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ABSTRACT

Motivation: Clustering of individuals into populations on the basis of

multilocus genotypes is informative in a variety of settings.

In population-genetic clustering algorithms, such as BAPS,

STRUCTURE and TESS, individual multilocus genotypes are parti-

tioned over a set of clusters, often using unsupervised approaches

that involve stochastic simulation. As a result, replicate cluster

analyses of the same data may produce several distinct solutions for

estimated cluster membership coefficients, even though the same

initial conditions were used. Major differences among clustering

solutions have two main sources: (1) ‘label switching’ of clusters

across replicates, caused by the arbitrary way in which clusters in an

unsupervised analysis are labeled, and (2) ‘genuine multimodality,’

truly distinct solutions across replicates.

Results: To facilitate the interpretation of population-genetic

clustering results, we describe three algorithms for aligning multiple

replicate analyses of the same data set. We have implemented these

algorithms in the computer program CLUMPP (CLUster Matching

and Permutation Program). We illustrate the use of CLUMPP by

aligning the cluster membership coefficients from 100 replicate

cluster analyses of 600 chickens from 20 different breeds.

Availability: CLUMPP is freely available at http://rosenberglab.

bioinformatics.med.umich.edu/clumpp.html

Contact: mjakob@umich.edu

1 INTRODUCTION

A variety of population-genetic applications—such as associa-
tion mapping, molecular ecological studies and studies of

human evolution—make use of the clustering of individual
multilocus genotypes into populations. Many clustering
algorithms have now been developed for employing

population-genetic data to assign individuals—and fractions
of individuals—to clusters (Anderson and Thompson,
2002; Chen et al., 2006, 2007; Corander and Marttinen, 2006;

Corander et al., 2003, 2004; Dawson and Belkhir, 2001; Falush
et al., 2003; François et al., 2006; Huelsenbeck and Andolfatto,
2007; Pella and Masuda, 2006; Pritchard et al., 2000).

The result of a single cluster analysis is typically possible to
represent as a matrix, where each individual is given a

‘membership coefficient’ for each cluster—interpreted as a
probability of membership, or as a fraction of the genome with
membership in the cluster, depending on the setting—with

membership coefficients summing to 1 across K clusters.
The number of clusters is predefined by the user for some
methods, and for others it is inferred.
Because clustering algorithms may incorporate stochastic

simulation as part of the inference, independent analyses of the
same data may result in several distinct outcomes, even though
the same initial conditions were used. The main differences

across replicates are of two types: ‘label switching’ and ‘genuine
multimodality’. ‘Label switching’ refers to a scenario in which
different replicates obtain the same membership coefficient

estimates, except with a different permutation of the cluster
labels (Jasra et al., 2005; Stephens, 2000). In unsupervised
cluster analyses, because the meaning of each cluster label is not

known in advance, a clustering algorithm may be equally likely
to reach any of K ! permutations of the same collection of
estimated membership coefficients.
It is also possible for replicate cluster analyses to arrive

at truly distinct solutions that are not equivalent up to permu-
tation. Unlike ‘label switching’, which is simply a nuisance that
makes interpretation of the clustering results more difficult, this

‘genuine multimodality’ may result from real biological factors
that cause multiple parts of the space of possible membership
coefficients to provide similarly appropriate explanations for

the data.
Regardless of the source of differences in clustering out-

comes, some method is needed for handling the results from
replicate analyses. We develop three algorithms for searching

for optimal alignments of R replicate cluster analyses of the
same data, and we have implemented these algorithms in
the computer program CLUMPP. Our program takes as input

the estimated cluster membership coefficient matrices of multi-
ple runs of a clustering program, for any number of clusters.
It outputs these same matrices, permuted so that all replicates

have as close a match as possible. Thus, CLUMPP strips away
the ‘label switching’ heterogeneity so that the ‘genuine multi-
modality’ can be detected and quantified. The input file for*To whom correspondence should be addressed.
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CLUMPP is a file similar to the output from STRUCTURE
(Falush et al., 2003; Pritchard et al., 2000), and the output from
CLUMPP can be used directly as input by the cluster
visualization program DISTRUCT (Rosenberg, 2004).

