8450 0.0170 0.6740 0.8620
ec-thrC 0 0.8000 0.6690 0.0090 0.8050
sf-thrA 0 0.8470 0.8020 0.7100
sf-thrB 0 0.6710 0.8620
sf-thrC 0 0.8070
rand-thrA 0

Table 3. Distance matrix (symmetric) calculated by DNADist using Kimura
model and CLUSTAL W alignment

ec-thrA ec-thrB ec-thrC sf-thrA sf-thrB sf-thrC rand-thrA

ec-thrA 0 1.5246 1.5866 0.0133 1.5691 1.6123 2.9377
ec-thrB 0 1.0938 1.5007 0.0163 1.1065 1.5711
ec-thrC 0 1.5982 1.0833 0.0086 1.6227
sf-thrA 0 1.5447 1.6243 2.9317
sf-thrB 0 1.0960 1.5853
sf-thrC 0 1.6330
rand-thrA 0

identity matrix and CLUSTAL W using the distance matrix,
respectively, which were plotted using the KITSCH program
in the PHYLIP package. The KITSCH program, based on the
Fitch–Margoliash and least-squares methods with an evol-
utionary clock, deals with matrices of pairwise distances
between all pairs of taxa. The method may be considered as
providing an estimate of the phylogeny, using a phenetic clus-
tering of the tip species. By minimizing an objective function,
this method not only sets the levels of the clusters, but also
rearranges the hierarchy of the clusters in order to find alternat-
ive clusterings that give a lower global sum of squares of differ-
ences between the observed distance matrix and the expected
one (http://www.cmbi.kun.nl/bioinf/PHYLIP/kitsch-1.html).
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sf-thrB

ec-thrB

sf-thrC

ec-thrC

sf-thrA

ec-thrA

rand-thrA

Fig. 1. Phylogenetic tree obtained from probabilistic distance matrix
using SimMM, plotted by KITSCH program of PHYLIP package
using Fitch–Margoliash criterion and evolutionary clock.

sf-thrA

ec-thrA

rand-thrA

sf-thrC

ec-thrC

sf-thrB

ec-thrB

Fig. 2. Phylogenetic tree obtained from distance (converted identity)
matrix using CLUSTAL W, plotted by KITSCH program of PHYLIP
package using Fitch–Margoliash criterion and evolutionary clock.

The results obtained using SimMM agree with those
obtained using the chaos game representation (Almeida et al.,
2001) even though we used seven sequences as test sets. In
the chaos game method the sequence ec-thrA is closer to
ec-thrC than to ec-thrB, and ec-thrB is closer to ec-thrA than
to ec-thrC. Using the probabilistic similarity values calcu-
lated by our SimMM, we obtained the same relationships,
of thrA being closer to thrC, and thrB being closer to thrA.
This relationship was found within both species, E.coli K-12
(gi:1786181) and S.flexneri. We need to point out that this
agreement between the two models does not confirm any
hypothesis about the relationships of these threonine oper-
ons since we have found no current phylogenetic study of
these threonine operons in the literature. The alignment-based
methods, on the other hand, show a slightly different relation-
ship between the three different sequences. The calculations
from both the identity and distance matrices place the thrA
sequences closer to thrB than to thrC, and thrB closer to thrC
than to thrA (Tables 2 and 3). The phylogenetic trees illus-
trate the difference between SimMM and the alignment-based

sf-thrA

ec-thrA

sf-thrC

ec-thrC

sf-thrB

ec-thrB

rand-thrA

Fig. 3. Phylogenetic tree obtained from distance matrix (DNADist)
using CLUSTAL W and Kimura model, plotted by KITSCH pro-
gram of PHYLIP package using Fitch–Margoliash criterion and
evolutionary clock.

DNADist. Using SimMM, sequences thrC and thrA form a
subcluster; whereas using DNADist, the subcluster is formed
by thrC and thrB.

