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ABSTRACT

Motivation: Promoter analysis is an essential step on the way to
identify regulatory networks. A prerequisite for successful promoter
analysis is the prediction of potential transcription factor binding sites
(TFBS) with reasonable accuracy. The next steps in promoter analysis
can be tackled only with reliable predictions, e.g. finding phylogenet-
ically conserved patterns or identifying higher order combinations of
sites in promoters of co-regulated genes.

Results: We present a new version of the program Matlnspector
that identifies TFBS in nucleotide sequences using a large library of
weight matrices. By introducing a matrix family concept, optimized
thresholds, and comparative analysis, the enhanced program pro-
duces concise results avoiding redundant and false-positive matches.
We describe a number of programs based on Matlnspector allowing
in-depth promoter analysis (DiAlignTF, FrameWorker) and targeted
design of regulatory sequences (SequenceShaper).

Availability: Matinspector and the other programs described here can
be used online at http://www.genomatix.de/matinspector.html. Access
is free after registration within certain limitations (e.g. the number
of analysis per month is currently limited to 20 analyses of arbitrary
sequences).

Contact: cartharius@genomatix.de

Supplementary information: http://www.genomatix.de/matinspector.
html

INTRODUCTION

Control of transcription initiation is a pivotal mechanism for deter- 4 | X ¢
A_outside regulatory regions are known to bind their TFs (Kodadek,

and consequently protein—is produced. A promoter is a sequenc1e998)' and it is the context that differentiates a functional bind-
dng site affecting gene regulation from a mere physical binding site
Hglkon et al., 2003). TFBS prediction programs like Matlnspector

corresponding proteins are called transcription factors (TFs). Ther§n infer the binding potential, although not the functionality of
/@ site. Functionality can ultimately be proven only by a wet-lab

mining whether or not a gene is expressed and how much mRN

that initiates and regulates the transcription of a gene. Protein bin
ing sites in a promoter represent the most crucial elements and t

is a large variety of TFs in the cell. Currently, more than 1400 huma

TFs are known and a total 6¥1850 (Venteret al., 2001) to 3000

(Landeret al., 2001) was estimated for the human genome. To b
able to predict potentially functional transcription factor binding sites

(TFBS) is an important first step in promoter analysis.
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each single position. It also allows the quantification of the similarity
between the weight matrix and a potential TFBS detected in the 3
sequence. The concept of PWMs was developed in the 1980s, but%
the widespread use of the concept in form of programs was delayed?
almost a decade since only a few special matrices had been defineds
(Bucher, 1990). MatInspector was one of the first programs to close &
this gap in 1995, offering an extensive precompiled library of 214
weight matrices (Quandt al., 1995).

Other programs based on PWMs include SignalScan (Prestridge
1996) and Matrix Search (Cheat al., 1995), which were based
on TRANSFAC 2.5, TFD 7.4 and IMD, and are not updated
anymore. TESS (http://www.cbil.upenn.edu/tess/) uses a library
based on TRANSFAC 4.0 and applies a log-likelihood score or
the Matlnspector scoring scheme for matrix searches. The pro-
gram Match (Kelet al., 2003) uses a similar scoring scheme as
Matlnspector, but lacks matrix families (see below), resulting in a
large number of redundant matches. The freely available version of
Match allows searching for matrices from TRANSFAC 6.0 public,
containing 336 matrices. The commercial version of TRANSFAC
(release 8.4) currently has 741 entries, but academic users cannot us
it freely. ConSite (Sandeliet al., 2004b) is based on the JASPAR
database (Sandelabal., 2004a), which contains 111 entries. Today
the Matlnspector library contains 634 matrices representing the
largest library available for public searches.

It is important to note that TFBS only carry the potential to bind
their corresponding protein. However, they can occur everywhere in
the genome and are by no means restricted to regulatory regions. Site
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experiment with defined settings, particularly since potential bind-

dng sites in a promoter can be functional in certain cells, tissues

or developmental stages and non-functional under different con-
ditions. Involving advanced bioinformatics strategies like detailed

One way to describe TFBS is by nucleotide or position Weightpromoter analysis of, forinstance, orthologous or co-regulated genes

matrices (NWM or PWM) (for review see Stormo, 2000). A weight €1 significantly reduce the number of test candidates.
matrix pattern definition is superior to a simple IUPAC consensus
sequence as it represents the complete nucleotide distribution fLGORITHM

*To whom correspondence should be addressed.

