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ABSTRACT

Motivation: The identification and characterization of genes that

increase the susceptibility to common complex multifactorial diseases

is a challenging task in genetic association studies. The multifactor

dimensionality reduction (MDR) method has been proposed and

implemented by Ritchie et al. (2001) to identify the combinations of

multilocus genotypes and discrete environmental factors that are

associated with a particular disease. However, the original MDR

method classifies the combination of multilocus genotypes into high-

risk and low-risk groups in an ad hoc manner based on a simple

comparison of the ratios of the number of cases and controls.

Hence, the MDR approach is prone to false positive and negative

errors when the ratio of the number of cases and controls in a combi-

nation of genotypes is similar to that in the entire data, or when both

the number of cases and controls is small. Hence, we propose the odds

ratio based multifactor dimensionality reduction (OR MDR) method

that uses the odds ratio as a new quantitative measure of disease risk.

Results: While the original MDR method provides a simple binary

measure of risk, the OR MDR method provides not only the odds

ratio as a quantitative measure of risk but also the ordering of the

multilocus combinations from the highest risk to lowest risk groups.

Furthermore, the OR MDR method provides a confidence interval

for the odds ratio for each multilocus combination, which is extremely

informative in judging its importance as a risk factor. The proposed

OR MDR method is illustrated using the dataset obtained from the

CDC Chronic Fatigue Syndrome Research Group.

Availability: The program written in R is available.

Contact: tspark@snu.ac.kr

1 INTRODUCTION

The general strategy for identifying Mendelian disease genes has

largely been unsuccessful when applied to identifying susceptibility

genes for common complex multifactorial diseases, such as asthma

(Altmuller et al., 2001). This is because the Mendelian approach

requires each susceptibility factor to have a large independent

main effect on disease risk (Moore and William, 2002). The effect

of any single genetic variation for a common complex disease may

be dependent on other genetic variations (gene–gene interaction)

and environmental factors (gene–environment interaction). To

address this issue, several methods, such as logistic regression

models, multilocus linkage disequilibrium (LD) tests, and

Hardy–Weinberg equilibrium tests have been applied. However,

most of these methods require a large sample size to model

high-order interactions (Moore and William, 2002). Unfortunately,

it is not easy to collect large sample size data. Moreover, when

logistic regression is used, multicollinearity may occur due to LD.

For moderate sample size data, one method for detecting and

characterizing interactions in common complex multifactorial

diseases is the multifactor dimensionality reduction (MDR) method

(Ritchie et al., 2001). This method detects and characterizes

the high-order gene–gene and gene–environment interactions in

case-control studies. Using this method, multilocus genotypes are

classified into high-risk and low-risk groups, effectively reducing

the genotype predictors from n dimensions to one dimension. The

new, one-dimensional multilocus genotype variable is evaluated for

its ability to classify and predict disease status through cross-

validation (CV). The MDR method is model-free, in that it does

not assume any particular genetic model. This is important for

diseases in which the mode of inheritance is unknown and possibly

very complex. Moreover, the MDR method is non-parametric, in

that it does not estimate any parameters (Ritchie et al., 2001).

Although the MDR method provides many useful features, it

has several drawbacks. First, its method of determining high-risk

or low-risk groups is ad hoc—in the sense that it classifies cells,

defined by combination of multilocus genotypes, into high-risk or

low-risk groups based on a simple comparison of the ratios of the

number of cases and controls. Hence, the MDR method is prone to

false positive and negative errors when the ratio of the number of

cases and controls in a combination of genotypes is similar to that

in the entire data, or when both the number of cases and controls

in a combination of genotypes is small.
Second, the MDR binary classification does not provide any

quantitative measure of disease risk for each combination of geno-

types but only provides a binary measure (high or low) of disease

risk. Further, the MDR method does not provide any information

regarding how well the high-risk group is characterized. Third,

the MDR method does not allow comparison of the disease risks

between different combinations of genotypes. Thus, it is not pos-

sible to identify which combination of genotypes in the high-risk

group has the highest risk or which combination in the low-risk

group has the lowest risk. In practical applications, however, it is�To whom correspondence should be addressed.
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important to know whether a certain combination of genotypes has

a higher risk than other combinations.

