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ABSTRACT
Motivation: The DeCyder software (GE Healthcare) is the cur-
rent state-of-the-art commercial product for the analysis of two-
dimensional difference gel electrophoresis (2D DIGE) experiments.
Analyses complementing DeCyder are suggested by incorporating
recent advances from the microarray data analysis literature. A case
study on the effect of smallpox vaccination is used to compare the
results obtained from DeCyder with the results obtained by apply-
ing moderated t -tests adjusted for multiple comparisons to DeCyder
output data that was additionally normalized.
Results: Application of the more stringent statistical tests applied to
the normalized 2D DIGE data decreased the number of potentially
differentially expressed proteins from the number obtained from DeCy-
der and increased the confidence in detecting differential expression
in human clinical studies.
Availability: The marray and limma packages used here are available
from http://www.bioconductor.org/
Contact: fodor1@llnl.gov

1 INTRODUCTION
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) is a
technology by which thousands of proteins in a biological sample are
separated according to their isoelectric points and molecular weights
(O’Farrell, 1975; Görget al., 2000; Lilleyet al., 2002). In theory, each
protein is uniquely determined by its response along the two dimen-
sions of separation. Differences in the proteomes of multiple samples
can be studied by comparing the expression profiles of the proteins
on the gels. In traditional 2D PAGE, each gel contains one sample
which is compared with the samples on different gels, introducing
high experimental variability.

Ünlü et al. (1997) proposed 2D difference gel electrophoresis (2D
DIGE) as a method to overcome gel-to-gel variability inherent to 2D
PAGE. More recently, 2D DIGE has been commercialized through
the Ettan DIGE System of Amersham Biosciences (now a part of GE
Healthcare), thanks to the development of the three size and charge-
matched, spectrally resolvable CyDye fluors Cy2, Cy3 and Cy5. Gels
using the DIGE method contain three samples labeled with the three
distinct fluorescent dyes Cy2, Cy3 and Cy5. Typically, two dyes are

∗To whom correspondence should be addressed.

used to label two different biological samples of interest. The third
dye can be used to label the ‘internal standard’ which is a pooled
mixture of all the samples used in the experiment, and is identical
on all gels. The power of the internal standard is in its potential to
adjust for the variability between gels and thus make the data across
the experiment more comparable. The DeCyder differential analysis
software is a part of the Ettan DIGE System, and is used for analyzing
the data and quantifying the differential expression of the proteins
(Tongeet al., 2001; Albanet al., 2003; Amersham, 2003).

Although there are fundamental differences in 2D DIGE and
gene-expression microarray technologies, many of the difficulties
encountered in the analysis of 2D DIGE data are similar to prob-
lems that arise in the analysis of microarray experiments: proper
normalization of the data within and between the gels (arrays), mul-
tiple hypothesis testing and the quest for improved test statistics that
exploit the common information across the proteins (genes) (Huber
et al., 2002, 2003; Smythet al., 2003b; Dudoit and Yang, 2003; Cui
and Churchill, 2003). Since data from 2D DIGE experiments exhibit
similar characteristics to microarray datasets, we adapted methods
developed by researchers in the microarray field to address statistical
challenges in analyzing proteomic data from 2D DIGE.

Earlier studies based on DeCyder version 4.0 proposed robust
statistical methods and normalization techniques to complement
the analytical tools in DeCyder (Kreilet al., 2004; Karpet al.,
2004). We offer additional improvements in the assessment of dif-
ferential protein expression by combining related normalization
methods with novel statistical tests, based on a study with DeCyder
version 5.01.

2 APPROACH
To investigate the response of the human proteome on exposure
to smallpox vaccination, a proteomic study involving five human
subjects, before and at five time points after vaccination, was under-
taken. Based on literature indicating the advantages over other 2D
gel methods (Tongeet al., 2001; Albanet al., 2003), 2D DIGE
was selected as the technology platform. Blood samples were col-
lected from five volunteers at six time points before and after
vaccination, with informed consent under the Institutional Review
Board approval from Lawrence Livermore National Laboratory. The
samples were prepared and labeled following the manufacturer’s

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 3733

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/19/3733/210773 by guest on 19 April 2024

http://www.bioconductor.org/


I.K.Fodor et al.