In our original paper (Quandét al., 1995) a set of tools for
the generation of matrices (Matlnd) and the detection of potential
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Table 1. Sequences used for creation of the RUNX2 (AML3) matrix

Name Reference Sequence (core sequence bold) Matrix similarity
NMP2 Alvarezet al. (1997) TTTA GIGG TTTTTC 0.898
OSE2 Williset al. (2002) TGCT GIGG TTGGT. 0.961
MRANKL2 O'Brien et al. (2002) GCCT GIGG GITGEG 0.879
hMMP-13 Mengshott al. (2001) GAGT GIGG TTTGTG 0.994
rbtMMP13 Mengshokt al. (2001) AAGT GIGG TTTGIG 1.000
mMMP13 Mengshott al. (2001) AAGT GIGG TTTGIG 1.000
hRANKL O’'Brien et al. (2002) TCCA GIGG TTCCAG 0.869
Collagenase-3 D'Alonzet al. (2002) ACGT GIGG TTTGIG 1.000
OPGhuman Thirunavukkarastial. (2001) CTCT GAGG TTTCCC 0.832
Galectin10 Dyer and Rosenberg (2001) AGGT GIGG TTGIGA 0.913
MRANKL1 O'Brien et al. (2002) TCCA GIGG TTGGTIT 0.932
Ameloblastin Dhamija and Krebsbach (2001) catt ttgg tgagct Rejected

TFBS (Matlnspector) was introduced. Matind constructs a matrixtuples. The tuple with the higheSt-value is selected as matrix core.
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description consisting of a PWM, a conservation profile (so-called2) The alignment of the binding sites is then anchored at the first'n:)'
conservation index vecto€;-vector) and a core region for a set of position of the identified core sequence. (3) The length of the weight §

training sequences. Th&-value at each positiohof the matrix is

calculated by

Ci(i)= (@
= \ins

whereP (i, b) is the relative frequency of nucleotideat position:.

Matinspector uses this information to scan nucleotide sequences f Table 1 or sites not likely to bind the TF. (6) The final matrix is
rcompared with all existing matrices of the library to check whether

matches to this pattern by calculating a matrix similarity score whic i al =A - e - ;
JBg new matrix is similar to an already available binding site descrip-

reaches 1 only if the test sequence corresponds to the most conser
nucleotide at each position of the matrix. The matrix similarity is

calculated by

mat_sim=

where C;(j) is the C;-value of positionj, n is the length of the
matrix, scoréb, j) is the matrix value for bask at position; and

Z P(i,b) x In P(i,h) +In5
beA,C,G,T,gap

[327-1.C1() x scorab, ) |

"L G x max_scorej)]

matrix is automatically determined by cutting off low conserved pos-
itions (C; < 25) at both matrix ends. (4) All training sequences are 7
checked against the resulting matrix, and sequences with a matrix2
similarity <0.8 are rejected. (5) This process is repeated until the 5
matrix recognizes all the remaining sequences. No matrix is gener-%
ated if <5 sequences remain. Rejected sites may be weak bindingZ:
sites that bind only in context with other TFs as shown in the example =,

wap

tion. For this purpose all binding sites used for generation of the
matrix are searched for TFBS matches with the whole matrix lib-
rary. The number of binding sites recognized by the same matrix
family is used as a measure for the similarity to existing matrices
and is displayed as information for the user.

Table 1 illustrates the definition of a matrix for the Matinspector
library: 12 binding sites for the TF RUNX2 (runt-related TF 2,
AML3) were selected from various papers as the initial training
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max_score is the maximum score within a matrix column at positiorchecks during matrix generation is also shown (Table 1). ThE(g
Jj (for details see Quandt al., 1995).

Both programs Matind and Matinspector were significantly similarity >0.8.

enhanced.

IMPLEMENTATION

Definition of matrices (M atDefine)

The weight matrices of the MatIinspector library are now generatedequence was found. The rejected ameloblastin site misses one of
with MatDefine, a tool for automatic definition and evaluation of these critical contacts, making it unlikely that it is a strong RUNX2
weight matrices from a set of TFBS. MatDefine extends the ori-binding site. This notion is further supported by the fact that RUNX2
ginal algorithm Matind in several respects: (1) First, a short highlybinds to that site only as part of a larger complex (Dhamija and
conserved core sequence that is common to the input sequenceskigebsbach, 2001). Similar binding of a protein complex to a weak
defined. For this purpose the tuple search algorithm developed blginding site was described in Werretral. (2003).