In this paper, we propose the odds ratio based multifactor dimen-

sionality reduction (OR MDR) method to overcome the above

mentioned limitations of the MDR method. The OR MDR method

uses the odds ratio of each combination of genotypes as a quanti-

tative measure of disease risk, so that we can order the combinations

of genotypes from the highest to the lowest in terms of the odds

ratios. Moreover, a confidence interval of the odds ratio can be

obtained, either by using large sample theory or bootstrap samples

for each combination of genetoypes.

The MDR method is briefly reviewed in Section 2.1, and the new

OR MDR method is proposed in Section 2.2. An example giving

a comparison between the results of the MDR and the OR MDR

methods is provided in Section 3 using a dataset obtained from the

CDC Chronic Fatigue Syndrome Research Group. The discussion

and final conclusions are included in Section 4.

2 METHODS

2.1 MDR method

The MDR method has been proposed by Ritchie et al. (2001) and Moore and

William (2002), and implemented by Hahn et al. (2003) and Ritchie et al.

(2003). It comprises the following two stages. Stage 1 involves choosing

the best combination of multifactors. Stage 2 involves classifying the com-

binations of genotypes into high-risk and low-risk groups.

Figure 1 describes the procedure used to implement the MDR method.

First, the data are divided into 10 subsets for CV—nine are classified as

training sets and one as an independent test set. Second, the value of n is

designated depending upon the number of factors being considered. Then, a

set of n genetic and/or environmental factors is selected. The n factors and

their possible multifactor classes are represented in n-dimensional space.

Next, the ratio of the number of cases to the number of controls within each

multifactor class is calculated. Each multifactor class in n-dimensional

space is labeled as ‘high risk’ if the ratio of the number of cases to that

of the controls is equal to or exceeds a particular threshold; it is labeled

as ‘low risk’ if that threshold is not exceeded. Thus the n-dimensional space

is reduced to one dimension with two levels (low-risk and high-risk).

Usually, the threshold is determined as the ratio of the number of cases

to the number of controls in the training dataset. The threshold is equal to

one in a balanced dataset. Among all the multifactor combinations, the

MDR model with the lowest number of misclassified individuals is selected.

In order to evaluate the predictive ability of the model, the prediction error

for the selected combination of factors is estimated using the independent

test data.

After repeating the above procedures for each of the 10 training and test

set, a single model that minimizes the average prediction error is

selected from the various n-multifactor combinations, and the CV

consistency is calculated. CV consistency is a measure of the number of

times a particular set of multifactors is identified during the CV

(Moore et al., 2002b).

Moreover, the whole process is repeated for different values of n, and

the best combination is selected from among each possible dimension of

combinations by repeating the above procedure. The result is a set of best

models; one for each dimension. That is, for each different value of n, we

have a list of the best models.

Furthermore, the above procedures are performed 10 times using different

random number seeds to reduce the probability of observing spurious results

due to chance divisions of the data. The average prediction errors and CV

consistencies are calculated, and the best combination with a minimum

average of prediction errors is selected. From these selected combinations,

Fig. 1. Summary of OR MDR method.
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the model with the combination of genotypes that maximizes the CV con-

sistency and minimizes the prediction error is selected. If the CV consistency

is maximal for one model and the prediction error is minimal for another

model, then the model with the lowest number of multifactors is selected.

Once the MDR method identifies the best combination of multifactors,

Stage 2 of the MDR method is performed. This involves classifying the

multilocus genotype levels as high- or low-risk. However, the MDR binary

classification of multilocus genotypes into the high-risk and low-risk groups

is based on a simple comparison of the ratios of the number of cases and

controls to that of each multilocus genotype combination.

