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ABSTRACT

Motivation: Although controlled biochemical or biological vocabu-

laries, such as Gene Ontology (GO) (http://www.geneontology.org),

address the need for consistent descriptions of genes in different

data sources, there is still no effective method to determine the

functional similarities of genes based on gene annotation information

from heterogeneous data sources.

Results: To address this critical need, we proposed a novel method

to encode a GO term’s semantics (biological meanings) into a

numeric value by aggregating the semantic contributions of their

ancestor terms (including this specific term) in the GO graph and, in

turn, designed an algorithm to measure the semantic similarity of GO

terms. Based on the semantic similarities of GO terms used for gene

annotation, we designed a new algorithm to measure the functional

similarity of genes. The results of using our algorithm to measure the

functional similarities of genes in pathways retrieved from the

saccharomyces genome database (SGD), and the outcomes of

clustering these genes based on the similarity values obtained by our

algorithm are shown to be consistent with human perspectives.

Furthermore, we developed a set of online tools for gene similarity

measurement and knowledge discovery.

Availability: The online tools are available at: http://bioinformatics.

clemson.edu/G-SESAME

Contact: jzwang@cs.clemson.edu

Supplementary information: http://bioinformatics.clemson.edu/

Publication/Supplement/gsp.htm

1 INTRODUCTION

Although controlled biochemical or biological vocabularies,

such as Gene Ontology (GO) (http://www.geneontology.org),

address the need for consistent descriptions of genes in

different data sources, automatically measuring the functional

similarities of genes based on these annotation data remains

a challenge. Currently, researchers use online information

retrieval tools, such as AmiGO (http://www.godatabase.org)

and QuickGO (http://www.ebi.ac.uk/ego/), to collect gene

annotation data from various databases and manually

discover the correlations or similarities of gene products by

visually examining their biological functions. However, because

the manual discovery of this important knowledge requires

significant time and effort, there is a critical need to build

automated tools to measure and visualize the functional

similarities of gene products based on existing annotation

information from heterogeneous data sources.
In past years, some online tools such as eGOn (Langaas

et al., 2005), FuSSiMeG (http://xldb.fc.ul.pt/rebil/tools/ssm/)

and DAVID (http://david.abcc.ncifcrf.gov/) were developed

to measure the functional similarity of genes. However,

their similarity measurement methods have drawbacks. Some

approaches (Langaas et al., 2005; http://david.abcc.ncifcrf.gov/)

measure gene functional similarities based on the probability of

the appearance of GO terms or the kappa statistics of similar

annotation terms correlated with different genes, and ignore the

semantic relations (‘is-a’ and ‘part-of ’) among these terms in

the GO graph. Although other methods (Jiang and Conrath,

1997; Lin, 1998; Resnik, 1999) were proposed to measure the

semantic similarity of terms in a specific taxonomy, these

methods were originally developed for the natural language

taxonomies and it is unclear whether they are suitable for

measuring the semantic similarity of GO terms.

These existing methods (Jiang and Conrath, 1997; Lin, 1998;

Resnik, 1999) and their variants (Coute et al., 2003;

Kriventseva et al., 2001; Lee et al., 2004) determine the

similarity of two GO terms based on their distances to the

closest common ancestor term and/or the annotation statistics

of their common ancestor terms. Although recent studies (Guo

et al., 2006; Sevilla et al., 2005; Wang et al., 2004) evaluating

these methods showed that Resnik’s method is better than

other methods in terms of the correlation with gene sequence

similarities and gene expression profiles, none of these

evaluation studies provided direct evidences on how well

these methods measure the functional similarity of genes.