Another difference between SimMM and DNADist can also
be illustrated by the phylogenetic trees. All the trees were
drawn to an equivalent overall size, and based on a relative
scale it can be observed that all the real sequences appear to
be less related to each other in the DNADist tree (Fig. 3)
than in the tree using the new method (Fig. 1). In other
words, all real sequences are more closely clustered with
the new method than the alignment-based DNADist method.
This result suggests that the SimMM method is better at dis-
tinguishing a randomized sequence from a group of related
natural sequences as a whole. This can be explained in that
DNA and protein sequences have been realized to comprise
a mixture of local regions with distinct genetic functions
and evolutionary origins, i.e. DNA and protein sequences
do not represent strings of random symbols. These local
regions rather consist of compositional characteristics and
pseudo-periodic sequence patterns (Li et al., 2004). Our pro-
posed method, based on the Markov chain, takes into account
this ‘periodical’ behavior of the biosignal by both using the
state transition probability distribution, and the probabilistic
distance measure defined in (11). Whereas, this stochastic
information content is absent from the solution provided by
the multiple sequence alignment. The DNADist considers
the transition probability of the distance matrix which is still
derived from the multiple sequence alignment.

Experiment no. 2
The proposed KLD of Markov models was further used to
search for similar sequences of a query sequence from a data-
base of 39 library sequences, of which 20 sequences are known
to be similar in biological function to the query sequence, and
the remaining 19 sequences are known as being not similar in
biological function to the query sequence. These 39 sequences
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were selected from mammals, viruses, plants, etc., of which
lengths vary between 322 and 14 121 bases. All of these
sequences can be obtained from the GenBank sequence
database (http://www.ncbi.nlm.nih.gov/Entrez/). The query
sequence is HSLIPAS (Human mRNA for lipoprotein lipase),
which has 1612 bases.

The 20 sequences, which are known as being similar in
biological function to HSLIPAS are as follows: OOLPLIP
(Oestrus ovis mRNA for lipoprotein lipase, 1656 bp),
SSLPLRNA (pig back fat Sus scrofa cDNA similar to S.scrofa
LPL mRNA for lipoprotein lipase, 2963 bp), RATLLIPA
(Rattus norvegicus lipoprotein lipase mRNA, complete cds,
3617 bp), MUSLIPLIP (Mus musculus lipoprotein lipase
gene, partial cds, 3806 bp), GPILPPL (guinea pig lipopro-
tein lipase mRNA, complete cds, 1744 bp), GGLPL (chicken
mRNA for adipose lipoprotein lipase, 2328 bp), HSHTGL
(human mRNA for hepatic triglyceride lipase, 1603 bp),
HUMLIPH (human hepatic lipase mRNA, complete cds,
1550 bp), HUMLIPH06 (human hepatic lipase gene, exon
6, 322 bp), RATHLP (rat hepatic lipase mRNA, 1639 bp),
RABTRIL [Oryctolagus cuniculus (clone TGL-5K) trigly-
ceride lipase mRNA, complete cds, 1444 bp], ECPL (Equus
caballus mRNA for pancreatic lipase, 1443 bp), DOGPLIP
(canine lipase mRNA, complete cds, 1493 bp), DMYOLK
[Drosophila gene for yolk protein I (vitellogenin), 1723 bp],
BOVLDLR [bovine low-density lipoprotein (LDL) receptor
mRNA, 879 bp], HSBMHSP (Homo sapiens mRNA for base-
ment membrane heparan sulfate proteoglycan, 13 790 bp),
HUMAPOAICI (human apolipoprotein A-I and C-III genes,
complete cds, 8966 bp), RABVLDLR (O.cuniculus mRNA
for very LDL receptor, complete cds, 3209 bp), HSLDL100
(human mRNA for apolipoprotein B-100, 14 121 bp) and
HUMAPOBF (human apolipoprotein B-100 mRNA, com-
plete cds, 10 089 bp).

