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ABSTRACT
Motivation: Promoter analysis is an essential step on the way to
identify regulatory networks. A prerequisite for successful promoter
analysis is the prediction of potential transcription factor binding sites
(TFBS) with reasonable accuracy. The next steps in promoter analysis
can be tackled only with reliable predictions, e.g. finding phylogenet-
ically conserved patterns or identifying higher order combinations of
sites in promoters of co-regulated genes.
Results: We present a new version of the program MatInspector
that identifies TFBS in nucleotide sequences using a large library of
weight matrices. By introducing a matrix family concept, optimized
thresholds, and comparative analysis, the enhanced program pro-
duces concise results avoiding redundant and false-positive matches.
We describe a number of programs based on MatInspector allowing
in-depth promoter analysis (DiAlignTF, FrameWorker) and targeted
design of regulatory sequences (SequenceShaper).
Availability: MatInspector and the other programs described here can
be used online at http://www.genomatix.de/matinspector.html. Access
is free after registration within certain limitations (e.g. the number
of analysis per month is currently limited to 20 analyses of arbitrary
sequences).
Contact: cartharius@genomatix.de
Supplementary information: http://www.genomatix.de/matinspector.
html

INTRODUCTION
Control of transcription initiation is a pivotal mechanism for deter-
mining whether or not a gene is expressed and how much mRNA—
and consequently protein—is produced. A promoter is a sequence
that initiates and regulates the transcription of a gene. Protein bind-
ing sites in a promoter represent the most crucial elements and the
corresponding proteins are called transcription factors (TFs). There
is a large variety of TFs in the cell. Currently, more than 1400 human
TFs are known and a total of∼1850 (Venteret al., 2001) to 3000
(Landeret al., 2001) was estimated for the human genome. To be
able to predict potentially functional transcription factor binding sites
(TFBS) is an important first step in promoter analysis.

One way to describe TFBS is by nucleotide or position weight
matrices (NWM or PWM) (for review see Stormo, 2000). A weight
matrix pattern definition is superior to a simple IUPAC consensus
sequence as it represents the complete nucleotide distribution for
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each single position. It also allows the quantification of the similarity
between the weight matrix and a potential TFBS detected in the
sequence. The concept of PWMs was developed in the 1980s, but
the widespread use of the concept in form of programs was delayed
almost a decade since only a few special matrices had been defined
(Bucher, 1990). MatInspector was one of the first programs to close
this gap in 1995, offering an extensive precompiled library of 214
weight matrices (Quandtet al., 1995).

Other programs based on PWMs include SignalScan (Prestridge,
1996) and Matrix Search (Chenet al., 1995), which were based
on TRANSFAC 2.5, TFD 7.4 and IMD, and are not updated
anymore. TESS (http://www.cbil.upenn.edu/tess/) uses a library
based on TRANSFAC 4.0 and applies a log-likelihood score or
the MatInspector scoring scheme for matrix searches. The pro-
gram Match (Kelet al., 2003) uses a similar scoring scheme as
MatInspector, but lacks matrix families (see below), resulting in a
large number of redundant matches. The freely available version of
Match allows searching for matrices from TRANSFAC 6.0 public,
containing 336 matrices. The commercial version of TRANSFAC
(release 8.4) currently has 741 entries, but academic users cannot use
it freely. ConSite (Sandelinet al., 2004b) is based on the JASPAR
database (Sandelinet al., 2004a), which contains 111 entries. Today
the MatInspector library contains 634 matrices representing the
largest library available for public searches.

It is important to note that TFBS only carry the potential to bind
their corresponding protein. However, they can occur everywhere in
the genome and are by no means restricted to regulatory regions. Sites
outside regulatory regions are known to bind their TFs (Kodadek,
1998), and it is the context that differentiates a functional bind-
ing site affecting gene regulation from a mere physical binding site
(Elkon et al., 2003). TFBS prediction programs like MatInspector
can infer the binding potential, although not the functionality of
a site. Functionality can ultimately be proven only by a wet-lab
experiment with defined settings, particularly since potential bind-
ing sites in a promoter can be functional in certain cells, tissues
or developmental stages and non-functional under different con-
ditions. Involving advanced bioinformatics strategies like detailed
promoter analysis of, for instance, orthologous or co-regulated genes
can significantly reduce the number of test candidates.

