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ABSTRACT

Motivation: The identification and characterization of susceptibility

genes that influence the risk of common and complex diseases

remains a statistical and computational challenge in genetic

association studies. This is partly because the effect of any single

genetic variant for a common and complex disease may be

dependent on other genetic variants (gene–gene interaction) and

environmental factors (gene–environment interaction). To address

this problem, the multifactor dimensionality reduction (MDR) method

has been proposed by Ritchie et al. to detect gene–gene interactions

or gene–environment interactions. The MDR method identifies

polymorphism combinations associated with the common and

complex multifactorial diseases by collapsing high-dimensional

genetic factors into a single dimension. That is, the MDR method

classifies the combination of multilocus genotypes into high-risk and

low-risk groups based on a comparison of the ratios of the numbers

of cases and controls. When a high-order interaction model is

considered with multi-dimensional factors, however, there may be

many sparse or empty cells in the contingency tables. The MDR

method cannot classify an empty cell as high risk or low risk and

leaves it as undetermined.

Results: In this article, we propose the log-linear model-based

multifactor dimensionality reduction (LM MDR) method to improve

the MDR in classifying sparse or empty cells. The LM MDR method

estimates frequencies for empty cells from a parsimonious log-linear

model so that they can be assigned to high-and low-risk groups.

In addition, LM MDR includes MDR as a special case when the

saturated log-linear model is fitted. Simulation studies show that

the LM MDR method has greater power and smaller error rates than

the MDR method. The LM MDR method is also compared with the

MDR method using as an example sporadic Alzheimer’s disease.

Contact: tspark@stats.snu.ac.kr

1 INTRODUCTION

In genetic epidemiology, it is a great challenge to identify and

characterize susceptibility genes that have significant influences

on the risk of common and complex diseases. This challenge is

partly due to the limitations of parametric statistical methods

for detecting genetic effects that are dependent on the degree

of non-linearity in the relationship between genotype and

disease. Non-linearities can occur from phenomena such as

locus heterogeneity, phenocopies, and the dependence

of genotypic effects on environmental factors (i.e. gene–

environment interactions or plastic reaction norms) and

genotypes at other loci (i.e. gene–gene interactions or epistasis)

(Moore et al., 2006). From the statistical point of view, epistasis

can be recognized as deviations from additivity in a linear

statistical model. Epistasis is variously defined biologically and

statistically. Biologically, epistasis is related to the physical

interactions between biomolecules such as DNA, RNA and

proteins, and occurs at the cellular level in an individual. On the

other hand, statistical epistasis measures the non-additive

effects of genes at the population level. It is difficult to detect

and characterize epistasis because of non-linearity between

genotype and disease (Moore et al., 2006). In the extreme case,

epistasis might occur in the absence of detectable marginal

effects of any one polymorphism.
Logistic regression is commonly used to model the relation-

ship between genotypes and binary phenotypes. When high-

order interactions involving multi-dimensional factors are

considered, there may be many sparse or empty cells. In that

case, the parameter estimates for the logistic regression model

may have very large standard errors, resulting in an increase of

type I error (Hosmer and Lemeshow, 2000). One solution for

this problem is to collect very large samples to allow for

robust estimation of interaction effects; however, the

magnitudes of the samples that are often required may incur

a prohibitive expense.
For relatively small sample sizes, Ritchie et al. (2001)

proposed the MDR method to identify gene–gene and gene–

environmental interactions with high-dimensional multilocus

genotype variables for case-control and discordant-sib-pair

studies. TheMDRmethod collapses high-dimensional genotype

variables into a one-dimensional variable with two levels

(high and low risk) using the ratio of the number of cases to*To whom correspondence should be addressed.
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that of controls. The new, one-dimensional multilocus genotype
variable is evaluated for its ability to classify and predict disease
status through cross-validation. Many studies have shown that

MDR can identify putative high-order gene–gene interactions in
the absence of any significant independent main effects in
sporadic breast cancer (Ritchie et al., 2001) and essential

hypertension (Moore and William, 2002).
Hahn et al. (2003) developed a software package for

implementing MDR in case-control and discordant sib-pair

study designs. Ritchie et al. (2003) also evaluated the power of
MDR in the presence of genotyping error, missing data,
phenocopies and genetic heterogeneity. Furthermore, Coffey

et al. (2004) compared MDR with the conditional logistic
regression model for detecting gene–gene interactions on the
risk of myocardial infarction, and pointed out the importance

of model validation.
Although the MDR method provides many useful features,

it has several drawbacks. First, when high-order interactions

involving multi-dimensional factors are considered, there may
be many sparse or empty cells in the contingency tables. In this
case, the MDR method cannot classify the empty cells into

high-risk and low-risk groups, which may result in loss
of information and power for detecting gene–gene interactions.
Second, MDR is prone to false positive and false negative

errors when the number of cases is similar to the number of
controls, or when the number of both cases and controls is too
small. For example, suppose the ratio of cases to controls for

a specific cell is equal to that for the entire set of cases and
controls. Then, just a small change in this cell frequency can
change the classification from the high-risk group to the

low-risk group or vice versa. Thus, the classification of this cell
is vulnerable to false positive and false negative errors.
In this article, we propose the log-linear model-based

multifactor dimensionality reduction (LM MDR) method to
reduce the loss of information due to the exclusion of empty
cells, and to improve the validity of classification of MDR

by using a log-linear model. The LM MDR method allows us
to estimate the frequencies of empty cells as well as sparse cells,
and classify them into the high-risk and low-risk groups.