Wolfertstetteet al. (1996) is used. The algorithmis based on asearch .

for n-tuples (defaultz = 4), which occur at least in a minimum per- S€arch for matrix matches (Matl nspector)

centage of the sequences (default 90%) with no or one mismatciatinspector uses the information of core positions, nucleotide
which may be at any position of the tuple. Selection of tuples is cardistribution matrix andC;-vector to scan sequences of unlimited

ried out by maximization of the information content {value) of the

final RUNX2 (AML3) matrix recognizes all sites with a matrix

Figure 1 shows the profile of th& -vector of the matrix descrip-
tion, i.e. theC;-values representing the conservation at each position.
The three conserved G nucleotides reflect direct protein—~DNA con-
tacts as seen in X-ray structure analysis (Tahé&al., 2001). One of
the 12 binding sites was rejected during matrix generation as no corex

0c |IJdV L] Uo1sa

length for pattern matches as described in Quastdil. (1995).
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100.0 domains see Garvie and Wolberger, 2001). For example, the zinc

finger proteins EGR1, EGR2, EGR3, EGR4 and WT1 are repres-

ented by the V$EGRF family. Some protein domain families, such

750 as bZip TFs, are further subdivided by function, e.g. V$AP1F and
V$CREB. The functional context of the TF families differs: cAMP
response for CREB and early growth/phorbol-ester response for AP1.
This underlines the capability of the method to reproduce biologic-

=0.0 ally relevant relations between the different matrices. In a second
step, the resulting groups are checked for biological significance
and correctness by evaluating the corresponding literature. If new

23.0 matrices are added to the library, they are mapped onto the existing

II I map to check whether they are similar to an existing family or if a

new family has to be created.

IUPAC: 1 AN 5 t G T G G ot | t gt g Afteridentifying all individual matches, Matinspector now applies
. afurther step and compares the matches of matrices that belong to the.
same family. The program only lists the match with the highest score &

=1

Fig. 1. C;-vector profile and IUPAC representation for the RUNX2 (AML3) of overlapping matches from one family in the output. The family S

matrix. Nucleotides marked by a box show high information content, i.e.CONCeptleads to asignificantly condensed and comprehensive outpu

the matrix exhibits a high conservatiod;¢value >60) at these positions. ecause redundant matches are eliminated. The concept of matr|>6

Nucleotides in capital letters denote the core sequence. Circles indicaté@milies does not compromise the specificity of the individual matrix

protein—-DNA contacts identified in X-ray structure analysis. approach, which would be the case if a combined matrix consisting
of all individual matrices was generated.

We developed a so-called family concept to minimize redundant The following example details the consequences of the introduc-

matches and optimized matrix thresholds were introduced to reduddn of matrix families. The family VSIRFF (interferon regulatory
false-positives. Both concepts are given in detail below. factors) comprises a total of six matrices representing different TFs

with highly similar binding sites (IRF1, IRF2, IRF3, IRF4, IRF7 and

The Matlnspector family concept It is reasonable to keep different ISRE). When searching IRF binding sites in the human IL10 pro-
matrix descriptions for a factor in the library as these matrices mightnoter with all matrix families, two matches are found, the first being
be based on different training data originating from independent puban experimentally verified IRF binding site (Ziegler-Heitbretkl .,
lications. Similar matrices for one TF can lead to multiple matches2003). A search with all six individual matrices results in four addi-
at the same position or to matches that are only shifted by a fewional redundant matches (Table 2). The highest scoring IRF family
base pairs if the corresponding matrix descriptions are only partiallynatch is IRF1 for both matches, but this does not mean that only IRF1
overlapping or differ in length. A new feature of the matrix library can bindto these sites; all TFs of the IRF family are able to bind to the
is the assignment of each individual matrix to a family consisting of TFBS identified. The DNA binding sites of the different interferon
matrices that represent similar DNA patterns. regulatory factors cannot be distinguished computationally; this is

The assignment of matrices from the Matlnspector library to fam-the reason why they are in the same family.
ilies involves two steps. First, the matrices are grouped automaticallPptimized matrix thresholds With the original version of
by an unsupervised clustering approach based on a self-organizindatinspector it was apparent that with a fixed matrix similarity
map algorithm. For each matrix, a feature vector is calculated baseithireshold some matrices matched very frequently, whereas OtheI’Sm
on the summed probabilities of dinucleotides, trinucleotides anchardly appeared at all, even missing true positive matches in evalu- o‘
tetranucleotides occurring within the matrix. These feature vectorsition sequences. The reason is the different length and conservatloraé
are then used to generate a standard self-organizing map (Kohonerpfile of the matrices inthe library. Matches to along and highly con- 3
1995). The map dimensions were A5 nodes, reflecting the ratio  served matrix have a lower probability to reach any fixed threshold, §
of the values of the first two principal components of the feature vecas compared with matches to short, less conserved matrices. The firsts
tor distribution. The map was then initialized with random vectorscase may result in false negative, the latter in false positive matches.»
and a two-stage learning process was applied. For the first so-calldeickertet al. (1998) described a strategy to evaluate false positives =
pre-ordering stage we used an initial neighborhood radius of 8 nodesnd negatives. Since there are usually only a limited number of true 3
a learning ratio of 0.2 and 10 000 adaptation steps. For the secombsitives, which are also used in the training process, we concentrated®
fine-tuning stage, the initial radius was reduced to 3 nodes, the learron reducing the number of false positives by introducing a so-called
ing rate was set to 0.02 and 80000 steps were used. The procesgtimized matrix threshold for each individual matrix in the library.
was repeated with different random initializations. Groups were then We defined the optimized threshold of a weight matrix as the mat-
selected based on the preservation of distances between the featupe similarity threshold that allows a maximum of three matches
vectors of the trained map throughout this repetitive process. in 10 000 bp of non-regulatory test sequences (1.5 million bp of cod-