ALGORITHM
In our original paper (Quandtet al., 1995) a set of tools for
the generation of matrices (MatInd) and the detection of potential
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Table 1. Sequences used for creation of the RUNX2 (AML3) matrix

Name Reference Sequence (core sequence bold) Matrix similarity

NMP2 Alvarezet al. (1997) TTTA GTGG TTTTTC 0.898
OSE2 Williset al. (2002) TGCT GTGG TTGGT. 0.961
mRANKL2 O’Brien et al. (2002) GGCT GTGG GTTGGG 0.879
hMMP-13 Mengsholet al. (2001) GAGT GTGG TTTGTG 0.994
rbtMMP13 Mengsholet al. (2001) AAGT GTGG TTTGTG 1.000
mMMP13 Mengsholet al. (2001) AAGT GTGG TTTGTG 1.000
hRANKL O’Brien et al. (2002) TCCA GTGG TTCCAG 0.869
Collagenase-3 D’Alonzoet al. (2002) ACGT GTGG TTTGTG 1.000
OPGhuman Thirunavukkarasuet al. (2001) CTCT GAGG TTTCCC 0.832
Galectin10 Dyer and Rosenberg (2001) AGGT GTGG TTGTGA 0.913
mRANKL1 O’Brien et al. (2002) TCCA GTGG TTGGTT 0.932
Ameloblastin Dhamija and Krebsbach (2001) catt ttgg tgagct Rejected

TFBS (MatInspector) was introduced. MatInd constructs a matrix
description consisting of a PWM, a conservation profile (so-called
conservation index vector,Ci-vector) and a core region for a set of
training sequences. TheCi-value at each positioni of the matrix is
calculated by

Ci(i) =
(

100

ln 5

)
×


 ∑

b∈A,C,G,T,gap

P(i,b) × ln P(i,b) + ln 5




whereP(i,b) is the relative frequency of nucleotideb at positioni.
MatInspector uses this information to scan nucleotide sequences for
matches to this pattern by calculating a matrix similarity score which
reaches 1 only if the test sequence corresponds to the most conserved
nucleotide at each position of the matrix. The matrix similarity is
calculated by

mat_sim=
[∑n

j = 1 Ci(j) × score(b, j)
]

[∑n
j = 1 Ci(j) × max_score(j)

]

whereCi(j) is the Ci-value of positionj , n is the length of the
matrix, score(b, j) is the matrix value for baseb at positionj and
max_score is the maximum score within a matrix column at position
j (for details see Quandtet al., 1995).

Both programs MatInd and MatInspector were significantly
enhanced.

IMPLEMENTATION

Definition of matrices (MatDefine)
The weight matrices of the MatInspector library are now generated
with MatDefine, a tool for automatic definition and evaluation of
weight matrices from a set of TFBS. MatDefine extends the ori-
ginal algorithm MatInd in several respects: (1) First, a short highly
conserved core sequence that is common to the input sequences is
defined. For this purpose the tuple search algorithm developed by
Wolfertstetteret al. (1996) is used. The algorithm is based on a search
for n-tuples (defaultn = 4), which occur at least in a minimum per-
centage of the sequences (default 90%) with no or one mismatch,
which may be at any position of the tuple. Selection of tuples is car-
ried out by maximization of the information content (Ci-value) of the

tuples. The tuple with the highestCi-value is selected as matrix core.
(2) The alignment of the binding sites is then anchored at the first
position of the identified core sequence. (3) The length of the weight
matrix is automatically determined by cutting off low conserved pos-
itions (Ci < 25) at both matrix ends. (4) All training sequences are
checked against the resulting matrix, and sequences with a matrix
similarity <0.8 are rejected. (5) This process is repeated until the
matrix recognizes all the remaining sequences. No matrix is gener-
ated if<5 sequences remain. Rejected sites may be weak binding
sites that bind only in context with other TFs as shown in the example
in Table 1 or sites not likely to bind the TF. (6) The final matrix is
compared with all existing matrices of the library to check whether
the new matrix is similar to an already available binding site descrip-
tion. For this purpose all binding sites used for generation of the
matrix are searched for TFBS matches with the whole matrix lib-
rary. The number of binding sites recognized by the same matrix
family is used as a measure for the similarity to existing matrices
and is displayed as information for the user.

Table 1 illustrates the definition of a matrix for the MatInspector
library: 12 binding sites for the TF RUNX2 (runt-related TF 2,
AML3) were selected from various papers as the initial training
set. The alignment of the 11 sequences that passed the quality
checks during matrix generation is also shown (Table 1). The
final RUNX2 (AML3) matrix recognizes all sites with a matrix
similarity >0.8.