Table 1. 2D DIGE experimental design. Each gel had three samples, two
corresponding to a subject sample with time of collection indicated (labeled
with Cy3 and Cy5) and a pooled standard that was common on all gels labeled
with Cy2

Time Subject
S1 S2 S3 S4 S5

T1: 1 h prior Gel 1 Gel 4 Gel 7 Gel 10 Gel 13
T2: 1 h post
T3: Day 1 Gel 2 Gel 5 Gel 8 Gel 11 Gel 14
T4: Day 3
T5: Day 7 Gel 3 Gel 6 Gel 9 Gel 12 Gel 15
T6: Day 14

protocol for 2D DIGE and included the removal of the six proteins
with highest abundance (Chromyet al., 2004). Details of the sample
processing are available from the authors. The resulting 30 samples
were arranged on 15 gels as shown in Table 1. The 30 biological
samples (five subjects, six time points) were analyzed by 2D DIGE
in triplicate, resulting in 45 total gels. In two replicates, on any
given gel, the sample corresponding to the earlier sampling time was
labeled with Cy3, whereas the sample corresponding to the later time
was labeled with Cy5. In one replicate, the dyes were swapped. All
gels contained an identical third sample, the pooled standard labeled
with Cy2. The scientific goal was to identify proteins that were dif-
ferentially expressed in response to smallpox vaccination, as a model
for smallpox. The aim of the present study was to investigate the res-
ults obtained with DeCyder and indicate possible improvements in
proteomic data analysis.

DeCyder version 5.01 was used for spot detection and matching
across the gels (Amersham, 2003). Both the Differential In-gel Ana-
lysis (DIA) and the Biological Variation Analysis (BVA) modules
were used: the former to codetect and quantify the spots on a given
gel in terms of the ratios of the Cy3 and Cy5 sample volumes to the
standard Cy2 volume, and the latter to match the spots and standard-
ize the ratios across the gels accounting for the observed differences
in the Cy2 sample volumes on the gels. For each gel, the spot bound-
aries obtained from the Cy2 image were copied over to the images
of the other two samples on the same gel. Since the internal standard
was identical on all gels, the software performed the matching only
on the internal standard images labeled with Cy2, without introdu-
cing sample-to-sample differences into the matching. The master gel
was chosen as the gel with the most spots. The other spot maps were
matched to the master image with a proprietary ‘pattern recognition
algorithm that matches one single spot in one gel to a single spot in
another gel based on its neighboring spots’ (Amersham, 2003). To
increase the accuracy of the automatic gel-to-gel matching, careful
manual landmarking was performed as recommended in the software
documentation.

The volume of a spot for a given dye is defined as the fluorescent
intensity of the corresponding dye integrated over the area of a spot.
Normalized volume refers to the volume normalized across the three
dyes and across the gels. One of the outputs DeCyder provides is
the ratio of the normalized volumes, also called the standardized
abundances, {

Rpg = VolCy5pg/VolCy2pg,

Gpg = VolCy3pg/VolCy2pg,
(1)

for each spotp and gelg in the experiment. VolCy5pg represents
the normalized volume of spotp on gelg in the Cy5 sample and
similarly for the other two dyes.

The statistical analyses in DeCyder are based on the standard-
ized protein log abundances, which are defined as the log10 of the
standardized abundances. In theory, the standardized log abundances
follow a normal distribution and are comparable across all spots
and gels.

The output from DeCyder was exported and analyzed in the R
computing environment (http://www.r-project.org/).