2.2 OR MDR method

We propose the OR MDR method to improve the ad hoc classification of

the MDR method. Figure 1 illustrates the procedure to implement the OR

MDR method. Stage 1 is the same as that of the MDR method explained

in section 2.1. In Stage 2, the odds ratio for each combination of genotypes

is used as a quantitative measure of disease risk.

To illustrate the OR MDR method, we assume that two single nucleotide

polymorphisms (SNPs; SNP1 and SNP2) each with three genotypes are

selected as the best model in Stage 1. The two SNPs and a binary variable

distinguishing cases and controls yield a 3 · 3 · 2 contingency table for

N subjects. The observed cell frequencies are denoted by {nijk}, where the

subscripts i and j represent the two SNPs and k represents the disease (case)

and normal (control) phenotypes. The odds of the disease for the given

genotype combination (SNP1 ¼ i, SNP2 ¼ j) is

P½Disease jSNP1 ¼ i‚SNP2 ¼ j�
P½Normal j SNP1 ¼ i‚SNP2 ¼ j�

¼ P½SNP1 ¼ i‚SNP2 ¼ j jDisease�
P½SNP1 ¼ i‚SNP2 ¼ j jNormal� ·

P½Disease�
P½Normal� :

Then, the odds for the genotypes (i, j), �ij is given as follows:

P½SNP1 ¼ i‚SNP2 ¼ j jDisease�
P½SNP1 ¼ i‚SNP2 ¼ j jNormal�

¼ P½Disease jSNP1 ¼ i‚SNP2 ¼ j�
P½Normal jSNP1 ¼ i‚SNP2 ¼ j� /

P½Disease�
P½Normal� :

Note that the righthand side is the odds of the disease for the genotypes

(i, j) divided by the odds of the disease for all the data disregarding the

genotype information. Then, �ij is estimated as follows

�̂�ij ¼
nij1/nþþ1

nij2/nþþ2

‚

where nþþk ¼
P

i

P
j nijk for k ¼ 1, 2. Note that this estimator is different

from the ordinary odds ratio estimator, because the marginal sum n++k
contains nijk. We propose using the odds ratio estimator �̂� ij as a quantitative

measure of disease risk for a given genotype combination. If this odds ratio

is equal to one, then the odds of the case for the given genotype combination

is equal to the odds of the case for the entire data, i.e. the risk associated

with the disease for the given genotype combination is the same as the

overall risk estimated from all the case and control samples. Thus, this

genotype combination is not associated with the disease. On the other

hand, the larger the odds ratio (>1), the stronger the positive association

between the genotype combination and the disease. Similarly, the lower the

odds ratio (<1), the stronger the negative (protective) association between

the genotype combination and the disease.

We can use �ij as a quantitative measure to represent the disease risk for

a given genotype combination. As in the MDR method, each multifactor

combination in n-dimensional space is labeled as ‘high-risk’ if the odds

ratio exceeds the threshold, or as ‘low-risk’ if that threshold is not exceeded.

If the threshold chosen is one, the binary classification of the OR MDR

method is the same as that of the MDR method.

In addition, we can compare combinations of genotypes by using the odds

ratios. For example, two genotype combinations (SNP1 ¼ i, SNP2 ¼ j) and

(SNP1 ¼ i0,SNP2 ¼ j0) can be compared using the two odds ratios �ij and �i0 j0.

That is, if �ij > �i0j0, then (SNP1¼ i, SNP2 ¼ j) has a higher risk than (SNP1 ¼
i0, SNP2 ¼ j0). Based on the values of �, we can order the combination of

genotypes from the highest risk group to the lowest risk group.

The relative disease risk among the genotype combinations can also be

compared by choosing a baseline genotype combination. The most common

genotype combination is usually selected as the baseline combination. As an

example, suppose the genotype combination (SNP1 ¼ 1, SNP2 ¼ 1) has the

largest frequency. Then, it is selected as a baseline combination. For the

genotype combination (SNP1 ¼ i, SNP2 ¼ j), the ratio �ij/�11 provides the

relative disease risk. In fact, the ratio is the ordinary odds ratio and these can

be compared with each other.