Figure 1 shows the profile of theCi-vector of the matrix descrip-
tion, i.e. theCi-values representing the conservation at each position.
The three conserved G nucleotides reflect direct protein–DNA con-
tacts as seen in X-ray structure analysis (Tahirovet al., 2001). One of
the 12 binding sites was rejected during matrix generation as no core
sequence was found. The rejected ameloblastin site misses one of
these critical contacts, making it unlikely that it is a strong RUNX2
binding site. This notion is further supported by the fact that RUNX2
binds to that site only as part of a larger complex (Dhamija and
Krebsbach, 2001). Similar binding of a protein complex to a weak
binding site was described in Werneret al. (2003).

Search for matrix matches (MatInspector)
MatInspector uses the information of core positions, nucleotide
distribution matrix andCi-vector to scan sequences of unlimited
length for pattern matches as described in Quandtet al. (1995).
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MatInspector and promoter analysis

Fig. 1. Ci -vector profile and IUPAC representation for the RUNX2 (AML3)
matrix. Nucleotides marked by a box show high information content, i.e.
the matrix exhibits a high conservation (Ci -value>60) at these positions.
Nucleotides in capital letters denote the core sequence. Circles indicate
protein–DNA contacts identified in X-ray structure analysis.

We developed a so-called family concept to minimize redundant
matches and optimized matrix thresholds were introduced to reduce
false-positives. Both concepts are given in detail below.

The MatInspector family concept It is reasonable to keep different
matrix descriptions for a factor in the library as these matrices might
be based on different training data originating from independent pub-
lications. Similar matrices for one TF can lead to multiple matches
at the same position or to matches that are only shifted by a few
base pairs if the corresponding matrix descriptions are only partially
overlapping or differ in length. A new feature of the matrix library
is the assignment of each individual matrix to a family consisting of
matrices that represent similar DNA patterns.

The assignment of matrices from the MatInspector library to fam-
ilies involves two steps. First, the matrices are grouped automatically
by an unsupervised clustering approach based on a self-organizing
map algorithm. For each matrix, a feature vector is calculated based
on the summed probabilities of dinucleotides, trinucleotides and
tetranucleotides occurring within the matrix. These feature vectors
are then used to generate a standard self-organizing map (Kohonen,
1995). The map dimensions were 20× 15 nodes, reflecting the ratio
of the values of the first two principal components of the feature vec-
tor distribution. The map was then initialized with random vectors
and a two-stage learning process was applied. For the first so-called
pre-ordering stage we used an initial neighborhood radius of 8 nodes,
a learning ratio of 0.2 and 10 000 adaptation steps. For the second
fine-tuning stage, the initial radius was reduced to 3 nodes, the learn-
ing rate was set to 0.02 and 80 000 steps were used. The process
was repeated with different random initializations. Groups were then
selected based on the preservation of distances between the feature
vectors of the trained map throughout this repetitive process.

Owing to their highCi-values the conserved regions of a matrix
provide prominent feature values, whereas the remaining positions
add valuable secondary contributions, making the approach feasible
for a distinctive grouping of the matrices. We found that larger areas
of the map also tend to reflect a clustering of matrices of TFs with
similar binding domains (bHLH, bZIP, etc.; for a review of binding

domains see Garvie and Wolberger, 2001). For example, the zinc
finger proteins EGR1, EGR2, EGR3, EGR4 and WT1 are repres-
ented by the V$EGRF family. Some protein domain families, such
as bZip TFs, are further subdivided by function, e.g. V$AP1F and
V$CREB. The functional context of the TF families differs: cAMP
response for CREB and early growth/phorbol-ester response for AP1.
This underlines the capability of the method to reproduce biologic-
ally relevant relations between the different matrices. In a second
step, the resulting groups are checked for biological significance
and correctness by evaluating the corresponding literature. If new
matrices are added to the library, they are mapped onto the existing
map to check whether they are similar to an existing family or if a
new family has to be created.

After identifying all individual matches, MatInspector now applies
a further step and compares the matches of matrices that belong to the
same family. The program only lists the match with the highest score
of overlapping matches from one family in the output. The family
concept leads to a significantly condensed and comprehensive output
because redundant matches are eliminated. The concept of matrix
families does not compromise the specificity of the individual matrix
approach, which would be the case if a combined matrix consisting
of all individual matrices was generated.