2 ALGORITHMS

We refer to the C�K matrix of membership coefficients for a

single cluster analysis as the Q-matrix, with the C rows
corresponding to individuals (or populations) and the K columns
corresponding to clusters. CLUMPP attempts to maximize a

measure of similarity of the Q-matrices of R creplicates over all
(K !)R�1 possible alignments of the replicates.
Consider a pair of Q-matrices, Qi and Qj for runs i and j,

where the value in the cth row and kth column of Qi is the
membership coefficient for individual c in cluster k as inferred
in run i. Each matrix consists of non-negative entries, and the
sum of the entries in any row is 1. We define the pairwise

similarity of matrices Qi and Qj as follows:

GðQi;QjÞ ¼ 1�
kQi �QjkFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kQi �WkFkQj �WkF
p : ð1Þ

In this equation, W is a C�K matrix with all elements equal to

1/K and k:kF is the Frobenius matrix norm (Golub and
Van Loan, 1996).

kAkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXC
c¼1

XK
k¼1

a2ck

vuut ; ð2Þ

where C and K respectively denote the numbers of rows and
columns of A, and ack is the value in row c and column k.
Using G to measure similarity, the optimal alignment of

matrices Qi and Qj is defined as the permutation of the columns
of Qj that maximizes the similarity G over all permutations P in
the set SK of permutations ofK clusters. The maximum value, or

SSCðQi;QjÞ ¼ max
P2SK

GðQi;PðQjÞÞ; ð3Þ

is the quantity named by Nordborg et al. (2005) the ‘symmetric
similarity coefficient’ (SSC) of the pair of runs [see also
Rosenberg et al., (2002) for an earlier statistic]. The SSC for

two runs is bounded above by 1—which it equals if the
Q-matrices are identical up to a permutation of the clusters—
and it decreases as the similarity of the Q-matrices decreases.

The SSC statistic is generally expected to be positive if
non-trivial clustering patterns are present in Qi and Qj,
although it is possible for it to be negative.
For a collection of R replicates, the average pairwise

similarity is defined as

HðQ1;Q2; . . . ;QRÞ ¼
2

RðR� 1Þ

XR�1

i¼1

XR
j4i

GðQi;QjÞ: ð4Þ

To find the optimal alignment of R replicates, we search for the

vector of permutations that maximizes this average pairwise
similarity:

SSCRðQ1;Q2; . . . ;QRÞ

¼ max
ðP1;P2;...;PRÞ2SR

K

HðP1ðQ1Þ;P2ðQ2Þ; . . . ;PRðQRÞÞ: ð5Þ

Without loss of generality, we take P1 to be the identity
permutation I, so that the clusters of runs 2,. . .,R are permuted
to align with the clusters of run 1. As SK contains K !
permutations, with P1 set to equal I, the maximum in

Equation (5) is taken over (K !)R�1 vectors.
We make use of three algorithms for attempting to

find the optimal alignment of R replicates. In decreasing

order of the extent of the search, and in increasing order
of computational speed, these algorithms are termed
FullSearch, Greedy and LargeKGreedy. These algorithms

supersede earlier methods that we described in Nordborg
et al. (2005).
Note that our approach can proceed analogously using

alternative functions to measure similarity in place of G.
Although it is undefined when one of the two matrices equals
W, G is designed to have large negative values when one of the
two runs reflects substantial population structure and the

other has relatively little structure (i.e. little difference fromW ).
We can define a second similarity function G0, which is
guaranteed to lie in [0,1]:

G0ðQi;QjÞ ¼ 1�
kQi �QjkFffiffiffiffiffiffi

2C
p : ð6Þ

The normalization constant
ffiffiffiffiffiffi
2C

p
, which guarantees that

G0 lies in [0,1], arises from the definition of the Frobenius
norm:

kA� BkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXC
c¼1

XK
k¼1

a2ck þ b2ck � 2ackbck

 !vuut :

If A and B have non-negative entries and row sums of 1, then

�2ackbck�0 and
PK

k¼1 a
2
ck ¼ ð

PK
k¼1 ackÞ

2
� 2

PK�1
k¼1

PK
‘>k ackac‘ ¼

1� 2
PK�1

k¼1

PK
‘>k ackac‘ � 1. Similarly,

PK
k¼1 b

2
ck � 1. It then

follows that kA� BkF �
ffiffiffiffiffiffi
2C

p
.