Instead, they pointed out some drawbacks in these existing

similarity measurement methods that hinder their ability of

determining the functional similarity of genes.
A drawback of Resnik’s method is that it ignores the

information contained in the structure of the ontology by only

concentrating on the information content of a term derived

from the corpus statistics. However, the specificity of a GO

term is usually determined by its location in the GO graph and

a GO term’s semantics (biological meanings) are inherited from*To whom correspondence should be addressed.
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all its ancestor terms. Therefore, using the information content
as the sole determination factor for the semantic similarity of
GO terms is inappropriate. On the other hand, based on human

perspectives, if two terms sharing the same parent are near
the root of the ontology (terms are more general), they should
have larger semantic difference than two terms having the same

parent and being far away from the root of the ontology
because the later are more specific terms. However, using
Jiang’s or Lin’s method, as pointed out by Sevilla et al., if two

gene products are well annotated near the root of the ontology
(shallow annotation), their semantic similarity will always be
measured at very high (close to 1) and their semantic distance

will always be computed close to nil, thus providing a
misleading result. The effect of shallow annotation is a serious
drawback of both Jiang and Lin’s methods.
Besides their individual drawbacks, a common problem with

these methods is that they depend on the gene annotation
statistics to measure the semantic similarity of GO terms.
Hence, people may get different semantic similarity values for

the same two GO terms if they use different gene annotation
data. However, the purpose of having a set of controlled
vocabularies (an ontology) is that the biological terms

in an ontology should have a fixed semantics (biological
or biochemical meanings) when it is used to annotate genes.
Therefore, it is desirable to determine the semantic similarity of

GO terms based only on the structure and annotation
specification of GO ontologies. Unfortunately, most existing
ontology-structure-based methods (Langaas et al., 2005;

Wang et al., 2004) also have their drawbacks in that they
determine the semantic similarity of two GO terms either based
on their distances to the closest common ancestor term or based

on the number of their common ancestor terms.
First, the distances to the closest common ancestor term

cannot accurately represent the semantic difference of two

GO terms. As discussed previously, if two terms sharing the
same parent are near the root of the ontology, they should have
larger semantic difference than two terms having the same

parent and being far away from the root of the ontology.
In addition, one GO term may have multiple parent terms with
different semantic relations. A GO term’s semantics (biological

meanings) must be the aggregate semantic contributions from
all ancestor terms (including this specific term). Second,
measuring the semantic similarity of two GO terms based

only on the number of common ancestor terms cannot discern
the semantic contributions of the ancestor terms to these two
specific terms. In fact, a common ancestor of two GO terms

may have different contributions to the semantics of these
specific terms because their distances to this common ancestor
in the GO graph may differ and the semantic relations (edges in

the GO graph) leading to this common ancestor may vary as
well. Based on human perspectives, an ancestor term farther
from a descendant term in the GO graph contributes less to the

semantics of the descendant term while an ancestor term closer
to a descendant term in the GO graph contributes more to the
semantics of this descendant term.

As the GO website states, ‘The ontologies are structured
as directed acyclic graphs, which are similar to hierarchies
but differ in that a child, or more specialized, term can have

many parent, or less specialized, terms. For example,

the biological process term hexose biosynthesis has two parents,

hexose metabolism and monosaccharide biosynthesis. This

is because biosynthesis is a subtype of metabolism, and a

hexose is a type of monosaccharide. When any gene involved in

hexose biosynthesis is annotated to this term, it is automatically

annotated to both hexose metabolism and monosaccharide

biosynthesis, because every GO term must obey the true path

rule: if the child term describes the gene product, then all its

parent terms must also apply to that gene product’. This

statement clearly indicates that a GO term’s semantics

(biological meanings) must include the biological meanings of

all its ancestor terms. Therefore, measuring the semantic

similarity of GO terms must consider not only the number

of the common ancestor terms but also the locations of

these ancestor terms related to the two specific terms in the

GO graph.

2 GENE FUNCTIONAL SIMILARITY

To address the drawbacks in existing methods, we propose

a new method to measure the semantic similarity of GO terms

and, in turn, devise an algorithm to determine the functional

similarity of genes based on the semantic similarities of

GO terms used to annotate these genes.

2.1 Semantic values of GO terms

GO is a large collaborative public database that provides a set

of controlled vocabularies (biological or biochemical terms)

describing gene products based upon their functions in the cell.

Three ontologies, biological process, cellular component and

molecular function, are defined in this database. They are

presented as directed acyclic graphs (DAGs) in which the terms

form nodes and the two kinds of semantic relations (‘is-a’ and

‘part-of ’) form edges. ‘is-a’ is a simple class-subclass relation,

where A is-a B means that A is a subclass of B. ‘part-of ’ is

a partial ownership relation; C part-of D means that whenever

C is present, it is always a part of D, but C need not always

be present.
To measure the semantic similarity of GO terms, we first

encode the semantics of a GO term into a numeric format.