The following example details the consequences of the introduc-
tion of matrix families. The family V$IRFF (interferon regulatory
factors) comprises a total of six matrices representing different TFs
with highly similar binding sites (IRF1, IRF2, IRF3, IRF4, IRF7 and
ISRE). When searching IRF binding sites in the human IL10 pro-
moter with all matrix families, two matches are found, the first being
an experimentally verified IRF binding site (Ziegler-Heitbrocket al.,
2003). A search with all six individual matrices results in four addi-
tional redundant matches (Table 2). The highest scoring IRF family
match is IRF1 for both matches, but this does not mean that only IRF1
can bind to these sites; all TFs of the IRF family are able to bind to the
TFBS identified. The DNA binding sites of the different interferon
regulatory factors cannot be distinguished computationally; this is
the reason why they are in the same family.
Optimized matrix thresholds With the original version of
MatInspector it was apparent that with a fixed matrix similarity
threshold some matrices matched very frequently, whereas others
hardly appeared at all, even missing true positive matches in evalu-
ation sequences. The reason is the different length and conservation
profile of the matrices in the library. Matches to a long and highly con-
served matrix have a lower probability to reach any fixed threshold,
as compared with matches to short, less conserved matrices. The first
case may result in false negative, the latter in false positive matches.
Pickertet al. (1998) described a strategy to evaluate false positives
and negatives. Since there are usually only a limited number of true
positives, whicharealsoused in the trainingprocess, weconcentrated
on reducing the number of false positives by introducing a so-called
optimized matrix threshold for each individual matrix in the library.

We defined the optimized threshold of a weight matrix as the mat-
rix similarity threshold that allows a maximum of three matches
in 10 000 bp of non-regulatory test sequences (1.5 million bp of cod-
ing sequences, excluding first exons, and genomic repeats). The latest
version of MatInspector uses the optimized matrix threshold for each
matrix as default and allows adjustment of thresholds relative to this
default. The optimized threshold balances the differences in match
frequencies between highly specific or relatively long matrices and
less specific or shorter matrices.
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Table 2. Searching IRF sites with individual matrices in the human IL10 promoter

Family/matrix Opt. Position Strain Core sim. Matrix sim. Sequence

V$IRFF/IRF1.01 0.86 345–363 (+) 1.000 0.908 caaaaattGAAAactaagt
V$IRFF/IRF3.01 0.85 345–363 (+) 1.000 0.854 caaaaattGAAAactaagt
V$IRFF/IRF7.01 0.86 345–363 (+) 0.768 0.860 caAAAAttgaaaactaagt
V$IRFF/IRF2.01 0.80 345–363 (+) 1.000 0.825 caaaaattGAAAactaagt
V$IRFF/IRF1.01 0.86 521–539 (+) 0.765 0.861 tgcaaaacCAAAccacaag
V$IRFF/IRF2.01 0.80 521–539 (+) 0.750 0.812 tgcaaaacCAAAccacaag

Sites found using matrix families are marked in gray.

Table 3. Searching Sp1 sites with a fixed matrix threshold of 0.85 in the PHGPx promoter

Family/matrix Further information Opt. Position Strain Core sim. Matrix sim. Sequence

V$SP1F/BTEB3.01 Basic transcription element (BTE) binding protein, 0.93 162–176 (−) 1.000 0.855 gtacaGGAGtctcct
BTEB3, FKLF-2

V$SP1F/GC.01 GC box elements 0.88 385–399 (−) 0.764 0.875 ggcggGGCTgggctt
V$SP1F/GC.01 GC box elements 0.88 390–404 (−) 1.000 0.957 gcttgGGCGgggctg
V$SP1F/SP1.01 Stimulating protein 1 SP1, ubiquitous zinc finger TF0.89 495–509 (+) 1.000 0.891 ccgagGGCGggcaag
V$SP1F/GC.01 GC box elements 0.88 546–560 (+) 0.876 0.921 tgaggGGAGgagccg

Sites exceeding the optimized matrix threshold are marked in gray.

The following example shows that the effect of optimized mat-
rix thresholds is also biologically meaningful. When searching Sp1
binding sites in the murine PHGPx (Gpx4: glutathione peroxidase 4)
promoter with optimized matrix similarity, three matches are found.
All three Sp1 sites have been reported to be important for expression
regulation of thePHGPx gene (Uferet al., 2003). Searching with a
fixed threshold of 0.85 results in two additional putative Sp1 matches
without known function (Table 3).

Another example is the human RANTES promoter (Chr. 17, contig
NT_0170799, 8944188–8944857, 670 bp), which has been extens-
ively experimentally analyzed. To date at least 10 TFBS have been
functionally verified (Fesseleet al., 2002). The introduction of the
family concept combined with optimized matrix thresholds reduced
the number of total matches by 302 (75%) while missing only a single
functional binding site (10%) as compared with individual matrices
with a fixed threshold of 0.85 (Table 4).