Owing to their highC;-values the conserved regions of a matrix ing sequences, excluding firstexons, and genomic repeats). The latest
provide prominent feature values, whereas the remaining positiongersion of Matinspector uses the optimized matrix threshold for each
add valuable secondary contributions, making the approach feasiblaatrix as default and allows adjustment of thresholds relative to this
for a distinctive grouping of the matrices. We found that larger areaslefault. The optimized threshold balances the differences in match
of the map also tend to reflect a clustering of matrices of TFs withfrequencies between highly specific or relatively long matrices and
similar binding domains (bHLH, bZIP, etc.; for a review of binding less specific or shorter matrices.

o|umo(q
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Table 2. Searching IRF sites with individual matrices in the human IL10 promoter

Family/matrix Opt. Position Strain Core sim. Matrix sim. Sequence
V$IRFF/IRF1.01 0.86 345-363 +) 1.000 0.908 caaaaattGAAAactaagt
VS$IRFF/IRF3.01 0.85 345-363 +) 1.000 0.854 caaaaattGAAAactaagt
V$IRFF/IRF7.01 0.86 345-363 +) 0.768 0.860 caAAAAttgaaaactaagt
VS$IRFF/IRF2.01 0.80 345-363 +) 1.000 0.825 caaaaattGAAAactaagt
V$IRFF/IRF1.01 0.86 521-539 +) 0.765 0.861 tgcaaaacCAAAccacaag
VS$IRFF/IRF2.01 0.80 521-539 +) 0.750 0.812 tgcaaaacCAAAccacaag

Sites found using matrix families are marked in gray.

Table 3. Searching Sp1 sites with a fixed matrix threshold of 0.85 in the PHGPx promoter

Family/matrix Further information Opt. Position  Strain  Core sim. Matrix sim.  Sequence

V$SP1F/BTEB3.01 Basic transcription element (BTE) binding protein, 0.93 162-179 ( 1.000 0.855 gtacaGGAGtctcct
BTEB3, FKLF-2

V$SP1F/GC.01 GC box elements 0.88 385-399-) ( 0.764 0.875 g9cggGGCTgggctt

V$SP1F/GC.01 GC box elements 0.88 390-404 (-) 1.000 0.957 gcttgGGCGgggctg

V$SP1F/SP1.01 Stimulating protein 1 SP1, ubiquitous zinc finger 1 0.89 495-509 (+) 1.000 0.891 ccgagGGCGggcaag

V$SP1F/GC.01 GC box elements 0.88 546-560 (+) 0.876 0.921 tgaggGGAGgagccg

Sites exceeding the optimized matrix threshold are marked in gray.

The following example shows that the effect of optimized mat- Table4. Number of Matinspector matches with different settings on 670 bp
rix thresholds is also biologically meaningful. When searching Sp1°f the human RANTES (CCLS5) promoter
binding sites in the murine PHGPx (Gpx4: glutathione peroxidase 4)
promoter with optimized matrix similarity, three matches are found.qg5ch mode