Since the semantics (biological meanings) of a GO term are

determined by its location in the entire GO graph and its

semantic relations with all of its ancestor terms, we use the

DAG (a subgraph of an ontology) starting from the specific

GO term and ending at any of the root term (biological process,

cellular component or molecular function) to represent this

term. For example, Figure 1 depicts the DAG for GO term

Intracellular Membrane-bound Organelle: 0043231. This DAG

has seven GO terms connected by eight relations. A dotted

arrow represents the ‘part-of ’ relation and a solid arrow shows

the ‘is-a’ relation. For instance, GO term Intracellular

Organelle: 0043229 is a subclass of GO term Organelle:

0043226 and also a part of GO term Intracellular: 0005622.
We note that the DAGs and gene annotation information

used in this article were obtained from the GO database in May

2006. Due to the daily evolution of the GO database, a GO

term’s DAG may change due to the addition of new terms or

removal of obsolete terms, and gene annotation data may
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change as new information about genes is found and added into

the database.
Formally, a GO term A can be represented as

DAGA¼ (A,TA,EA) where TA is the set of GO terms

in DAGA, including term A and all of its ancestor terms in

the GO graph, and EA is the set of edges (semantic relations)

connecting the GO terms in DAGA. To encode the semantics of

a GO term in a measurable format to enable a quantitative

comparison of two term’s semantics, we define the semantic

value of term A as the aggregate contribution of all terms in

DAGA to the semantics of term A. Terms closer to term A in

DAGA contribute more to its semantics, while terms farther

from term A in DAGA contribute less as they are more general

terms. Therefore, we define the contribution of a GO term t to

the semantics of GO term A as the S-value of GO term t related

to term A. For any term t in DAGA¼ (A,TA,EA), its S-value

related to term A, SA(t), is defined as:

SAðAÞ ¼ 1
SAðtÞ ¼ maxfwe � SAðt

0Þjt0 2 childrenofðtÞg if t 6¼ A

�
ð1Þ

where we is the semantic contribution factor for edge e2EA

linking term t with its child term t0. In DAGA, GO term A is the

most specific term and we define its contribution to its own

semantics as one. Other terms in DAGA are more general and,

hence, contribute less to the semantics of GO term A.

Therefore, we have 05we51. After obtaining the S-values

for all terms in DAGA, we calculate the semantic value of

GO term A, SV(A), as:

SVðAÞ ¼
X
t2TA

SAðtÞ ð2Þ

For instance, if we assume that the semantic contribution

factors for ‘is-a’ and ‘part-of ’ relations are 0.8 and 0.6

respectively, we use Equation (1) to calculate the S-values of

the GO terms in the DAG representing GO term Intracellular

Membrane-bound Organelle: 0043231 and list the results

in Table 1. We note that the semantic value of a GO term

differs from its S-value. The semantic value of a GO term is

the aggregate semantic contribution of all terms in a

DAG representing this GO term (For GO term 0043231, it

is the summation of values in Table 1). The S-value of

a GO term related to one of its descendant terms is its

contribution to the semantics of this descendant term.

2.2 Semantic similarity of GO terms

Given DAGA ¼ (A,TA,EA) and DAGB ¼ (B,TB,EB) for

GO terms A and B respectively, the semantic similarity between

these two terms, SGO(A, B), is defined as

SGOðA,BÞ ¼

P
t2TA\TB

SAðtÞ þ SBðtÞð Þ

SVðAÞ þ SVðBÞ
ð3Þ

where SA(t) is the S-value of GO term t related to term A and

SB(t) is the S-value of GO term t related to term B.
This formula determines the semantic similarity of two

GO terms based on both the locations of these terms in the

GO graph and their semantic relations with their ancestor

terms, addressing the drawbacks in the existing approaches.