Matrix library
The matrices in the MatInspector library are derived from single
publications with either a nucleotide distribution matrix or a list of
binding sites or from several papers where individual binding sites
were published. In contrast to other approaches, the library is not
supposed to represent all literature regarding a single TFBS but rather
the best of current knowledge in terms of specificity and sensitivity of
the resulting PWM. Thus, putatively erroneous binding sites are not
represented in a matrix and the strand orientation for some binding
sites might be inverted in comparison with the respective literature.
Matrices that do not reach the quality thresholds are automatically
removed from the MatInspector library. Quality thresholds are the
number of binding sequences (at least 4) and the number of matrix
matches expected in a random sequence of 1000 bp (<5).

Table 4. Number of MatInspector matches with different settings on 670 bp
of the human RANTES (CCL5) promoter

Search mode Number of
matches

Number of
functional TFBS (10)

Threshold= 0.85/individual matrices 402 8
Threshold= 0.85/families 291 8
Optimized matrix threshold/individual 151 7

matrices
Optimized matrix threshold/families 100 7
Reduction in match number 302 (75%) 1 (10%)

The current library (version 5.0, February 2005) of MatInspector
contains a total of 634 matrices in 279 families (Table 5), divided
into the sections vertebrates, plants, fungi, insects and miscellaneous
for TFs and a section of others, which contains patterns like PolyA
signals. Matrices are not species-specific since TFs have been shown
to bind cross-species, e.g. human promoters work very well in mouse
as shown in Sarseroet al. (2004). The matrices are built from a
minimum of 4 and a maximum of 389 binding sites (mean= 26.5).
The length of the matrices is between 5 and 29 bp (mean= 16.6).

Until now 1454 human genes have been assigned a TF activity
(LocusLink, GeneOntology). Of these, 322 TFs cannot be described
by a nucleotide weight matrix as they either have no sequence-
specific DNA binding site (e.g. HMG with non-specific DNA binding
like chromatin proteins HMG14/17) or do not bind any DNA (e.g. the
TAF family of cofactors of the TATA binding protein). A significant
number of the remaining 1132 human TFs is represented by a matrix
of the MatInspector library (590) or is in the pipeline for the creation
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Table 5. Number of matrix families and matrices in the MatInspector library version 5.0

Library section Number of
matrices

Number of
families

Families
with 1 matrix

Families
with 2 matrices

Families
with 3 matrices

Families
with 4 matrices

Families
with >5 matrices

Vertebrates 409 150 67 33 18 6 26
Plants 126 58 35 12 2 3 6
Fungi 43 32 23 8 0 1 0
Insects 40 27 19 5 1 2 0
Miscellaneous 8 7 6 1 0 0 0
Others 8 5 4 0 0 1 0

of a new matrix. However, there is a large number of TFs (∼300)
for which no binding sites have yet been described in the literature
(e.g. the repressor function of KRAB domain zinc finger proteins has
been described in fusions with heterologous DNA binding domains
yet in lack of natural targets). For the remaining TFs, the currently
known bindings sites were insufficient for matrix generation. The
MatInspector library will be continuously expanded until all known
DNA-binding TFs are represented.

The vertebrate matrix families additionally include information on
tissue associations of the TFs. They have been determined by semi-
automatic analysis of all PubMed abstracts. A list of synonyms for
each of the TFs in a family was generated, using LocusLink. PubMed
abstracts were then scanned with these synonym lists and the asso-
ciated MeSH terms representing tissues were recorded. Assignment
of tissues to TFs followed the tree of MeSH terms (MeSH Browser
NCBI), i.e. if a co-citation with a specific subtissue was found the
parental tissue was also recorded (e.g. Langerhans islets as subtissue
and pancreas as parental tissue). Tissue association was primarily
done automatically by the following criteria: (1) the number of co-
citations of a factor with a specific tissue MeSH term must exceed
a fixed threshold, (2) the number of citations for that tissue must
exceed a fixed threshold and (3) the co-citation frequency of factor
and MeSH term must be overrepresented with regard to the calcu-
lated expected co-citation frequency within all abstracts with any
synonym and tissue MeSH term.