2.1 Fitting linear models to assess the differential
expression of proteins

The goal of the study was to detect proteins that showed differential
expression post-vaccination. Thus, all pairwise comparisons among
the six time points were of interest.

DeCyder provides two choices for determining if a protein is dif-
ferentially expressed between two groups: one based on the fold
change and the other on theP -value from the traditional Student’s
t-test. Fold change is calculated as the ratio of the average standard-
ized abundances corresponding to the two samples. IfS̄p1 andS̄p2

denote the average standardized abundance of proteinp in groups
i = 1 and 2, respectively,

S̄pi =
∑

Rpg∈Groupi Rpg + ∑
Gpg∈Groupi Gpg

|Rpg ∈ Groupi | + |Gpg ∈ Groupi | , (2)

then the corresponding fold change is

Fp =
{

+S̄p1/S̄p2 for S̄p1 > S̄p2,

−S̄p2/S̄p1 for S̄p1 < S̄p2.
(3)

A k-fold expression increase/decrease is reflected in a+k/−k value
of Fp; no change corresponds toFp = 1.

A common way to assess the differential expression of the proteins
is to combine the two measures and find the proteins that exceed a
predetermined fold change with a predetermined significance.

In the microarray literature it has been shown that in order to test
for the differential expression of many genes in parallel, the tra-
ditional Student’st-test can be improved upon (Cui and Churchill,
2003). One common approach is to adjust the gene-specific standard
deviation estimates with adjustment factors calculated from a lar-
ger set of genes. The idea is to take advantage of the fact that the
same model is fit across all genes. The detail lies in specifying how
the gene-specific parameters and variances differ. Improved statist-
ics based on empirical methods have been suggested in Baldi and
Long (2001) and Efronet al. (2001). The moderatedt-statistic intro-
duced in Lönstedt and Speed (2002) and further explained in Smyth
(2004) (http://www.bepress.com/sagmb/vol3/iss1/art3) is based on a
hierarchical, hybrid classical/Bayes model and has been shown to
follow a t-distribution under certain assumptions.

In addition to the traditionalt-statistics, the moderatedt-statistics,
as implemented in Smythet al. (2003a), was also used in this study
in order to determine the differential expression of proteins. The
problem was cast in a general linear modeling framework which
facilitated testing using both methods. Consider the model

ypij = αpi + εpij, (4)

whereypij is the standardized log abundance of replicatej at time
Ti of protein spotp, αpi is the unknown expression level of protein
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spotp at timeTi andεpij is a random error, forp = 1, . . . , 2384
(number of spots),i = 1, . . . , 6 (number of time points) andj =
1, . . . , 15 (number of replicates at each time). To follow the analysis
with DeCyder, the 3 replicates of the 5 subjects were treated as
15 replicates.

For a given spotp, let yp denote the vector of the 90 observations
at that spot, ordered according to time: the first 15 values are the
replicates at timeT1, followed by the 15 replicates at timesT2, T3,
T4, T5 and T6. Similarly, let εp denote the corresponding vector
of random errors. Ifαp = (αp1,αp2, . . . ,αp6)

T, then the model in
Equation (4) can be written in matrix terms as

yp = X αp + εp, (5)

where the design matrixX has size 90× 6, and itsi-th column
has 15 ones in itsi × 15th positions fori = 1, . . . , 6, and is zero
everywhere else.

Testing the equality of the expression levels at different times can
be easily specified with appropriate contrasts, or linear combinations
of the parameters. For example, testing the null hypothesis that the
expression level of spotp at timeT1 is equal to the expression level
at timeT2,

H0 : αp1 = αp2, (6)

is equivalent to
H0 : βp12 = 0, (7)

where
βp12

.= CT αp = (−1 1 0 0 0 0) αp. (8)

For each spot in the experiment, the 15 pairwise comparisons
among the six time groups were performed, using both the tradi-
tional (corresponding to the results from DeCyder) and the moderated
t-statistics.