For any term t2TA \ TB, SA(t) may differ from SB(t) even if

term t is a common term in both DAGA and DAGB. This is

because the locations of term A and B are different in the entire

GO graph. For example, Figures 1 and 2 depict the DAGs for

GO terms Intracellular Membrane-bound Organelle: 0043231

and Intracellular Organelle: 0043229, respectively. Although

there are five common GO terms in these two DAGs, the same

term in different DAGs has different S-values related to these

two specific GO terms. These values differ because the locations

of the DAGs in the entire GO graph differ, and the

contributions of these common terms to the semantics of the
two specific GO terms also differ.

Assuming that the semantic contribution factors for ‘is-a’

and ‘part-of ’ relations are 0.8 and 0.6, respectively, Table 1

contains the S-values for all terms in the DAG for GO term

Intracellular Membrane-bound Organelle: 0043231 and Table 2
contains the S-values for all terms in the DAG for GO term

Intracellular Organelle: 0043229. Using Equation (3), the

semantic similarity between GO terms 0043231 and 0043229

is calculated as:

SGOð0043231,0043229Þ ¼ 0:7727:

2.3 Functional similarity of genes

Usually one gene is annotated by many GO terms.

For instance, genes ADh4 and Ldb3 are annotated by

molecular function term sets {0004022, 0004024, 0004174,

Cellular component: 0005575

Cell: 0005623 Organelle: 0043226

Intracellular: 0005622

Intracellular membrance-bound
organelle: 0043231

Intracellular organelle:
0043229

Membrane-bound
organelle: 0043227

Fig. 1. DAG for GO term Intracellular Membrane-bound Organelle:

0043231.

Table 1. S-values for GO terms in DAG for term Intracellular

Membrane-bound Organelle: 0043231

GO terms 0043231 0043229 0043227 0005622

S-value 1.0 0.8 0.8 0.48

GO terms 0005623 0043226 0005575

S-value 0.288 0.64 0.512

J.Z.Wang et al.
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0046872, 0008270, 0004023} and {0009055, 0005515, 0046872,

0008270, 0020037}, respectively in the GO database. Therefore,

the similarity between the molecular functions of these

two genes can be determined by comparing the semantic

similarities of GO terms in these two sets.

Assuming GO1¼ {go11, go12, . . . , go1m} and GO2¼ {go21,

go22, . . . , go2n} are two sets of GO terms that annotate genes

G1 and G2 respectively, the following simple method was used

in many studies (Langaas et al., 2005; Wu et al., 2005) to

determine the functional similarity of genes G1 and G2:

SimðG1,G2Þ ¼
GO1 \ GO2j j

GO1 [ GO2j j
ð4Þ

This simple approach only considers the contribution from

the exactly matched GO terms when calculating the functional

similarity of two genes, ignoring the impact of different

yet semantically similar GO terms. For instance, using

Equation (4), the similarity between the molecular functions

of genes Adh4 and Ldb3 is calculated as Sim(ADh4,

Ldb3)¼ 0.22, since there are only two out of nine terms

matched exactly in their associated molecular function term

sets. This result suggests that the molecular functions of ADh4

and Ldb3 are not similar since the range of the similarity value

obtained by Equation (4) is between 0 and 1, and value 0.22 is

at the lower end of this range.

However, if we look into the detailed information about the

molecular function terms annotating these two genes in

Table 3, we can tell that besides the two exactly matched

terms, ‘metal ion binding’ and ‘zinc ion binding’, other two

terms associated with gene Ldb3, ‘protein binding’ and ‘heme

binding’, are semantically similar to these two matched terms

because they are very close to these terms in the GO graph. On

the other hand, term ‘electron carrier activity’ (associated with

gene Ldb3) is a child of the term ‘oxidoreductase activity’

(associated with gene ADh4) in the molecular function

ontology. Therefore, the semantics of these two terms should

be very similar. Furthermore, terms ‘alcohol dehydrogenase

activity’, ‘alcohol dehydrogenase activity, zinc-dependent’,

‘alcohol dehydrogenase activity, metal ion-independent’ and

‘electron-transferring-flavoprotein dehydrogenase activity’ are

great great grand children of the term ‘oxidoreductase activity’

in the molecular function ontology. Thus, they should have

some similarities with the term ‘oxidoreductase activity’. Based

on these facts, the molecular functions of genes ADh4

and Ldb3 should be similar. Therefore, using Equation (4)

to measure the functional similarity of genes is not practical

because the results are not consistent with human perspectives.
To accurately measure the functional similarity between

two genes, we must also consider the contributions from

the semantically similar terms that annotate these two

genes respectively. Thus, we first define the semantic

similarity between one GO term and a set of GO terms.