The automatically generated list of TF–tissue associations was
manually checked to eliminate obviously wrong associations arising
from ambiguous usage of TF synonyms or extremely unequal dis-
tribution of examined tissues. It should be noted that the tissue
associations derived statistically from literature do not necessarily
reflect tissue-specific expression since gene expression may change
drastically in development or disease. However, we found that our
scheme of extracting tissue associations from literature works well as
a first approximation of tissue-specific TF expression. MatInspector
searches can be filtered for TFs associated with specific tissues.

TOOLS BASED ON MATINSPECTOR

Designing regulatory sequences
Regulatory sequences usually contain many sites capable of binding
TFs, and the selection, which TFBS are functional for transcriptional
control, depends on the biological context. Experimental expression
analysis using expression vectors, therefore, may be affected by addi-
tional TFBS in the vector as the number and combination of relevant

TFBS may be influenced by the experimental conditions. One way
to prevent this is to remove all potential TFBS from the sequence
of the expression vector except those necessary for the experiment.
This is ideally achieved by point mutations, since the deletion of com-
plete binding sites or even single nucleotides can change the distance
between functional binding sites and thus influence the interactions
of binding proteins.

In addition, potential side effects have to be considered; for
example, deleting one binding site might remove additional overlap-
ping binding sites from the sequence or might result in the generation
of a new binding site. To make this kind of sequence design feas-
ible even for larger sequences, the program SequenceShaper was
developed (available within GEMS Launcher, www.genomatix.de).
It systematically evaluates which and how many nucleotide substitu-
tions are required to delete a specified set of TFBS. The modifications
can be restricted to preserve other TFBS and to prevent the genera-
tion of new sites. Even the coding potential of a sequence (ORF) can
be preserved. The number of nucleotides modified is minimized.

Figure 2 shows a representation of a fragment of the promoter of
the humanHLA-B gene. It contains 12 putative TFBS, two of which
(NF-kappaB, IRF) are known to be functional in HeLa cells (Johnson
and Pober, 1994). In other cell lines with a different composition of
TFs the functionality of these sites may be affected owing to the
overlapping character of the other potential binding sites. Analyzing
the sequence with SequenceShaper results in the exchange of 17 nt.
The modified promoter sequence only contains the two TFBSs for
NF-kappaB and IRF. Thus, it is possible to modify known regulatory
sequences or to design completely new sequences merging different
functional elements into a new context.

Analyzing promoters for common TFBS
Although MatInspector can find most true positive TFBS matches
and reduce the amount of false positive matches in a promoter
region, not all sites found are necessarily functional in the par-
ticular biological context. A first step in examining functionality
is a comparative promoter analysis. Promoters sharing a common
function, e.g. promoters responsive to interferon or a set of actin
promoters from different species can be compared. A binding site
that occurs in most promoters—particularly at a similar relative pos-
ition within the promoters—is presumably evolutionarily conserved
and this represents supporting evidence that the site may be func-
tional. As a first step to in-depth promoter analysis the ‘common
sites analysis’ together with a concise graphical display of the res-
ults was added to MatInspector’s capabilities. Displayed are only
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Fig. 2. Targeted elimination of TFBS. (A) Alignment of the 60 bp fragment of the HLA-B promoter containing the NFκB/IRF module. The modifications in
HLA-B mod were determined by SequenceShaper to remove additional TFBS. (B) Overview of TFBS detected by MatInspector in each of the two sequence
versions.

matches to matrices that are common to a user-defined percentage
of input sequences (default 90%). In the following example a set
of six promoter sequences for muscle actin genes from human and
mouse was analyzed by MatInspector for TFBS common to all input
sequences (Fig. 3).

This analysis for common TFBS in co-regulated promoters can
reduce the number of relevant TFs dramatically. Figure 3 already
reveals a recurring pattern of TFBS in muscle actin promoters,
consisting of 2–4 SRF sites and a TATA box which is conserved
throughout all sequences (Klingenhoffet al., 1999).

Detecting TFBS in aligned regions of orthologous
promoters (DiAlignTF)
The functional conservation of TFBS can also be evident on
sequence level. This has been shown recently for theαT-catenin
gene (CTNNA3) (Vanpouckeet al., 2004) and for (Gfi1) growth
factor independent 1 (Doanet al., 2004). Both publications show
a multiple alignment of three orthologous promoters where the con-
served TFBS are manually assigned. This task can now be performed
automatically by DiAlignTF, a combination of MatInspector with
the multiple alignment program DiAlign (Morgensternet al., 1998).
DiAlignTF is available from within the GEMS Launcher package at
www.genomatix.de.