2.2 Normalizing the standardized log abundances
The distribution of the standardized log abundances showed sys-
tematic biases within the gels and had different ranges across the
gels. Since both of these problems have been encountered by the
microarray analysis community, methods developed to address these
issues in microarrays were investigated. Specifically, the limma
Norm package from the Bioconductor project (Smythet al., 2003a)
was used.

To perform the additional normalizations, the standardized abund-
ances in Equation (1) were first transformed into theM − A space,
where {

Mpg = log2(Rpg/Gpg),

Apg = 1/2 log2(Rpg × Gpg).
(9)

Apg measures the Average, andMpg (Minus) the difference between
the intensities of the two samples (samples labeled with Cy3 and
Cy5, respectively) on a log scale at spotp on gelg. Assuming that
the majority of the proteins were not differentially expressed between
the two conditions, the plot ofMpg versusApg (MvA) for a given
gel should result in a random scatter around the zero-line with no
systematic trends. Observed systematic variations may be the res-
ult of different labeling efficiencies for the Cy3 and Cy5 dyes, as
well as different scanning settings and gel effects. In microarrays,
dye imbalances often vary according to the average spot intensity
A (Smythet al., 2003b). The MvA plots for the 45 gels exhibited

systematic trends which depended on the value ofA (Fig. 4a and 4b);
therefore, local intensity-dependent regression lines through the data
were fitted using the loessFit function inR. Next, theM-values were
replaced by the residuals from the fit which resulted in pattern-free
MvA plots (Fig. 4c and 4d). The second normalization step used
boxplots for between-gel normalization (Fig. 5). It involved compar-
ing the ranges of the regression-correctedM-values across the 45
gels, and scaling them so that the middle 50% of the data on each
gel spanned the same range.

LetM̃pg andÃpg denote the corrected values after the MvA normal-
ization within gels and boxplot normalization between gels. Next,
the inverse transformation of Equation (9) was used to transform
M̃pg and Ãpg back to the original RG scale, and obtain the nor-
malized standardized abundancesR̃pg and G̃pg corresponding to
Equation (1). The standardized abundances from DeCyder were thus
further normalized.

The linear model fitting described in Section 2.1 was repeated at
each of the spots, using the log10 ofR̃pg andG̃pg as the response vari-
able in Equation (4). The model was identical to Equation (5), except
that the data at each spot consisted of the 90 normalized standardized
log abundances instead of the 90 standardized log abundances.

2.3 Adjusting the P -values
Another challenge in the analysis of 2D DIGE data that is shared
with the microarray data analysis community is the massive mul-
tiple hypothesis problem (Shaffer, 1995). Regardless of the data
used and the testing procedure employed, the resultingP -values
need to be adjusted because numerous tests are performed simul-
taneously. The unadjustedP -values that result from the individual
t-tests applied separately at each time point pair and at each spot
are too optimistic. At theα = 0.05 significance level, 1 every 20
tests is expected to result in aP -value less thanα just by chance.
As the number of tests increases, so does the number of false posit-
ives. Several adjustment methods have been proposed. The simplest
one is the Bonferroni correction, which multiplies the unadjusted
P -values by the total number of tests performed. A less stringent,
but more practical approach for the present case is the false discov-
ery rate method of Benjamini and Hochberg (1995). LetR denote
the total number of rejected hypotheses, andV the number of falsely
rejected hypotheses, out from the total number of simultaneous tests.
Then, the realized False Discovery Rate (FDR) is defined asV /R,
for R > 0, and 0 otherwise. SinceV is unobserved, Benjamini and
Hochberg (1995) developed a sequentialP -value procedure that con-
trols theexpected value of the FDR,E(FDR), under the assumption
that the test statistics are independent. The resulting process controls
E(FDR) at the fixed levelα for any joint distribution of theP -values.
Although the independence assumption is not always satisfied, the
FDR method is often used because of its simplicity. Since its results
are preferable over the unadjustedP -values, here the FDR procedure
in R was used.