The other 19 sequences known as being not similar
in biological function to HSLIPAS are as follows:
A1MVRNA2 [alfalfa mosaic virus (A1M4) RNA 2, 2593 bp],
AAHAV33A [Acanthocheilonema viteae pepsin-inhibitor-
like-protein (Av33) mRNA sequence, 1048 bp], AA2CG
(adeno-associated virus 2, complete genome, 4675 bp),
ACVPBD64 (artificial cloning vector plasmid BD64,
4780 bp), AL3HP (bacteriophage alpha-3 H protein gene,
complete cds, 1786 bp), AAABDA [Aedes aegypti abd-A gene
for abdominal-A protein homolog (partial), 1759 bp], BACB-
DGALA [Bacillus circulans beta-d-galactosidase (bgaA)
gene, complete cds, 2555 bp], BBCA (Bos taurus mRNA
for cyclin A, 1512 bp), BCP1 (bacteriophage Chp1 gen-
ome DNA, complete sequence, 4877 bp) and CHIBATPB
(sweet potato chloroplast F1-ATPase beta and epsilon-subunit
genes, 2007 bp), A7NIFH (Anabaena 7120 nifH gene, com-
plete CDS, 1271 bp), AA16S (Amycolatopsis azurea 16S
rRNA, 1300 bp), ABGACT2 (Absidia glauca actin mRNA,
complete cds, 1309 bp), ACTIBETLC (Actinomadura R39
DNA for beta-lactamase gene, 1902 bp), AMTUGSNRNA

(Ambystoma mexicanum AmU1 snRNA gene, complete
sequence, 1027 bp), ARAST18B (cloning vector pAST 18b
for Caenorhabditis elegans, 3052 bp), GCALIP2 (Geo-
trichum candidum mRNA for lipase II precursor, partial cds,
1767 bp), AGGGLINE (Ateles geoffroyi gamma-globin gene
and L1 LINE element, 7360 bp) and HUMCAN (H.sapiens
CaN19 mRNA sequence, 427 bp).

Sensitivity and selectivity were computed to evaluate and
compare the performance of the proposed KLD of Markov
models with other distance measures studied by Wu et al.
(2001). Sensitivity is expressed by the number of HSLIPAS-
related sequences found among the first closest 20 library
sequences; whereas selectivity is expressed in terms of the
number of HSLIPAS-related sequences of which distances are
closer to HSLIPAS than others and are not truncated by the
first HSLIPAS-unrelated sequence. Among several distance
measures introduced by Wu et al. (2001), they concluded that
the standardized Euclidean distance under the Markov chain
models of base composition was generally recommended, of
which sensitivity and selectivity were of 18 and 17 sequences,
respectively, of order one for base composition, and 18 and
16 sequences, respectively, of order two for base composi-
tion; when all the distances of nine different word sizes were
combined. Whereas both sensitivity and selectivity obtained
from our proposed method were of 18 sequences. The false
acceptances given by the proposed method are HUMCAN and
AMTUGSNRNA; whereas the false rejections are GPILPPL
and DMYOLK. Table 4 shows the sensitivity and selectivity
obtained from the combined distance measures introduced by
Wu et al. (2001) and from our proposed KLD of Markov mod-
els. The KLD of Markov models produced the highest number
of HSLIPAS-related sequences on selectivity, and equal to the
highest result obtained from the other methods (Mahalanobis
and standardized Euclidean distances) on sensitivity. How-
ever, the computation of the proposed method is more efficient
in comparison with both the Mahalanobis and the standard-
ized Euclidean distances under the Markov chain models of
base composition.

CONCLUSIONS
Comparison between sequences is a key step in bioinformat-
ics when analyzing similarities of functions and properties of
different sequences. Similarly, evolutionary homology is ana-
lyzed by comparing DNA and protein sequences. So far, most
such analyses are conducted by aligning first the sequences
and then comparing at each position the variation or similar-
ity of the sequences. Multiple sequence alignments of several
hundred sequences is thereby always a bottleneck, first due
to long computational time, and second due to possible bias
of multiple sequence alignments for multiple occurrences
of highly similar sequences. An alignment-free comparison
method is therefore of great value as it reduces the technical
constraints as only pairwise comparisons are necessary, and
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Table 4. Comparisons of sensitivity and selectivity