DiAlign is especially suited for alignment of regulatory sequences
where only small fragments are conserved as it is able to detect
local similarities in otherwise unrelated sequences. DiAlignTF dis-
plays TFBS located at the same position within the alignment as

coloured boxes. Optionally, all TFBS identified by MatInspector
or TFBS common to a user-defined percentage of the sequences
can be displayed alongside the alignment. Similar tools for iden-
tification of evolutionarily conserved TFBS are rVista (Loots and
Ovcharenko, 2004), ConSite (Sandelin and Wasserman, 2004) and
CONREAL (Berezikovet al., 2004). However, all these tools are
able to only compare two sequences but not multiple sequences like
DiAlignTF.

The following example shows how DiAlignTF can be used to
reduce the list of potential TFBS to the most likely functional
matches. Six rbcS (ribulose bisphosphate carboxylase small sub-
unit) promoters of different plant species are aligned and searched
for plant TFBS conserved in the alignment. In each of the six pro-
moter sequences (average length 310 bp)∼30 potential plant TFBS
are found using default MatInspector parameters (data not shown).
From these 30 TFBS, DiAlignTF identifies only 4 also conserved on
sequence level: an I-box element, a G-box element, an ABA response
element (ABRE) and the TATA box (Fig. 4). The I-box and the G-box
elements are functional TFBS, they have been identified experiment-
ally as light-responsive unit of the rbcS promoter for tomato (Baum
et al., 1997) and tobacco (Martinez-Hernandezet al., 2002). ABRE
that overlaps with the G-box is also known to be involved in light
regulation.

Finding organizational promoter models
The regulation of genes is precisely controlled by the different com-
binations of TF-bound sites in various cell types (Werneret al.,
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Fig. 3. TFBS common to all sequences in a set of six muscle actin promoters. Different colors denote different transcription factor families (turquoise, SRF;
pink, PAX5; blue, TATA-binding protein factor/TBPF; dark green, CMYB; purple, ETS; light green, MAZF).

Fig. 4. TFBS conserved in the alignment of six rbcS promoters from different plant species. The color code of the matrix families is shown above the alignment.
An asterisk below the alignment indicates identical nucleotides.
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Fig. 5. Matches to a common promoter module found in the entire muscle actin promoter set. The module consists of two SRFs and a TATA site in a conserved
distance. SRF and TATA sites are depicted in turquoise and blue, respectively.

2003; Boehlket al., 2000). A prime example is the regulation of the
RANTES/CCL5 gene (Fesseleet al., 2002). The promoter sequence
of this chemokine contains six TF binding regions harboring 10 dis-
tinct TBFS that were assessed experimentally in five human cell types
under both stimulated and unstimulated conditions. It was shown that
various subsets of the six binding regions (each containing several
TFBS) play a role in the regulation of the gene in different tissues.
Each of the TFBS was relevant for some tissues but nonessential in
others as was determined by mutation experiments.

The identification of individual matrix matches is, therefore, usu-
ally only the first step in promoter analysis; the subsequent aim
will be the identification of more complex promoter models, i.e.
functional units of a promoter consisting of at least two TFBS in con-
served order. The so-called promoter modules form a functional unit,
allowing synergistic or antagonistic effects for a specific activation
or repression of a gene.

For the automatic detection of modules and more complex models
only those combinations of TFBS are analyzed that are situated in
a common order and distance from each other. This requires a pro-
gram that analyzes the TFBS found by MatInspector with respect to
their organization, i.e. their relative position. This program, called
FrameWorker, is available at www.genomatix.de within the program
package GEMS launcher. Constraints to be given by the user are
the quorum (i.e. the minimum number of sequences to contain the
model), a minimum and a maximum distance between the TF sites
within a model. FrameWorker lists all models up to a given num-
ber of elements that are found to be common to the input sequences
together with a graphical display. A model consists of the matrix
families involved, the distance range between the elements and their
sequential order.

The common pattern of TFBS automatically found in the muscle
actin set consists of two SRF sites in a distance of 40–91 bp, fol-
lowed by a TATA box in 42–80 bp distance (Fig. 5, parameters:
quorum = 100%, 10–100 bp distance between elements). This
promoter model is part of a more complex muscle-specific actin
promoter model consisting of seven elements including SRF, TATA
and SP1 as described and evaluated in Klingenhoffet al. (1999).