The quantities SSC0, H0 and SSC0
R can then be defined by

replacing G in Equations (3–5) with G0. We proceed to describe
our algorithms using the G statistic to measure similarity; to
instead use G0, the approach is analogous with G0, SSC0, H0 and

SSC0
R in place of G, SSC, H, and SSCR.

FullSearch

The FullSearch algorithm computes H for each of the (K!)R�1

alignments of the K clusters in R replicates. Considering

all possible vectors of permutations (I, P2, P3, . . ., PR),
the algorithm computes H(I(Q1),P2(Q2),P3(Q3),. . .,PR(QR))
and returns the vector of permutations that maximizes SSCR.

As the number of possible vectors grows quickly with K and R,
however, even for moderate values of K and R, it is unrealistic
to test every alignment. The FullSearch algorithm runs in
time proportional to TFullSearch ¼ (K!)R�1[R(R�1)/2]KC:

the number of permutation vectors is (K!)R�1, the number
of computations of G in each evaluation of Equation (4)
is R(R�1)/2, and the time required for each computation

of G is proportional to KC. Although it proceeds slowly,
unlike our other algorithms, the FullSearch algorithm is
guaranteed to find the optimal alignment of clusters across

multiple runs.
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Greedy

The Greedy algorithm employed by CLUMPP proceeds as

follows:

(1) Choose one run, Q1.

(2) Choose a second run, Q2, and fix the permutation, P2,
that maximizes G(P1(Q1),P(Q2)) over all possible permu-

tations P (where P1 is the identity permutation).

(3) Continue sequentially with each remaining run, Qx,
where x¼3,. . .,R, and fix the permutation, Px of Qx,
that maximizes the average similarity with the previously
fixed x�1 runs, or

JðP1ðQ1Þ;P2ðQ2Þ; . . . ;Px�1ðQx�1Þ;PðQxÞÞ

¼
1

x� 1

Xx�1

‘¼1

GðP‘ðQ‘Þ;PðQxÞÞ; ð7Þ

over all permutations P.

This algorithm runs in time proportional to

TGreedy¼(K !)[R(R�1)/2]KC. The number of permutations
tested for each run from 2 to R is K !. For run r (r ranging
from 2 to R), the number of computations of G performed for

each permutation is r�1. Thus, considering all runs from 2 to
R, the total number of computations of G performed is
(K !)[R(R�1)]/2. Each computation of G runs in time propor-
tional to KC.

Because the order in which the runs are considered can affect
the result, several different sequences of runs should be tested.
CLUMPP offers three options for testing different sequences:

test all possible sequences of runs, test a pre-defined number of
random sequences and test a specific set of user-defined
sequences.

LargeKGreedy

When K015, the number of permutations, K !, is very large,

and it may not be possible to calculate G for all permutations of
a particular pair of Q-matrices. Instead of testing every
permutation as in the Greedy algorithm, the LargeKGreedy

algorithm proceeds as follows:

(1) Choose one run, Q1.

(2a) Choose a second run, Q2. Compute G for all pairs of
columns, one from Q1 and one from Q2. This

computation is simply the value of G for two
columns—hence no permutations of Q2 are computed,
unlike in step 2 for the Greedy algorithm.

(2b) Pick the pair of columns Q1,y1
and Q2,z1

with highest

G-value and fix these columns (Q1,y1
refers to column y1

of matrix Q1). Then pick the pairs of columns Q1,y2
and

Q2,z2
with the next highest G-value, ignoring all G-values

of pairs containing either of the previously chosen
columns Q1,y1

and Q2,z1
. Repeat this procedure until K

pairs of columns, one each from Q1 and Q2, have been
picked, and fix the permutation of Q2 that matches up

these pairs of columns, or P2(Q2).

(3a) Continue sequentially with each remaining run, Qx,
where x ¼ 3,. . ., R. For each y and z from 1 to K,

compute the average similarity,

JðP1;yðQ1Þ; . . . ;Px�1;yðQx�1Þ;Qx;zÞÞ

¼
1

x� 1

Xx�1

‘¼1

GðP‘;yðQ‘Þ;Qx;zÞÞ; ð8Þ

where P‘,y denotes column y of the permuted matrix

P‘(Q‘). This quantity is the similarity of column z of Qx

to column y of each of the previously fixed permuta-
tions, averaged across all runs previously considered.