The proposed OR MDR method also provides information on the accu-

racy of the odds ratio estimators. Unlike the original MDR method, the

OR MDR method provides a measure of accuracy by deriving a cell-specific

confidence interval for �ij. We consider two types of confidence intervals:

one is the usual asymptotic confidence interval for the ratio of two success

probabilities derived from the two independent binomial distributions, and

the other is a bootstrap confidence interval that can be used when the sample

size is not large. For the best combination obtained in Stage 1, the bootstrap

samples are generated by randomly selecting cases and controls with

replacement for each genotype combination. This resampling procedure

is repeated approximately 100 000 times. Then, the empirical distributions

of odds ratios for each combination of genotypes are constructed. The

empirical confidence interval for each combination of genotypes can be

obtained from these bootstrap distributions. Finally, we can use these con-

fidence intervals of the odds ratios to conclude whether a particular genotype

combination is significantly more or less associated with the disease than

another genotype combination.

3 EXAMPLE

The dataset obtained from the CDC Chronic Fatigue Syndrome

Research Group includes gene expression, proteomic, SNP and

clinical data. In this paper, we focus only on the SNP data. Informa-

tion pertaining to the 42 SNPs in the dataset is described in Table 1;

more information is available on the website (http://www.camda.

duke.edu/camda06/datasets/index.html). Our analysis is based on

55 subjects ever having had chronic fatigue syndrome (CFS) and 54

non-fatigued controls. In this analysis, we used the 35 CFS subjects

and 36 non-fatigue subjects who do not have any missing SNP

values.

We applied the MDR and the OR MDR methods to all possible

combinations of the 42 SNPs up to the fourth order. Table 2 sum-

marizes the CV consistency and the prediction errors obtained from

Stage 1 of the OR MDR method, which is identical to the MDR

method. One of the two-SNP models has a maximum CV consis-

tency of 6.6 out of 10, and one of the four-SNP models has a

minimum prediction error of 0.35. Generally, the combination of

SNPs that maximizes the CV consistency and minimizes the pre-

diction error is selected. In our example, however, the CV consis-

tency was maximum for one model and the prediction error was

minimum for an other model. Thus, the model with the fewer SNPs

was selected, i.e. the two-SNP model comprising rs6196 (NR3C1)

and rs140701 (SLC6A4).

In Table 3, the results of Stage 2 of the OR MDR method and the

MDR method are compared. The first column represents genotypes

of the best combination of two SNPs, rs6196 (NR3C1) and rs140701

(SLC6A4), and the second column shows their frequencies in the

cases and controls. The third column shows the binary classification

of high-risk and low-risk groups for each combination of genotypes.

Three combinations of genotypes are classified as high-risk, five

as low-risk, and one empty cell is undetermined.

Odds ratio based multifactor-dimensionality reduction method
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However, the MDR method does not provide any information

beyond simple binary classification. The three high-risk genotype

groups may have different disease risks. Moreover, the MDR

method is vulnerable to false positive and negative errors when

the ratio of the numbers of cases and controls in a combination

of genotypes is similar to that of the entire data, or when the

numbers of cases and controls are very small. For example, consider

the genotype AA/CC. Its frequency ratio in the cases and controls is

equal to one, which is similar to the ratio for the entire data.

Although AA/CC is classified as high-risk, a small change in

this frequency can change this classification from the high-risk

group to the low-risk group. Thus, the classification of AA/CC is

vulnerable to false positive error. On the other hand, although AA/

TT is classified as high risk, this combination is quite robust to a

small change in the frequencies of the cases and controls. Thus, AA/

TT appears to show much stronger evidence for its classification as

high risk. Unfortunately, the MDR method does not distinguish

between these two combinations. Moreover, the number of cases

and controls in AG/CC is very small; hence, the MDR method

classifies AG/CC as low-risk. However, AG/CC is also vulnerable

to false negative error because a small change in its frequencies can

cause a change in its classification from the low-risk group to the

high-risk group.