Number of Number of

Allthree Sp1 sites have been reported to be important for expression matches  functional TFBS (10)
regulation of thdPHGPx gene (Uferet al., 2003). Searching with a
fixed threshold of 0.85 results in two additional putative Sp1 matches, asnolde 0.85/individual matrices 402 8
without known function (Table 3). Threshold= 0.85/families 291 8
Another example is the human RANTES promoter (Chr. 17, contigoptimized matrix threshold/individual 151 7
NT_0170799, 8944188-8944857, 670 bp), which has been extens-matrices
ively experimentally analyzed. To date at least 10 TFBS have bee@ptimized matrix threshold/families 100 7
functionally verified (Fesselet al., 2002). The introduction of the ~Reduction in match number 302 (75%) 1 (10%)

family concept combined with optimized matrix thresholds reduced
the number of total matches by 302 (75%) while missing only a single

functional binding site (10%) as compared with individual matrices
with a fixed threshold of 0.85 (Table 4). The current library (version 5.0, February 2005) of MatInspector

contains a total of 634 matrices in 279 families (Table 5), divided

o into the sections vertebrates, plants, fungi, insects and miscellaneous-
Matrix library for TFs and a section of others, which contains patterns like PolyA =.
The matrices in the Matinspector library are derived from singlesignals. Matrices are not species-specific since TFs have been show
publications with either a nucleotide distribution matrix or a list of to bind cross-species, e.g. human promoters work very well in mouser
binding sites or from several papers where individual binding sitesas shown in Sarseret al. (2004). The matrices are built from a
were published. In contrast to other approaches, the library is naninimum of 4 and a maximum of 389 binding sites (mea6.5).
supposed to represent all literature regarding a single TFBS but rath&he length of the matrices is between 5 and 29 bp (med6.6).
the best of current knowledge in terms of specificity and sensitivity of Until now 1454 human genes have been assigned a TF activity
the resulting PWM. Thus, putatively erroneous binding sites are nofLocusLink, GeneOntology). Of these, 322 TFs cannot be described
represented in a matrix and the strand orientation for some bindingy a nucleotide weight matrix as they either have no sequence-
sites might be inverted in comparison with the respective literaturespecific DNA binding site (e.g. HMG with non-specific DNA binding
Matrices that do not reach the quality thresholds are automaticalljike chromatin proteins HMG14/17) or do not bind any DNA (e.g. the
removed from the Matinspector library. Quality thresholds are theTAF family of cofactors of the TATA binding protein). A significant
number of binding sequences (at least 4) and the number of matrimumber of the remaining 1132 human TFs is represented by a matrix
matches expected in a random sequence of 100&:bj ( of the Matlnspector library (590) or is in the pipeline for the creation
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Table 5. Number of matrix families and matrices in the Matinspector library version 5.0

Library section Number of ~ Number of Families Families Families Families Families
matrices families with 1 matrix with 2 matrices with 3 matrices with 4 matrices with >5 matrices

Vertebrates 409 150 67 33 18 6 26

Plants 126 58 35 12 2 3 6

Fungi 43 32 23 8 0 1 0

Insects 40 27 19 5 1 2 0
Miscellaneous 8 7 6 1 0 0 0

Others 8 5 4 0 0 1 0

papeojumoq

of a new matrix. However, there is a large number of TF8{0) TFBS may be influenced by the experimental conditions. One way @
for which no binding sites have yet been described in the literaturéo prevent this is to remove all potential TFBS from the sequence é“
(e.g. the repressor function of KRAB domain zinc finger proteins haof the expression vector except those necessary for the experiment3
been described in fusions with heterologous DNA binding domainsThis is ideally achieved by point mutations, since the deletion of com- =
yet in lack of natural targets). For the remaining TFs, the currentlyplete binding sites or even single nucleotides can change the distance?
known bindings sites were insufficient for matrix generation. Thebetween functional binding sites and thus influence the interactions &
Matinspector library will be continuously expanded until all known of binding proteins.
DNA-binding TFs are represented. In addition, potential side effects have to be considered; for
The vertebrate matrix families additionally include information on example, deleting one binding site might remove additional overlap- ;
tissue associations of the TFs. They have been determined by seniing binding sites from the sequence or might result in the generation
automatic analysis of all PubMed abstracts. A list of synonyms forof a new binding site. To make this kind of sequence design feas- 8
each of the TFsin afamily was generated, using LocusLink. PubMedble even for larger sequences, the program SequenceShaper wa:
abstracts were then scanned with these synonym lists and the assteveloped (available within GEMS Launcher, www.genomatix.de).
ciated MeSH terms representing tissues were recorded. Assignmeltsystematically evaluates which and how many nucleotide substitu-
of tissues to TFs followed the tree of MeSH terms (MeSH Browsertions are required to delete a specified set of TFBS. The modifications 3
NCBI), i.e. if a co-citation with a specific subtissue was found thecan be restricted to preserve other TFBS and to prevent the generag
parental tissue was also recorded (e.g. Langerhans islets as subtissios of new sites. Even the coding potential of a sequence (ORF) can &
and pancreas as parental tissue). Tissue association was primarbg preserved. The number of nucleotides modified is minimized.
done automatically by the following criteria: (1) the number of co- Figure 2 shows a representation of a fragment of the promoter of
citations of a factor with a specific tissue MeSH term must exceedhe humarHLA-B gene. It contains 12 putative TFBS, two of which
a fixed threshold, (2) the number of citations for that tissue mus{NF-kappaB, IRF) are known to be functional in HeLa cells (Johnson
exceed a fixed threshold and (3) the co-citation frequency of factoand Pober, 1994). In other cell lines with a different composition of
and MeSH term must be overrepresented with regard to the calcuFFs the functionality of these sites may be affected owing to the
lated expected co-citation frequency within all abstracts with anyoverlapping character of the other potential binding sites. Analyzing
synonym and tissue MeSH term. the sequence with SequenceShaper results in the exchange of 17 nty
The automatically generated list of TF—tissue associations wa$he modified promoter sequence only contains the two TFBSs for <
manually checked to eliminate obviously wrong associations arisingNF-kappaB and IRF. Thus, it is possible to modify known regulatory %
from ambiguous usage of TF synonyms or extremely unequal dissequences or to design completely new sequences merging dlfferenfi’—
tribution of examined tissues. It should be noted that the tissudéunctional elements into a new context.
associations derived statistically from literature do not necessarily
reflect tissue-specific expression since gene expression may changgalyzing promoters for common TFBS
drastically in development or disease. However, we found that our,
scheme of extracting tissue associations from literature works well as
a first approximation of tissue-specific TF expression. Matlnspector
searches can be filtered for TFs associated with specific tissues.