This promoter model can now be used to scan DNA sequences (e.g.
the complete human genome) for the occurrence of pattern matches.
When searching a database of 55 207 human promoters (Genomatix
promoter database, 35 million basepairs), 49 of them contain the
model, 23 of which are promoters of unknown genes correspond-
ing to cDNAs generated by the oligocapping method (Otaet al.,
2004), 4 are annotated as unknown or hypothetical proteins. The
remaining 22 matches include the promoters for alpha1 actin, alpha2
actin, gamma2 actin, myosin, fibulin and tachykinin receptor 2. All
these genes are associated with muscle development and are likely
to be regulated by a common mechanism involving the TFBS of the
model. Searching the promoter database for single matches to SRF
or TATA results in 23 620 and 35 145 promoters, respectively with at
least one site. Furthermore, 16 514 promoters contain both SRF as
well as TATA. This demonstrates that frameworks with their inher-
ent constraints are orders of magnitude more selective than simple
co-occurences of matrix matches.

DISCUSSION
Similar to the well-known maps of metabolic pathways that describe
pathways potentially used by a cell to accomplish metabolic pro-
cesses, regulatory networks describe regulator–gene interactions that
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show potential pathways a cell can use to control gene expression.
Knowing at least parts of these networks is important to understand
the molecular underpinnings of cell life, which may later on help to
eliminate side effects when developing new drugs. Promoter modules
provide the basis to understand regulatory networks involved in gene
expression, because they represent the molecular basis for integration
of several TF signals into one output (transcription or repression).
The most important features of TFBS prediction programs are the
highest possible coverage of known sites and the quality of mat-
rix descriptions in the library. The MatInspector matrix library is
designed to represent the best of current knowledge in terms of spe-
cificity and sensitivity regarding TFBS. The TRANSFAC database
(Matys et al., 2003) focuses on representing all available publica-
tions. There is a subset of∼70% of the matrices in TRANSFAC that
are marked as high quality matrices. The JASPAR database (Sandelin
et al., 2004a) is mostly based on SELEX experiments, leading to very
specific matrix descriptions not necessarily reflecting binding sites
in their genomic context.

There have been several approaches to replace or extend the matrix
model by methods taking into account dependencies between nucle-
otides at different positions within the binding site description (e.g.
via hidden markov models). However, the number of sites required
for training these methods ranges from at least several dozens (Locker
et al., 2002; Ellrottet al., 2002) to several thousands (Rouletet al.,
2002). For many TFs only far less samples are available, mak-
ing it impossible to apply such methods to the majority of binding
sites without extensive laboratory work to gain the required data.
Moreover, even if there is a sufficient number of samples for train-
ing, methods using positional dependencies do not always lead to
improved results (Barashet al., 2004). The matrix approach, there-
fore, still offers a feasible and valid method to detect binding sites
for a maximum possible number of different TFs.

Sandelin and Wasserman (2004) introduced a concept for related
families of TFs and constructed 11 familial binding profiles. Their
main goal was to predict the structural class of TFs interacting with
newly characterized binding sites and to enhance the sensitivity of
de novo pattern discovery methods. Our family concept is intended
to reduce redundancy within the matrix library. Schoneset al. (2005)
provided a methodology to compare frequency matrices allowing the
grouping of matrices into families. They generated 145 representat-
ives for families that were based on TRANSFAC (7.2) extended core
matrices and 36 representatives for the JASPAR database. We pre-
serve the original matrix information by assigning each matrix to a
family because searching with a representative would result in a loss
in specificity especially at flanking positions that do play a role in
discriminating similar but different binding sites [like in the EBOX
family where SREBP (sterol regulatory element binding protein) and
Myc/Max factors are present].

MatInspector can find the potential binding sites of various activ-
ators and repressors that bind to specific DNA regulatory sequences.
The concurrent expression of genes as observed in expression array
analysis, in particular, is in part orchestrated by sets of common
regulatory elements. These regulatory modules can be discovered as
shown in this paper and used to identify additional target genes with
similar regulatory properties in genomic sequence databases.

It should be stressed that such an analysis is complicated by the
fact that co-expressed genes in an expression array experiment are
not all necessarily co-regulated, as different regulation mechanisms
can lead to the same expression pattern. Effects like a secondary

cascade of transcription activation during the time course can divide
a co-expressed cluster of genes in subsets regarding co-regulation.
The careful selection of gene clusters is a crucial step for successful
promoter analysis.

Although there is a consensus that the inspection of single TFBS
in promoter sequences is not sufficient to fully understand gene reg-
ulation, it will remain one of the crucial first steps in the chain
of analytical events. FrameWorker, DiAlignTF or SequenceShaper
which are based on MatInspector are results of a consequent follow
up leading to understanding the regulatory networks on a molecular
level.
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