The semantic similarity between one term go and a GO term

set GO¼ {go1, go2, . . . , gok}, Sim(go, GO), is defined as the

maximum semantic similarity between term go and any of

the terms in set GO. That is,

Simðgo,GOÞ ¼ max
1�i�k

ðSGOðgo, goiÞÞ ð5Þ

Therefore, given two genes G1 and G2 annotated by GO term

sets GO1¼ {go11, go12, . . . , go1m} and GO2¼ {go21, go22, . . . ,

go2n} respectively, we define their functional similarity as,

Sim G1,G2ð Þ ¼

P
1�i�m

Sim go1i,GO2ð Þ þ
P

1�j�n

Sim go2j,GO1

� �

mþ n
ð6Þ

Now we measure the molecular function similarity between

genes ADh4 and Ldb3 using Equations (5) and (6). Assuming

the semantic contribution factors for ‘is-a’ and ‘part-of ’

relations to be 0.8 and 0.6 respectively, we obtain the semantic

similarities between the molecular function terms that annotate

genes ADh4 and Ldb3 respectively, and list the results in

Cellular component: 0005575

Cell: 0005623 Organelle: 0043226

Intracellular: 0005622

Intracellular organelle:
0043229 

Fig. 2. DAG for GO term Intracellular Organelle: 0043229.

Table 2. S-values for GO terms in DAG for term Intracellular

Organelle: 0043229

GO terms 0043229 0005622 0005623 0043226 0005575

S-value 1.0 0.6 0.36 0.8 0.64

Table 3. Information on GO terms associated to genes ADh4 and Ldb3

ADh4

GO:0004022 Alcohol dehydrogenase activity

GO:0004024 Alcohol dehydrogenase activity, zinc-dependent

GO:0004174 Electron-transfer-flavoprotein dehydrogenase activity

GO:0046872 Metal ion binding

GO:0008270 Zinc ion binding

GO:0004023 Alcohol dehydrogenase activity, metal ion-independent

Ldb3

GO:0009055 Electron carrier activity

GO:0005515 Protein binding

GO:0046872 Metal ion binding

GO:0008270 Zinc ion binding

GO:0020037 Heme binding

A new method to measure the semantic similarity of GO terms
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Table 4. Using Equations (5) and (6), we get Sim(ADh4,

Ldb3)¼ 0.693.
This similarity value is in the high end of the range from 0 to

1, indicating that ADh4 and Ldb3 are analogous in terms of

their molecular functions. Therefore, it confirms that the

functional similarity obtained by our algorithm matches the

human perception.

3 VALIDATION OF OUR APPROACH

The evaluation of semantic similarity measurement methods

is a challenging task, because it usually requires human

involvement. In natural language domain, most studies collect

a small set of term pairs and let people rank their semantic

similarities. Then, the correlations between the measured

semantic similarity values and the human similarity rankings

are used to evaluate the semantic similarity measurement

method. In this article, we use a similar approach to

evaluate our similarity measurement algorithm. We use the

gene annotation and classification information in pathways

manually curated by researchers at the Saccharomyces genome

database(SGD) (http://pathway.yeastgenome.org/biocyc/) as

the reference for our similarity measurement. Although recent

studies (Guo et al., 2006; Sevilla et al., 2005; Wang et al., 2004)

used the correlation with gene sequence or gene expression

similarities to evaluate the semantic similarity measurement

methods, the feasibility of these evaluation methods is still

debatable because there is not always correlation between the

gene functional similarities and the gene sequence or gene

expression similarities.
There are 152 biological pathways in the SGD database.