no-olwapeoe)/
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Although Matinspector can find most true positive TFBS matches

and reduce the amount of false positive matches in a promoter
region, not all sites found are necessarily functional in the par-

ticular biological context. A first step in examining functionality

is a comparative promoter analysis. Promoters sharing a common

¥20z Iudy || uo

TOOLS BASED ON MATINSPECTOR function, e.g. pro_moters resppnsive to interferon or a sgt c_)f ac?in
L promoters from different species can be compared. A binding site
Designing regulatory sequences that occurs in most promoters—particularly at a similar relative pos-

Regulatory sequences usually contain many sites capable of bindiriion within the promoters—is presumably evolutionarily conserved
TFs, and the selection, which TFBS are functional for transcriptionabnd this represents supporting evidence that the site may be func-
control, depends on the biological context. Experimental expressiotional. As a first step to in-depth promoter analysis the ‘common
analysis using expression vectors, therefore, may be affected by addiites analysis’ together with a concise graphical display of the res-
tional TFBS in the vector as the number and combination of relevantilts was added to Matlnspector’s capabilities. Displayed are only
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A

HLR=B ctgeaatggy gagycgoage gttggggatt cocmactcoe ctgagtttoa cttottoteco

HLA=P mod ctgegatggy aaggcagaat gttgggacta Aaccoggtace cttatttcaa cttottotec

B
{ 5) BNREGEGCGEGEONK | SPIF)
{ 9 nrnannSeCACCEATOSOTEANNRC Y nnn ( PAXS )
( 15) nENTGCGTGEECE e { BGRE
( 22) AnGEEEEATYS CCnnn { NPEE)
( 1) WNCNANTCCCYNERGARNNESH N ( ROLF)
HLA-B 1 CTGCAARTGGGERGECGCAGCGTTGGGGATTCCCCACTCCCCTGAGTTTCACTTICTTCTCC
( 22) ANNGGRARKTCCCRN { NFER)
[ 21) NMNNS YEGO VMY NCWNCNNTEHNYNNNGN | PRXS )
{ 25) COYATTCCCANND | TERS )
[ a0) TCCCONC (MIFL)
[ i0) RRAACACACCCCARR | SP1F)
[ 17) ANMAYTCACTTTCACTT ( PROF )
[ 19 FEnnc;cqucxchDYCC[:er;|
( 22) ANGGEEATYCCCARN | NFER)