No permutations of Qx are computed, unlike in Step 3
for the Greedy algorithm.

(3b) Pick the pair of columns y1 of P1(Q1),
P2(Q2),. . .,Px�1(Qx�1) and z1 of Qx with highest average

similarity in Equation (8). Then pick the columns y2 and
z2 with the next highest similarity in Equation (8),
ignoring similarity scores of pairs containing either of
the previously chosen columns y1 and z1. Repeat this

procedure until K pairs of columns, one for the matrices
P1(Q1),P2(Q2),. . .,Px�1(Qx�1) and one for Qx, have been
picked. Fix the permutation of Qx that matches up these

pairs of columns, or Px(Qx).

A candidate for the vector of permutations of the R runs that
maximizes H across all possible vectors has now been

constructed. This algorithm runs in time proportional to
TLargeKGreedy¼[R(R�1)/2]K2C. The number of pairs of columns,
one from the run under consideration and one from the

previously fixed runs, is K2. For run r (r ranging from 2 to R),
the number of computations of G performed for each pair of
columns is r�1. Considering all runs from 2 to R, the total
number of computations of G performed is K2[R(R�1)]/2.

Since G is computed only for columns rather than for whole
matrices, the time of computation of G is proportional only
to C rather than to KC, as in the other algorithms.

As is true for the Greedy algorithm, the order in which the
runs are considered can affect the result. For the LargeKGreedy
algorithm CLUMPP offers the same three options for selecting

the input sequence of runs as it provides for the Greedy
algorithm.
To get an idea of which algorithm to use, we have found it

useful to compute the quantity D¼TN for each algorithm,

where T is a quantity proportional to the time required by an
algorithm (as described above) and N is the number of input
sequences to be tested (for FullSearch, N¼1). If D 9 1013 for

FullSearch, then this algorithm is fast enough and is preferred;
otherwise the Greedy algorithm can be used. If D0 1013 for the
Greedy algorithm, then this algorithm is probably also too

slow. In that case, the LargeKGreedy algorithm should be
used, as it can handle K>20, R>100 and C>1000 in
reasonable time. We recommend testing at least 100 input

sequences for the Greedy and LargeKGreedy algorithms—and
preferably many more—to find the approximately highest
SSCR value.

Example

Rosenberg et al. (2001) analyzed a data set of 27 microsat-
ellites genotyped in 600 chickens from 20 breeds.

CLUMPP: a cluster matching permutation program
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Using STRUCTURE (Pritchard et al., 2000), they inferred
membership coefficients of the 600 chickens in 19 clusters.
By repeating the cluster analysis 100 times, they assessed the
robustness of the clusters, and Figure 1A displays the cluster

membership estimates from 25 of the 100 replicates (randomly
chosen). From Figure 1A, the ‘label-switching’ problem is
apparent. Focusing on Runs 15 and 16, we could quickly

‘match up’ the clusters (i.e. the colored segments). However,
because of some genuine multimodality, it would be not only
tedious, but also difficult, to visually align the clusters for all

replicates in an optimal manner. CLUMPP is designed to
address exactly this type of situation.
Using CLUMPP and the LargeKGreedy algorithm on

the 100 replicates (10 sets of 100 random input sequences of

runs—for each set this takes �6min on a 2.4GHz processor),
we find the highest value of H to be in the range of 0.51–0.54
(and the highest value of H0 to be between 0.69 and 0.70). If we
allow the algorithm to run longer (30 000 random input

sequences), the highest H equals 0.5546. The highest-scoring
input sequences tend to produce quite similar alignments of the
replicates. Excluding the input sequence that produced the

highest H-value, the next 10 highest-scoring input sequences all
produced H-values of at least 0.5441, and had on average 2.0%
differences compared to the input sequence that led to the

highestH. In other words, considering the permuted position of
a randomly chosen cluster (among 19) in a randomly chosen
run (among 100) based on the output of CLUMPP using

a randomly chosen input sequence (among the 10 next
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Fig. 1. The membership coefficients (Q-matrices) for 600 chickens, pre-CLUMPP and post-CLUMPP. The matrices are visualized using

DISTRUCT. (A) Membership coefficients from the first 25 runs of STRUCTURE from a total of 100 runs performed by Rosenberg et al. (2001).