Most of these pathways contain at least three genes annotated

by both GO molecular function terms and EC numbers

(Ball et al., 2000). These genes are also manually clustered by

their molecular functions. For instance, there are five

genes, ZWF1, GND1, GND2, SOL3 and SOL4, in the

oxidative branch of the pentose phosphate pathway. Among

these genes, SOL3 and SOL4 are annotated by the same GO

term and the same EC number, and GND1 and GND2are also

annotated by the same GO term and the same EC number.

Conversely, the GO term and EC number used to annotate

gene ZWF1 are very similar to those annotating genes GND1

and GND2.

To demonstrate the advantages of our simila-

rity measurement algorithm over the existing

methods, we implemented two online gene-clustering tools

(http://bioinformatics.clemson.edu/G-SESAME/knowledge

Discovery.html) based on our algorithm and Resnik’s method,

respectively. These tools first measure the functional similarities

between the input genes and, then, cluster these genes based

on the obtained similarity values. We also implement a

visualization tool to display the annotation information for

a pair of genes on the molecular function ontology to

demonstrate the functional similarity of these two genes.

With the annotation information in the pathway and GO

database (visualized by our visualization tool if necessary), we

can evaluate whether the similarity values obtained by a

similarity measurement method are consistent with human

perspectives by visual examination.
Since Resnik’s method is the best among these existing

methods according to recent evaluation studies (Guo et al.,

2006; Sevilla et al., 2005; Wang et al., 2004), comparing with

this method will further validate our algorithm. Using these

tools to cluster genes in pathways containing at least three

genes in the SGD database, we found that similarity values and

clustering results obtained by our algorithm are consistent with

human perspectives while similarity values and clustering

results obtained by Resnik’s method are often inconsistent

with the human perception.
Due to the space limitation, we cannot present all evaluation

results in this article. Therefore, we only use one example to

explain why our similarity measurement algorithm is

better than Resnik’s method. The rest of the evaluation results

can be found at http://bioinformatics.clemson.edu/Publication/

Supplement/gsp.htm. In this example, we use gene-clustering

tools to cluster genes in tryptophan degradation pathway

depicted in Figure 3. In our gene-clustering tool, we choose

the molecular function ontology for measuring the semantic

similarity of GO terms because genes on these pathways are

manually annotated and clustered by their molecular functions.

We assign 0.8 to be the semantic contribution factor for the

‘is-a’ relation. The semantic contribution factor for the ‘part-

of ’ relation does not affect the similarities between the

molecular functions of genes because no ‘part-of ’ relation

exists in the molecular function ontology. Since we use

the annotation information from the SGD database as the

reference, we select this database as the data source.

Table 4. Similarities between molecular function terms that annotate genes ADh4 and Ldb3, respectively

GO:0046872 GO:0008270 GO:0009055 GO:0020037 GO:0005515

GO:0004023 0.112 0.071 0.427 0.112 0.141

GO:0004024 0.112 0.071 0.427 0.112 0.141

GO:0046872 1 0.664 0.173 0.390 0.480

GO:0016491 0.213 0.142 0.814 0.213 0.262

GO:0004022 0.126 0.081 0.482 0.126 0.157

GO:0008270 0.664 1 0.115 0.259 0.321

GO:0004174 0.126 0.081 0.482 0.126 0.157

J.Z.Wang et al.
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The similarity values among these genes obtained by our

algorithm are depicted in Figure 4. The similarity between

genes ARO8 and ARO9 is measured to be 1 by our algorithm.

Because both of these genes are annotated by only one

molecular function term ‘aromatic-amino-acid transaminase

activity’ in the SGD database, they have the same molecular

function based on the annotation data. Therefore, the similarity

value obtained by our algorithm is consistent with the human

perception. Our algorithm also determines that the molecular

function similarity between genes ADH1, ADH2, ADH3 and

ADH5 is 1. This is again consistent with the human perception

since these genes are annotated by only one molecular function

term ‘alcohol dehydrogenase activity’ in the SGD database.

Meanwhile, the similarity between PDC1, PDC5 and

PDC6are measured as 1 by our algorithm since they are

annotated by only one molecular function term ‘pyruvate

decarboxylase activity’ in the SGD database. Besides these

genes that have the same molecular function, gene ADH4

is annotated by the molecular function term ‘alcohol

dehydrogenase activity, zinc-dependent’ which is a child term

of ‘alcohol dehydrogenase activity’.