HLA-B mod i CcI6coATGGGARGGCAGAATGTTGGGACTAACCCGETACCCTTATTTCAACTTCTTCTCC

315 | annrCAGTTTCWCTTTYCC (IRFE) |

Fig. 2. Targeted elimination of TFBSA( Alignment of the 60 bp fragment of the HLA-B promoter containing thecBFRF module. The modifications in
HLA-B mod were determined by SequenceShaper to remove additional TBBOvérview of TFBS detected by Matlnspector in each of the two sequence
versions.
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matches to matrices that are common to a user-defined percentageloured boxes. Optionally, all TFBS identified by Matinspector
of input sequences (default 90%). In the following example a sebr TFBS common to a user-defined percentage of the sequenc
of six promoter sequences for muscle actin genes from human anchn be displayed alongside the alignment. Similar tools for iden-
mouse was analyzed by Matlnspector for TFBS common to all inputification of evolutionarily conserved TFBS are rVista (Loots and
sequences (Fig. 3). Ovcharenko, 2004), ConSite (Sandelin and Wasserman, 2004) an
This analysis for common TFBS in co-regulated promoters calCONREAL (Berezikovet al., 2004). However, all these tools are
reduce the number of relevant TFs dramatically. Figure 3 alreadyble to only compare two sequences but not multiple sequences lik
reveals a recurring pattern of TFBS in muscle actin promotersPiAlignTF.
consisting of 2—4 SRF sites and a TATA box which is conserved The following example shows how DiAlignTF can be used to
throughout all sequences (Klingenheffal., 1999). reduce the list of potential TFBS to the most likely functional
matches. Six rbcS (ribulose bisphosphate carboxylase small sub#
Detecting TFBSin aligned regions of orthologous unit) promoters of different plant species are aligned and searcheoﬁ
promoters (DiAlignTF) for plant TFBS conserved in the alignment. In each of the six pro- -

The functional conservation of TFBS can also be evident 0”2??;553ti?ncezt(;;/arta&i\:ﬁ] r;gt:c:tsolr arag rzztteerr];la(lldgltznrtw;':th%wn)—
sequence level. This has been shown recently forofhieatenin 9 P b P

. ) o >

gene CTNNA3) (Vanpouckeet al., 2004) and for (Gfil) growth From these 30 TFBS, DiAlignTF identifies only 4 also conserved on N

factor independent 1 (Doaet al., 2004). Both publications show sequence level: an I-box element, a G-box element, an ABA response
P N ' P element (ABRE) and the TATA box (Fig. 4). The I-box and the G-box

a multiple alignment of three orthologous promoters where the Con'e#ements are functional TFBS, they have been identified experiment-

served TFBS are manually assigned. This task can now be pen‘orm% ly as light-responsive unit of the rbcS promoter for tomato (Baum
automatically by DiAlignTF, a combination of Matlnspector with y g P P

the multiple alignment program DiAlign (Morgenstesiral., 1998). ﬁ:ig\iﬁ? gr\:\(/jitLO?r?ecg-t(ahél;rignQ;)Hlfrzg\?v%tmﬁ’ezigsgl)\} e'iﬁﬁi ht
DiAlignTF is available from within the GEMS Launcher package at enap 9
. regulation.

www.genomatix.de.

DiAlign is especially suited for alignment of regulatory sequences . . L
where only small fragments are conserved as it is able to detedfinding organizational promoter models
local similarities in otherwise unrelated sequences. DiAlignTF dis-The regulation of genes is precisely controlled by the different com-
plays TFBS located at the same position within the alignment adinations of TF-bound sites in various cell types (Wereesl.,

®
L&y
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he_ACTAL
NT_004559
Homo sapiens
B0 bp

mim_ACTAL
NT_U78575
Mus musculus

hes_ACTC
NT_010194
Homo sapiens
600 bp

mm_ACTCL
NT_039207
Mus musculus
600 bp

hs_ACTA2
NT_D30052
Homo sapiens
600 bp

mm_ACTA2
NT 039689
Mus musculus
600 bp

Fig. 3. TFBS common to all sequences in a set of six muscle actin promoters. Different colors denote different transcription factor families (turquoise,
pink, PAX5; blue, TATA-binding protein factor/TBPF; dark green, CMYB; purple, ETS; light green, MAZF).

tomate 1
tobacco 1
petunia 1
soybean 1
potato 1
hean 1

&4
48
47
61
56
57

tomate
tobacco
petunia
soybean
potato
hean

tomate 125
tobaceo 116
petunia 116
soybhean 112
126
107

potato
hean

tomate 152
tobacco 157
petunia 157
soybean 181
potato 188
bhean 178

tomato 150
tobacco 220
petunia 215
soybean 224
potato 206

hean

Fig. 4. TFBS conserved in the alignment of six rbcS promoters from different plant species. The color code of the matrix families is shown above the alignment.
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ns_ACTAL

HT_004559 .
Homo saplens
600 bp

T _ACTAL

NT_ (78575 .
Fus musculus
o00 bp

hs_ACTC

NT_010194 .
Homo sapiens
B0 bp

mm_ACTCL

MNT_0D38207 .
Mus musculus
600 bp

hs_ACTAZ

MT_03005% .
Homo saplens
600 bp

mirm_ACTAZ

MT_03908% .
Mus musculus
600 bp
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Fig. 5. Matches to a common promoter module found in the entire muscle actin promoter set. The module consists of two SRFs and a TATA site in a con
distance. SRF and TATA sites are depicted in turquoise and blue, respectively.