3 RESULTS
Figure 1 displays the standardized log abundance data for one protein
spot. Assuming that a protein was present in all the samples and that
its corresponding spot was found and matched across all 45 gels,
there should be 15 values at each time point: three replicates for
each of the five subjects. For spot 1186, the third replicate of gel 8
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Fig. 1. The standardized log abundance for one spot. Numbers indicate gels,
letters stand for replicates, and colors represent subjects. The dotted line
connects the averages at the six time points.
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Fig. 2. Histogram of the number of gels a spot was matched on: 2384 spots
and 45 gels.

is missing, evidenced by the two green lines connecting Day 1 and
Day 3 in Figure 1.

A total of 2384 spots were identified on the master gel, defined to
be the gel containing the most spots. Figure 2 presents the histogram
of the number of gels a spot was matched on. Fewer than 150 spots
were matched on at least 40 of the 45 gels. The less stringent criterion
requiring at least five observations at each time point resulted in 1026
spots.

3.1 Results with the Student’s t-statistic using the
standardized log abundances

Table 2 presents the number of spots with>1.5-fold change, and with
P -value<0.05, for each of the 15 pairwise comparisons involving
the data at two time points. The response was the standardized log
abundance and the test was based on the traditionalt-statistics. The
values in the unadjusted columns used the unadjustedP -values that
resulted from performing the traditionalt-tests independently at each
of the spots and time pairs. The fold changes and theP -values corres-
ponding to the individual spots under the unadjusted heading match
the results given by DeCyder. The FDR-adjusted columns refer toP -
values that were adjusted for the multiple comparisons. Comparing

Table 2. The number of spots with>1.5-fold change andP -value≤0.05.
Pairwise tests using the standardized log abundances and Student’st-test

Unadjusted FDR-adjusted
T2 T3 T4 T5 T6 T2 T3 T4 T5 T6

T1 7 47 62 53 54 0 8 11 8 11
T2 47 53 71 59 11 15 8 11
T3 3 32 49 1 5 13
T4 55 58 9 19
T5 8 1
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Fig. 3. Sorted FDR-adjustedP -values for the pairwiset-tests that compare
the average standardized log abundances at timeT1 to the subsequent time
points.

the corresponding numbers under the unadjusted and FDR-adjusted
cells in Table 2 illustrates the effect of adjusting for multiple com-
parisons. The number of ‘interesting’ spots decreases dramatically
after the multiple statistical hypothesis testing problem is addressed.

When aggregating the possibly overlapping results of the 15 pair-
wise comparisons, a total of 310 unique spots had>1.5-fold change
and unadjustedP -value <0.05 in at least one pairwise test. The
corresponding number based on the FDR-adjustedP -values was 83.

Figure 3 displays the sorted adjustedP -values from the pairwise
t-tests calculated at each spot comparing the five subsequent times to
T1. A possible explanation for the unique shape of the T2 versus T1
curve (solid) compared with the other curves in Figure 3 is the fact
that the T2 versus T1 comparisons involved spots from the same gels,
whereas the others compared spots from different gels. Example stat-
istics for the number of spots included in the intragel versus intergel
comparisons for Subject 1 were: T2 versus T1: 1133 spots (equal to
the number of spots on gel 1a that were matched with the spots on
the master gel), T3 versus T1: 714 spots (the number of spots on gel
1a that were matched with the spots on both gel 2a and the master
gel), T4 versus T1: 714 (same as for T3 versus T1), T5 versus T1:
780 spots (the number of spots on gel 1a that were matched with the
spots on both gel 3a and the master gel), T6 versus T1: 780 (same
as for T5 versus T1). Similar trends existed for the other subjects
as well: more (and better matched spots) for intragel comparisons,
fewer (and less well matched) spots for intergel comparisons.
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Fig. 4. The MvA plots for gels 12a and 14a: (a) and (b) based on the standardized log abundances from DeCyder, (c) and (d) the corresponding results after
the loess normalization. The titles reflect the number of spots from the given gel matched to spots on the master gel.