Thus, the molecular function of gene ADH4 should be very

similar to the molecular function of gene ADH1, ADH2,

ADH3 and ADH5. Our algorithm determines that

the similarity between ADH4 and the other four genes is

0.869, consistent with the human perspective. Gene ARO10

is annotated by three GO terms ‘carboxylase activity’,
‘pyruvate decarboxylase activity’, and ‘phenylpyruvate
decarboxylase activity’. Besides sharing the same term

‘pyruvate decarboxylase activity’ with genes PDC1,
PDC5 and PDC6, the other two terms that annotate
ARO10 are also very similar to term ‘pyruvate decarboxylase

activity’ because they are closely located in the GO graph.
Based on our algorithm, the similarity between genes
ARO10 and PDC1 is 0.896, again consistent with the human

perception. Gene SFA1 is annotated by two GO terms
‘formaldehyde dehydrogenase (glutathione) activity’ and
‘alcohol dehydrogenase activity’. Because SFA1 shares one

term ‘alcohol dehydrogenase activity’ with gene ADH1 and has
another term similar to term ‘alcohol dehydrogenase activity’,
our algorithm determines that the functional similarity between

SFA1 and ADH1 is 0.779. This similarity value is also
consistent with the human perception. As shown in Figure 5,
when the similarity threshold is at 0.77, our gene-clustering tool
groups these genes into three clusters which are associated with

three different stages in tryptophan degradation pathway.
Resnik’s method relies on the corpus statistics to determine

the information content of the GO terms. We use the gene

annotation data in the GO database to calculate the corpus
statistics. We note that using different gene annotation data to
obtain the corpus statistics may yield different semantic

similarity values for the same GO term pair based on
Resnik’s method. Figures 6 and 7 show the similarity values
and clustering results of genes in tryptophan degradation

pathway obtained by the gene-clustering tool based on
Resnik’s method. These results demonstrate the weakness of
Resnik’s method. That is, it ignores the information contained

in the structure of the ontology by only concentrating on the
information content of a term.
For instance, genes ARO8 and ARO9are annotated by

only one molecular function term ‘aromatic-amino-acid
transaminase activity’ in the SGD database, and genes
ADH1, ADH2, ADH3 and ADH5are also annotated by only

one molecular function term ‘alcohol dehydrogenase activity’.
Furthermore, the distances from these two GO terms to the
root term ‘molecular function’ are equal in the GO graph.

Therefore, the similarity between genes ARO8 and ARO9
should be equal to the similarity among genes ADH1, ADH2,
ADH3 and ADH5 in terms of their molecular functions.

However, Resnik’s method measured the similarity between
genes ARO8 and ARO9 to be 9.854, and the similarity
among genes ADH1, ADH2, ADH3 and ADH5 to be 6.831.

Similarly, genes PDC1, PDC5 and PDC6 are annotated by only
one molecular function term ‘pyruvate decarboxylase activity’
in the SGD database. However, the similarity value among

PDC1, PDC5 and PDC6 does not equal to the similarity value
between genes ARO8 and ARO9 based on Resnik’s method.
On the other hand, gene ADH4 is annotated by a molecular

function term ‘alcohol dehydrogenase activity, zinc-dependent’
which is a child term of ‘alcohol dehydrogenase activity’.
It means the molecular function of gene ADH4 is different from

the molecular function of genes ADH1, ADH2, ADH3 and
ADH5 based on the gene annotation information.
However, Resnik’s method cannot tell this difference

because the similarity value between ADH4 and ADH1 is

Fig. 3. Functions of genes in a S.cerevisiae pathway: tryptophan

degradation from the SGD.

Fig. 4. Similarity values among genes in tryptophan degradation

pathway obtained by our algorithm.
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the same as the similarity value between ADH2 and ADH1

based on this method. These results show that the similarity

values and clustering results obtained by Resnik’s method

are inconsistent with human perspectives, indicating using

only information content derived from annotation statistics is

not suitable for measuring the semantic similarity of GO terms.