In the OR MDR method, however, the odds ratio provides a more

rigorous quantitative measure of disease risk. For each combination

of genotypes, the fourth column in Table 3 indicates the odds ratios;

the fifth column, its rank and the sixth column, its 95% asymptotic

confidence interval; the seventh column, the 95% confidence inter-

val from the bootstrap samples. Note that the genotypes AG/CC,

AG/CT and AG/TT have 0 frequencies, which made it difficult

(impossible in the case of AG/TT) to estimate a confidence interval

by either method.

Both asymptotic and bootstrap confidence intervals provided

consistent results. There is reasonably good evidence based on

the 95% confidence interval that AA/TT is a high risk combination,

but the large confidence intervals clearly show that there is little

evidence regarding the other combinations—whereas the MDR

classifies several of them as high risk. If the upper (lower) limit

of the confidence interval for one of the other combinations were

less (greater) than 1, that would be good evidence for a truly low

(high) risk combination. Only the confidence interval of the cell

with the genotype AA/TT does not contain 1. The odds of disease

for this genotype are 2.674 times that of the overall odds, showing

positive association between the genotype of AA/TT and CFS.

Therefore, we conclude that the risk of CFS is positively associated

with two genotypes—AA and TT.

The ranks of the odds ratios indicate which is the highest-risk

and lowest-risk group. We can also compare two different combi-

nations of genotypes. For example, when the genotype AA/CC is

used as a baseline combination of genotypes, the odds of disease

for AA/TT is 2.599 (¼2.674/1.029) times larger than the odds of

disease for AA/CC.

The first SNP rs6196 is located in nuclear receptor subfamily 3;

group C, member 1 glucocorticoid receptor (NR3C1), which regu-

lates glucocorticoid levels in the blood. NR3C1 was shown to have

a significant association with CFS; this supports the hypothesis that

medically unexplained chronic fatigue is heterogeneous and pre-

sents preliminary evidence of the genetic mechanisms underlying a

few of the putative conditions (Smith et al., 2006). In particular,

different classes of subjects with unexplained fatigue were distin-

guished by gene polymorphsims that were involved in either

hypothalanmic-pituitary-adrenal (HPA) axis function or neurotrans-

mitter systems, including proopiomelanocortin (POMC), NR3C1,

monoamine oxidase A (MAOA), monoamine oxidase B (MAOB)

and tryptophan hydroxylase 2 (TPH2). Recently, Geortzel et al.
(2006) showed that 28 well-selected SNPs could predict with

76% accuracy whether a person has CFS, and that the top three

important genes are TPH2, catechol-O-methyltransferase (COMT)

and NR3C1. rs6196, in particular, is a special case of missense

mutations in which a change in one nucleotide results in the sub-

stitution of one amino acid that results in a non-functional protein.

The other SNP rs140701 is located in solutes carrier family 6,

neurotransmitter transporter, serotonin, member 4 (SLC6A4). Neu-

roendocrine axis assessment is one of the best and safest approaches

for the assessment of specific neurotransmitter function. Based on

the neuroendocrine responses in fatiguing disorders, Chaudhuri and

Behan (2004) derived a biological model of central fatigue.