Table 3. The number of spots with>1.5-fold change and FDR-adjusted
P -val ≤0.05. Pairwise tests using the moderatedt-statistics and (a) the
standardized log abundances and (b) the normalized standardized log
abundances.

(a) (b)
T2 T3 T4 T5 T6 T2 T3 T4 T5 T6

T1 1 3 4 3 0 1 4 4 0 0
T2 4 9 5 2 7 7 5 6
T3 1 2 2 0 4 2
T4 3 2 4 4
T5 1 0

3.2 Results with the moderated t-statistic using the
standardized log abundances

Panel (a) of Table 3 is similar to the FDR-adjusted panel of Table 2,
and presents the corresponding results obtained using the moderated
t-statistic along with the standardized log abundances. Results with
the unadjustedP -values were generally higher, but overall compar-
able to the unadjusted results in Table 2. Aggregating the results of
the FDR-adjustedP -values from panel (a) of Table 3 from all 15
pairwise tests resulted in 13 unique spots.

3.3 Results with the moderated t-statistic using the
normalized standardized log abundances

Figure 4 displays MvA plots for two gels, before (a, b) and after
(c, d) the normalizations within the gels. The data for most of the
other gels showed similar characteristics. Figure 5 shows the effect
of the additional between-gel normalization step. Figure 5a displays
the boxplots of theM values based on the output from DeCyder.
Differences among the gels are clearly visible, especially for gel 3c
which had a higher interquartile range (the middle 50% of the data

values within the boxes of the boxplots) than any of the other gels.
The unusual distribution for gel 3c was probably caused by problems
specific to either that gel or the processing of that gel, as the corres-
ponding distributions for replicates 3a and 3b did not exhibit such
anomalies. Figure 5b presents the corresponding results after within-
gel normalization. Consequent to the local regression fit, the boxplots
in Figure 5b are all centered around zero. However, the interquartile
ranges show differences across the gels. The between-gel normaliz-
ation step brings the interquartile ranges of the gels onto the same
scale, as shown in Figure 5c. After the MvA normalization within
arrays and boxplot normalization between arrays, the normalized
standardized log abundances corresponding to the six time points in
the experiment were obtained as described in Section 2.2. Figure 6
displays the result for spot 1186 whose standardized log abundance
data were shown in Figure 1.

Panel (b) of Table 3 presents the number of spots with a>1.5-
fold change and FDR-adjustedP -value≤0.05, using the normalized
standardized log abundances as the response variable and testing
with the moderatedt-statistics. Combining the results of the 15
pairwise tests resulted in 13 unique spots. Results with the unad-
justedP -values were generally higher, but overall comparable to the
unadjusted results in Table 2.

4 DISCUSSION
Figure 7 aggregates the results of the three FDR-adjusted methods
in Section 3 in a Venn diagram. The numbers in the circles represent
unique spots. Of the eight spots commonly identified by all three
adjusted methods, only one spot (2196) had enough observations to
be of practical interest from a statistical perspective, loosely defined
here as having at least five observations at each time, irrespective
of which subject the available replicates belonged to and keeping in
mind that subject variability and host response could result in differ-
ential expression. Of the three spots commonly identified by TAdjs
and NormModTAdj, two (1506 and 1596) contained the required
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number of data points. Being identified by more than one adjusted
method suggests a higher confidence that these spots represent pro-
teins that are indeed differentially expressed. Confirmation requires
protein identification by mass spectrometry followed by further val-
idation experiments. The three spots identified only by the ModTAdj
method, the two spots identified only by the NormModTAdj method
and the two spots commonly identified by TAdjs and ModTAdj, each
had less than five values per time point, so in this case were not con-
sidered although important information may still be found from these
patterns.
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Fig. 6. The normalized standardized log abundance data corresponding to
Figure 1.