Each individual is represented by a vertical line partitioned into 19 colored segments corresponding to its membership coefficients in 19 clusters. Each

color represents a different cluster, and black lines separate the individuals of different breeds. (B) The same membership coefficients as in A,

permuted using CLUMPP so that cluster labels match across runs.
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highest-scoring sequences, after the one with the highest
H-value), the cluster had a 98.0% chance of being aligned in
the same way that it was aligned when using the highest-scoring
of all input sequences.

The permuted membership coefficients of the 25 runs in
Figure 1A for the input sequence among the 30 000 that leads to
the highestH are shown in Figure 1B. Comparing the permuted

membership coefficients for this input sequence to the
clustering behavior in Table 2 of Rosenberg et al. (2001),
we recapture the same patterns of clustering. For example,

Brown-egg layer lines C and D always share a cluster, and this
cluster sometimes (in 8 of 100 runs) includes Godollo Nhx
(Run 11 in Fig. 1).

When we consider the LargeKGreedy algorithm with 10 000
fixed input sequences (chosen randomly among the 30 000
described above), for each of the 10 000 sequences, the
alignment of the replicates obtained by CLUMPP is identical

regardless of which of two statistics—H or H0—is used. The
same input sequence that produces the highest H-value
(H¼0.5508) produces the highest H0-value (H0¼0.7099).

Excluding the input sequence that produced the highest
values of H and H0, the next 10 highest-scoring input
sequences—the same sequences for both statistics—all pro-

duced H-values of at least 0.5392 and H0-values of at least
0.7022, and had on average 7.0% differences compared to the
input sequence that led to the highest H and H0. These results
suggest that although matrices can be constructed so that the

two statistics can lead to different alignments, in practice, their
properties are extremely similar. The larger number of
differences for the highest-scoring input sequences from

among 10 000 sequences compared to the highest-scoring
among the 30 000 sequences described above highlights the
importance of employing a large number of input sequences

whenever possible.

3 DISCUSSION

Interpreting the results of multiple population genetic cluster

analyses is not always straightforward (Corander et al., 2004;
Evanno et al., 2005; Pritchard et al., 2000; Rosenberg et al.,
2001). One could argue that the single replicate with the highest

likelihood (according to the criterion of the clustering program)
is the optimal clustering solution, and that solutions with
lower likelihood can be discarded. However, for complex data
sets that produce several distinct solutions with similar

likelihoods, this strategy may not be satisfactory, as it
disregards both uncertainties of the analysis and important
population structure information that may only be visible in

different modes. From a Bayesian perspective, a possible
approach would be to weight different solutions by their
likelihoods. However, this approach can be difficult to apply

with individual membership coefficients in the case of genuine
multimodality. A third approach is to summarize data on the
outcomes of many replicates, such as in Table 2 of Rosenberg

et al. (2001). Regardless of the choice of procedure for
employing multiple cluster analyses to make biological inter-
pretations from population-genetic data, CLUMPP can
provide a useful way of assessing the similarity of the outcomes

of individual runs.

We note that our focus here has been on the setting in which
the clustering algorithm explores only one mode during the
iterative process that constitutes a single replicate analysis, but
may explore different modes in different replicates. As was

recognized by Pritchard et al. (2000), this setting typically
applies to the STRUCTURE approach, for which the results of
individual replicates are reasonably straightforward to sum-

marize and interpret, but for which difficulties may arise in
interpreting differences across replicates. It is possible to
envision an alternative scenario in which multiple important

modes (potentially including multiple permutations of each of
the genuinely distinct modes) are explored during the course of
a single analysis. In this situation, replicate analyses would

produce similar results, but because the meaning of a cluster
label could vary across intermediate steps in the analysis, it
would be challenging to summarize the outcome of any single
replicate. Although our analysis has used the language of

multiple replicate analyses rather than that of multiple
intermediate steps of a single analysis, it is worth noting that
the algorithms we have proposed for the matching of clusters

can also be applied with each ‘replicate’ described above
corresponding to a specific state of the membership coefficient
estimates encountered during the course of a single analysis.

Thus, in addition to their uses in interpreting multiple replicate
analyses, our algorithms can augment existing approaches to
the analysis of individual replicates (e.g. Dawson and Belkhir,
2001; Huelsenbeck and Andolfatto, 2007) and can contribute

new approaches for the problem of summarizing the
intermediate steps of a single run.
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