We expect rs140701, which is the sixth intronic SNP in SLC6A4,

to play an important role as a transcription regulator. By examining

the evolutionary origin and mechanisms of the differential transcrip-

tional regulation of SLC6A4, Soeby et al. (2005) addressed the

possible impact of the second intronic variable number of tandem

repeats (VNTR) on behavior and disease, and found new putative

binding sites for several transcription factors in the VNTRs of the

mammalian SLC6A4 gene. Further, Soeby et al. showed that the

Table 1. List of 42 SNPs

Gene SNPs

CRHR1 rs110402, rs242924, rs173365, rs242940, rs7209436,

rs1396862

SLC6A4 rs140701, hCV7911132, rs2066713

MAOA rs979605, rs1801291, rs979606

NR3C1 rs860458, rs258750, rs2918419, rs6188, rs1866388, rs852977

rs6196

COMT rs6269, rs4633, rs933271, rs4646312, rs5993882, rs740603

rs 165722

TPH2 rs10784941, rs2171363, rs4760816, rs1872824, rs4760750

rs1386486, rs1487280

TH rs2070762, rs4074905

POMC rs12473543

MAOB rs2283729, rs3027452, rs1799836

CRHR2 rs2267710, rs2284217, rs2267714

Table 2. Selection of the best combination of SNPs by Stage 1 of the OR

MDR method and the MDR method

The best combination in

each dimension

Prediction error CV consistency

rs6196, rs140701 0.366505 6.6

rs740603, rs6196, rs140701 0.381994 2

rs1799836, rs2171363, rs140701,

rs1396862

0.354444 4

The model with maximum CV consistency and minimum prediction error is indicated in

bold type.

Y.Chung et al.

74

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/1/71/189769 by guest on 19 April 2024



intronic VNTR has been selectively targeted through mammalian

evolution to fine tune the transcriptional regulation of SLC6A4

expression.

In summary, it has been shown that rs6196 of NR3C1 regulates

the HPA axis and rs140701 of SLC6A is a neurotransmitter trans-

porter. Thus, we hypothesize that rs6196 and rs140701 are impor-

tant CFS-related polymorphisms. In CFS-susceptible individuals,

environmental stressors induce changes in the neuroendocrine axis

mainly through the HPA axis and the norepinephrine system. Our

analysis reveals a possible interaction between rs6196 in NR3C1

and rs140701 in SLC6A that is expected to play an important role

in the biological mechanism of CFS.

4 DISCUSSION AND CONCLUSION

In this paper, we proposed the OR MDR method that uses the odds

ratio as a quantitative measure of disease risk. Similar to the original

MDR method, the OR MDR method is a non-parametric approach

and assumes no particular genetic model. In addition, as in the

case of the MDR method, the OR MDR method uses CV to select

optimal models.

However, the OR MDR method has several advantages over the

original MDR method that uses a binary measure of disease risk.

First, the OR MDR method is based on the odds ratio for each

combination of genotypes and reveals more information regarding

the effect of a certain genotype combination on the disease risk,

since the quantitative value of the odds ratio represents the strength

of the association between the genotypes and disease. Second, the

OR MDR method provides a more solid statistical validation by

providing a confidence interval for each combination of genotypes.

In particular, when the number of cases is similar to the number

of controls, or when both the number of cases and controls is too

small, the validity of the MDR approach in determining the

high-risk and low-risk groups is questionable. On the other hand,

the confidence interval from the OR MDR method provides much

more information for the high-risk and low-risk classification. If

the upper (lower) limit of the confidence interval for one or other

of the combinations is less (greater) than 1, that is an evidence

for a truly low (high) risk combination. We expect the OR MDR

method to play a more important role than the MDR method in

the identification of gene–gene interactions in real data.

However, similar to the MDR method, the OR MDR method

has the limitation that comes with having empty cells because it

cannot classify an empty cell as high risk or low risk. Further,

confidence intervals cannot then be estimated by either the

asymptotic method or bootstrap method. To solve this problem,

a method based on the continuity correction needs to be developed.

Such a method will be presented in a separate paper in the near

future.

Finally, note that the odds ratio we have used for the OR MDR

method is different from the ordinary odds ratio. One of the main

reasons why we use � for the OR MDR method is that we want to

include MDR as a special case of OR MDR. That is, if OR MDR

uses a binary classification with a threshold value of 1, then it is

equivalent to MDR.
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