Fig. 7. Venn diagram comparing the results based on the three FDR-adjusted
methods in Table 2 (TAdj), Panels (a) (ModTAdj) and (b) (NormModTAdj)
of Table 3.

Several factors contributed to the higher complexity of this clinical
study, as compared with other published 2D DIGE experiments: (1)
the choice of using human blood, one of the most complex proteomes
with estimates of 100 000 circulating proteins with a wide dynamic
range in concentrations; (2) subject-to-subject variability within the
five vaccinees; (3) challenges of variable host immune response; (4)
the large number of gels involved. In addition, the gels were prepared
in-house. Although the extent of the following challenges is expected
to be less severe in simpler experiments, the qualitative conclusions
drawn here remain valid for other 2D DIGE studies as well. Our
preliminary findings with precast gels (whose reproducibility has
been improving in recent years) suggest significant improvements
in the quality of the data.

4.1 Normalization
We found evidence for inadequate normalization of the data within
and between the gels. Our results agree with other recent findings
(Kreil et al., 2004; Karpet al., 2004), and indicate the need to
develop better techniques. Since the global characteristics of the data
resembled data from microarray experiments, we suggested meth-
ods developed in that community as possible ways to improve the
normalization of proteomic data from 2D DIGE.
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4.2 Accounting for multiple comparisons
Whenever there are multiple hypothesis tests, the observed signific-
ance levels have to be adjusted. Here the FDR method was used.

4.3 Matching spots across gels
Although the spot matching rates observed in this study may seem
low, there are no reports upon which to compare our results for a
human plasma clinical study. Published studies citing 52% (Alban
et al., 2003) and 67% (Yanet al., 2002) of spots matched on gels
relied on far fewer gels (12 and 8, respectively) and the use of simpler
biological samples (Escherichia coli) which would not be affected
by genetic variability characteristic to human subjects. In addition,
differences in spot matching can be attributed to the wide isoelec-
tric point (pI) and molecular weight (mw) region used in our study:
non-linear pI range 3–10, mw range 200–20 kDa. By targeting a
narrower pI or mw region, protein spots would be better resolved
with improved subsequent matching results. The number of spots
specified as an input to the DeCyder algorithm also affects the res-
ults. The strategy in this study was to start with a large initial spot
number(2500) in order to maximize detection of small-abundance
proteins. The large number of spots specified, however, could lead
to the inclusion of dust particles or other artifacts. Thus, the current
state of the technology is not fully automated, and all potentially
interesting spots should be manually verified.

4.4 Spot migration
Microarrays consist of a fixed grid of spots, where each spot contains
a unique DNA sequence from a known gene. In contrast, proteins
migrate through the gels according to their pI and mw. Genetic dif-
ferences between subjects and post-translational modifications may
result in certain protein spots missing from certain gels, or the ‘same’
protein migrating slightly differently on the gels. The challenge is
to untangle the biological differences in protein expression from dif-
ferences owing to experimental variation. Spot migration is thus one
fundamental difference between microarrays and gels that needs to
be addressed, in particular as it relates to spot matching and model
development. The mechanistic approach of this paper to ignore spots
with poor matching was only a first attempt to understand the data.
More sophisticated methods that take into account the underlying
biology should be developed, as unmatched spots between subjects
may hold information of biological interest.

4.5 Intragel versus intergel comparisons
Although the internal standard is used in 2D DIGE to guarantee that
all spots are comparable across all gels, we found evidence to the
contrary. The distinct shape of the T2 versus T1 curve, compared
with all other time points in Figure 3, points to the different nature
of comparing samples from the same gel and comparing samples
from different gels. Such differences are most likely because of the
imperfect intergel matching. The distinct pattern of the T2 versus T1
curve persisted over the T4 versus T3 and the T6 versus T5 compar-
isons, but not over the other pairwise comparisons. To minimize the
effects of matching, samples of most interest in comparing should be
placed on the same gel. Improvements in spot detection and match-
ing should mitigate the differential effects observed in the intergel
comparisons. Performing the spot detection separately on each gel
image (instead of only on the Cy2 images) may increase the accuracy.
The high complexity of the internal standard may have contributed to
the poor matching. Perhaps a simpler internal standard consisting of

all the T1 samples, or including on all gels an identical T1 reference
sample labeled with either Cy3 or Cy5, would have led to superior
results. These and other alternatives should be explored, balancing
the cost of running the experiment with the quality of the results.