4 ADVANTAGES OF OUR ALGORITHMS

Our evaluation in Section 3 demonstrates the advantages of our

algorithm over the Resnik’s algorithm. As we discussed

in Section 1, Lin and Jiang’s methods have a serious drawback

in dealing with shadow annotation. Our method does not have

such a problem because the denominator in Equation (3) is

smaller when terms are near the root of the ontology, and the

same amount of difference on the numerator will cause a larger

difference in the semantic similarity value. Therefore, using our

method, if two terms sharing the same parent are near the

root of the ontology (terms are more general), their

semantic similarity value is less than that of two terms having

the same parent and being far away from the root of the

ontology. This is consistent with human perspectives.
In summary, our semantic similarity measurement algorithm

has two advantages. First, it relies only on the relationships of

the GO terms within a specific ontology (biological process,

cellular component or molecular function) to determine

their semantic similarity. Therefore, it provides a consistent

measurement for the semantic similarity between two

GO terms, independent of the annotation statistics. Second,

our algorithm is designed to encode the human perception of

the semantic relationships between child and parent terms.

Thus, the semantic similarity of GO terms obtained by our

algorithm can reflect the closeness of their biological meanings

in human perspectives.

5 DETERMINING SEMANTIC CONTRIBUTION
FACTORS

The semantic similarity value of GO terms measured by

our method relates to the semantic contribution factors for

‘is-a’ and ‘part-of ’ relations. These two parameters determine

how much a parent term contributes to the semantics of its

child term. If the semantic contribution factor is set to 0, it

means no contribution from the ancestor terms is considered

for the semantics of a specific term, conflicting with the rule

on how to use GO terms to annotate genes discussed in the

GO website. If the semantic contribution factor is set to 1,

it means all ancestor terms equally contribute to the semantics

of a specific term, inconsistent with the human perception.

Therefore, the semantic contribution factor should be greater

Fig. 5. Clustering results of genes in tryptophan degradation pathway

based on the similarity values obtained by our algorithm.

Fig. 6. Similarity values among genes in tryptophan degradation

pathway obtained by Resnik’s method.

Fig. 7. Clustering results of genes in tryptophan degradation pathway

based on the similarity values obtained by Resnik’s method.
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than 0 and less than 1. We suggest selecting the semantic
contribution factor to be at least 0.5 to allow an ancestor term
farther from a specific term to have a meaningful impact on its
semantics. By measuring the similarities between the molecular

functions of genes in all pathways retrieved from the SGD
database under various semantic factors (varying from 0.5 to
0.9) and clustering these genes based on the obtained similarity

values, we found that selecting 0.8 as the contribution factor for
‘is-a’ relation produced similarity values that are most
consistent with human perspectives and the gene clustering

results are most consistent with their manual classification.
However, the similarity values between the molecular functions
of these genes were not changed when the semantic contribu-

tion factor for ‘part-of ’ relation varies. This is because no ‘part-
of ’ relation exists in the molecular function ontology. However,
there are many ‘part-of ’ relationship edges in the biological
process and cellular component ontologies although ‘is-a’

relations are dominant ones. Based on our experimental studies
with these two ontologies, the semantic contribution factor for
the ‘part-of ’ relation should be 0.6 or 0.7.

6 CONCLUSION AND FUTURE STUDIES

In this article, we proposed a novel method to encode a
GO term’s semantics into a numeric value by aggregating the

semantic contributions of their ancestor terms in the GO graph
and, in turn, devised an algorithm to measure the semantic
similarity of two GO terms. Then, we designed an algorithm to

measure the functional similarity of two genes based on the
semantic similarities among the GO terms annotating these
genes. With these algorithms, we implemented a set of online
tools to measure the semantic similarities of GO terms and the

functional similarities of genes, and to cluster genes based on
their functional similarity values (http://bioinformatics.clemso-
n.edu/G-SESAME). Although we are currently using

fixed semantic contribution factors for all ‘is-a’ or ‘part-of ’
edges respectively, we will study whether we can improve
our similarity measurement by varying the semantic contribu-

tion factors for relationship edges based on their distance to the
root of the ontology. We will also extend our algorithms to
handle the gene annotation data using other ontologies.
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