rved

2003; Boehlket al., 2000). A prime example is the regulation of the  The common pattern of TFBS automatically found in the muscle
RANTES/CCL5 gene (Fesselet al., 2002). The promoter sequence actin set consists of two SRF sites in a distance of 40-91 bp, fol-
of this chemokine contains six TF binding regions harboring 10 disfowed by a TATA box in 42-80 bp distance (Fig. 5, parameters:
tinct TBFS thatwere assessed experimentally in five human cell typeguorum = 100%, 10-100 bp distance between elements). This
under both stimulated and unstimulated conditions. It was shown thgiromoter model is part of a more complex muscle-specific actin
various subsets of the six binding regions (each containing severa@lromoter model consisting of seven elements including SRF, TATA
TFBS) play a role in the regulation of the gene in different tissuesand SP1 as described and evaluated in Klingendicff. (1999).
Each of the TFBS was relevant for some tissues but nonessential in This promoter model can now be used to scan DNA sequences (e.ge
others as was determined by mutation experiments. the complete human genome) for the occurrence of pattern matches?g:
The identification of individual matrix matches is, therefore, usu-When searching a database of 55207 human promoters (Genomatig;
ally only the first step in promoter analysis; the subsequent ainpromoter database, 35 million basepairs), 49 of them contain theg!
will be the identification of more complex promoter models, i.e. model, 23 of which are promoters of unknown genes correspond-g
functional units of a promoter consisting of at least two TFBS in con-ing to cDNAs generated by the oligocapping method (@tal., §
served order. The so-called promoter modules form a functional uni2004), 4 are annotated as unknown or hypothetical proteins. Theg
allowing synergistic or antagonistic effects for a specific activationremaining 22 matches include the promoters for alphal actin, alphaz_.
or repression of a gene. actin, gammaz2 actin, myosin, fibulin and tachykinin receptor 2. All ;
For the automatic detection of modules and more complex modelthese genes are associated with muscle development and are likel.
only those combinations of TFBS are analyzed that are situated ito be regulated by a common mechanism involving the TFBS of the 13
a common order and distance from each other. This requires a prorodel. Searching the promoter database for single matches to SRE
gram that analyzes the TFBS found by Matinspector with respect tor TATA results in 23 620 and 35 145 promoters, respectively with at
their organization, i.e. their relative position. This program, calledleast one site. Furthermore, 16 514 promoters contain both SRF as
FrameWorker, is available at www.genomatix.de within the programwell as TATA. This demonstrates that frameworks with their inher-
package GEMS launcher. Constraints to be given by the user arent constraints are orders of magnitude more selective than simple
the quorum (i.e. the minimum number of sequences to contain theo-occurences of matrix matches.
model), a minimum and a maximum distance between the TF sites
within a model. FrameWorker lists all models up to a given num-
ber of elements that are found to be common to the input sequenc&lSCUSSION
together with a graphical display. A model consists of the matrixSimilar to the well-known maps of metabolic pathways that describe
families involved, the distance range between the elements and thgbathways potentially used by a cell to accomplish metabolic pro-
sequential order. cesses, regulatory networks describe regulator—-gene interactions that
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show potential pathways a cell can use to control gene expressionascade of transcription activation during the time course can divide
Knowing at least parts of these networks is important to understand co-expressed cluster of genes in subsets regarding co-regulation.
the molecular underpinnings of cell life, which may later on help to The careful selection of gene clusters is a crucial step for successful
eliminate side effects when developing new drugs. Promoter modulgsromoter analysis.

provide the basis to understand regulatory networks involved in gene Although there is a consensus that the inspection of single TFBS
expression, because they represent the molecular basis for integrationpromoter sequences is not sufficient to fully understand gene reg-
of several TF signals into one output (transcription or repression)ulation, it will remain one of the crucial first steps in the chain
The most important features of TFBS prediction programs are thef analytical events. FrameWorker, DiAlignTF or SequenceShaper
highest possible coverage of known sites and the quality of matwhich are based on Matlnspector are results of a consequent follow
rix descriptions in the library. The Matinspector matrix library is up leading to understanding the regulatory networks on a molecular
designed to represent the best of current knowledge in terms of spével.

cificity and sensitivity regarding TFBS. The TRANSFAC database

(Matys et al., 2003) focuses on representing all available publica-

tions. There is a subset 6f70% of the matrices in TRANSFAC that ACKNOWLEDGEMENTS
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