4.6 Statistical modeling
Proper experimental design should be an integral part of any experi-
ment. The design in Table 1 was chosen following recommendations
in Amersham (2003). To formulate the optimal design for a given
experiment, we advocate interaction with statisticians on the alloca-
tion of the samples to the gels, and on proper randomization. Results
for microarrays (Kerr and Churchill, 2001) could be extended.

The linear modeling framework of Smythet al. (2003a) used
here provides a flexible extension to the simple tests provided in
DeCyder. Testing additional hypotheses involving different subsets
of the subjects and the time points amounts to specifying different
design matrices and contrasts, then proceeding with the estimation
as described within. Functionality in R allows one to fit the linear
models using robust techniques that minimize the effects of outliers.
Accounting for the different number of data points at the different
spots is automatically included in the models.

Although the moderatedt-test provides an alternative to the
Student’st-test for pairwise comparisons, other methods are also
possible. From a statistical perspective, a more appropriate way to
analyze the data is to fit a mixed effect model at each spot, treating
the subjects as five blocks and the gels as two blocks within the sub-
jects (Pinheiro and Bates, 2000). Then, one test at each spot is used
to determine if there are any differences among the six time points.
Including the block effects improves the estimation of the time effects
of interest, and separates the biological replicates from the technical
replicates. The two-factor Analysis of Variance (ANOVA) model in
DeCyder only supports fixed effects, and is unable to model the ran-
dom subject and gel effects. Since both the subjects and the gels are
samples from larger populations, random effects are appropriate for
them. We performed the described mixed-effect modeling at each
spot, and found four spots with FDR-adjustedP -value for a time
effect <0.05 and at least a 1.5-fold change between any two time
points. Of the four spots, one spot (2196) was previously selected
by all three adjusted methods. Since spot 2196 was identified by a
number of different methods, it has the highest confidence that it
is indeed an example of a differentially expressed protein following
smallpox vaccination.

The statistical models used here have certain assumptions, such as
normality of the errors and independence of the observations. How-
ever, these models can be used in an exploratory fashion even if the
data exhibit departures from the assumptions (Smyth, 2004). Further
model developments should incorporate more realistic assumptions
about the data. In addition, they should also take into account the
state of the proteins, which will require close collaboration between
the proteomics and statistics communities.

5 CONCLUSION
The 2D DIGE technology plays an important role in proteomics, and
rigorous data analysis techniques are essential in quantifying the dif-
ferential expression of proteins between biological samples. Here,
we presented readily available statistical methods to improve the
analysis of 2D DIGE experiments. Our goal was to offer analytical
improvements with small investment to the user. We achieved this
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goal by borrowing methods from the microarray literature, and show-
ing their feasibility and suitability to the analysis of 2D gels. To
objectively quantify the effects of the proposed techniques, we are
currently undertaking a technical variability study using human blood
samples.

In addition to the problems shared with microarrays, 2D DIGE
presents additional difficulties in spot detection and matching, espe-
cially when used in complex studies involving clinical plasma
samples. Future advances in image processing and in statistical mod-
eling specific to proteomics will further enhance the quality of 2D
DIGE results. Version 6.0 of DeCyder, released after the completion
of this study, offers improvements over the version used here in areas
such as normalization and adjusting the significance levels in mul-
tiple comparisons. We will take full advantage of the latest software
in the future.
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