Sensitivity Selectivity

No assumption on model for base composition (Wu et al., 2001)
Modified KLD1 17 14
Modified KLD2 17 15
Combined Euclidean distance 17 12

Under independent-uniform model for base composition (Wu et al., 2001)
Combined Mahalanobis distance 18 17
Combined standardized Euclidean distance 18 16

Under Markov chain model of order one for base composition (Wu et al., 2001)
Combined Mahalanobis distance 18 17
Combined standardized Euclidean distance 18 17

Under Markov chain model of order two for base composition (Wu et al., 2001)
Combined Mahalanobis distance 18 16
Combined standardized Euclidean distance 18 16

KLD of Markov models (proposed SimMM) 18 18

is free of bias. For this alignment-free method, each pairwise
comparison is unrelated to other pairwise comparisons.

Our SimMM method or KLD of Markov models presented
in this work, is one of the methods, which is able to cal-
culate the distances between DNA sequences without prior
alignment. It calculates the similarity between two sequences
by computing the log-likelihood difference between the
two Markov models with the same observation sequence.
The SimMM method has been tested with seven DNA
sequences (one random, three from E.coli K-12 and three from
S.flexneri), and another complex set of 40 DNA sequences.
In the first experiment, the proposed alignment-free method
showed good agreement with alignment-based sequence com-
parison, as it was able to cluster sequence families (thrA, thrB
and thrC) of different species, and was able to discriminate
the sequences against a randomly generated sequence with
the same length and base composition as one of the sequence
family (thrA). In addition, SimMM was able to discriminate
real sequences from synthetic sequences (randomly gener-
ated) even better than the alignment-based method. The results
obtained from SimMM have shown a slightly different orient-
ation of the family clusters [(thrA,thrC),thrB], compared with
the alignment-based method that gives [thrA,(thrB,thrC)]; but
interestingly, SimMM yielded the same orientation as that
given by another alignment-free method. However, we wish to
mention that we have not analyzed any correlation between the
scale of similarity in the SimMM and the distance in any evol-
utionary or mutational dimension. At this stage, the SimMM
similarity can only be used for a topological analysis of the
similarity or distance between DNA sequences. In the second
experiment, our proposed method generally outperformed
other alignment-free distance measures of sequence similarity
on selectivity, but its computational cost is much less and its
procedure is much simpler for computer implementation.

In the study of DNA sequences, there are four states repres-
enting 4 nt symbols, which give 16 elements in the probability
transition matrix. Whereas for protein sequences, there are 20
amino-acid symbols that give 400 elements in the 20 × 20
transition matrix. This implies that the construction of the
transition matrix for a protein sequence may not provide an
estimate of the model parameters as well as it equivalently
does for a DNA sequence if the protein sequence does not
cover sufficient occurrences of all events. We have not invest-
igated the comparison of protein sequences in this present
study. However, if zero or very low-probability events occur
in the estimate due to insufficient data, a numeric floor value
for these transition elements might be appropriately specified
and all remaining parameters are rescaled so that they obey the
stochastic constraints. A similar problem has been discussed
in the implementation of hidden Markov models for speech
recognition (Rabiner and Juang, 1993).

All in all, our main discussion here is to present a new
and effective computational framework for sequence com-
parison to the research community of bioinformatics. The
proposed method can be considered as another useful tool
among other alignment-based and alignment-free methods for
sequence comparison; however, there is s no single method for
solving all the problems in biological sequence comparison.
The proposed method is based on the mathematical theories
of the Markov process and the Kullback-Leibler divergence.
However, its mathematical modeling is much more simple
for practical implementation in comparison with many other
alignment-free methods, and its computation based on the
first-order Markov chain is roughly on the linear order of
the length of the sequence. Higher-order Markov chains are
expected to capture more useful information by the better
power of predicting probabilities but require more computa-
tional effort and training data. It can be foreseen that both
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alignment-based and alignment-free methods can be com-
bined at some different levels, as such a particular aspect is
the fusion of multiple distance matrices for a better solution.
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