Moreover, since logistic models with categorical explanatory
variables have equivalent log-linear models, forming the logit
for one response variable helps interpret the results of the LM

MDR method (Agresti, 2002). When the saturated model is
fitted instead of a parsimonious model, LM MDR is equivalent
to MDR, which implies that MDR is a special case of LM

MDR. In practice, the non-saturated parsimonious models are
preferable to the saturated one, since their fit smooths the
sample data and have simpler interpretations (Agresti, 2002).

The main criticism of MDR is that it does not use a
parsimonious model and allows biologically unlikely models.
LM MDR is based on a parsimonious log-linear model

and detects the main associations among variables in the
model, which helps us find some obvious trends or patterns
with biological plausibility.
The MDR method is briefly reviewed in Section 2.1 and

the LM MDR method is proposed in Section 2.2. The LM
MDR method is compared with the MDR method by
simulation results in Section 3. The LM MDR method is

compared with the MDR method in Section 4 using the data

for sporadic Alzheimer’s disease that was analyzed by Shi et al.

(2005). Finally, a short discussion is given in Section 5.

2 METHODS

2.1 Multifactor dimensionality reduction method

TheMDRmethod has been proposed by Ritchie et al. (2001) andMoore

and William (2002), and implemented by Hahn et al. (2003)

and Ritchie et al. (2003). It comprises the following two stages. Stage

1 involves choosing the best combination of multifactors. Stage 2

involves classifying the combinations of genotypes into high-risk and

low-risk groups.

First, the data set is partitioned into 10 subsets for cross-validation.

From those, 9 sets are assigned as a training set and the remaining 1 set

taken as an independent test set. Second, for a combination of n given

factors, all possible multilocus genotypes are represented in an

n-dimensional contingency table. Each multilocus genotype in the

n-dimensional space is then classified as ‘high risk’ if the ratio of the

number of cases to the number of controls meets or exceeds some

threshold, and ‘low risk’ if that threshold is not exceeded. Here, the

threshold is determined as the ratio of the number of cases to the number

of controls in the training set. This procedure reduces the n-dimensional

space to a one dimensional space (i.e. one variable with two categories,

high risk or low risk ). Then, all the n-factor combinations are evaluated

for their ability to classify the disease status in the training data set and

the best combination of factors with the minimummisclassification error

is selected. For the selected combination of factors, the prediction error is

calculated in the test data set.

After repeating this procedure 10 times with the data split into

10 different training and test sets, the prediction error is averaged over

the 10 data splits and is used as a measure of predictive power.

In addition, a measure of the cross-validation consistency (CVC) is

defined as the number of times a particular combination of factors is

identified across the 10 cross-validations (Moore and William, 2002).

These repeated procedures are performed 10 times, using different

random numbers as seeds, to reduce the chance of observing spurious

results due to chance divisions of the data.

For each value of n, we select the best combination of factors that has

the minimum prediction error and the maximum CVC. Then, the best

combinations can be listed, one for each possible dimension of

n factors. That is, the result is a set of n models, one for each

combination of factors. Then, from the selected combinations, the

model with the combination of factors that maximizes the CVC and

minimizes the prediction error is finally selected. When the CVC

is maximal for one model and the prediction error is minimal for

another model, the model with the smaller number of factors is selected.

Once MDR identifies the best combination of factors in Stage 1, the

next step is to determine in Stage 2 which multilocus genotypes are high

risk and which are low risk. MDR evaluates this final classification by

a ratio threshold, the number of cases divided by the number of controls.

Recently, Moore et al. (2006) have described MDR as a constructive

induction method in a flexible framework for detecting, characterizing

and interpreting gene–gene interaction or epistasis. Thus, MDR creates

a new attribute by pooling genotypes from multiple SNPs to capture

interaction information. MDR is a constructive induction method that

in its simplest form takes two or more variables and constructs a new

variable, thereby changing the representation space of the data to make

interactions easier to detect.

Since the first introduction of MDR, the accuracy (¼1�error rate)

has been used as a model fitness measure. It is calculated as the number

of correctly classified samples divided by a total number of samples

included in the evaluation. However, this measure is prone to produce

biased results when the number of cases and controls are not the same.
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To avoid this problem, Velez et al. (2007) suggested the measure

balanced accuracy, defined as the arithmetic mean of sensitivity and

specificity. When the number of cases and controls are the same,

balanced accuracy is equal to accuracy.

Despite the recent improvement of MDR, it still suffers from the

empty and sparseness problem. For example, MDR excludes empty

cells from the analysis and leaves them as undetermined. In addition,

the classification of MDR is vulnerable to errors when the number

of cases is equal to the number of controls, or when both the numbers

of cases and controls are too small. Since it is common to have empty or

sparse cells in the contingency tables when high-order interactions

involving multi-dimensional factors are considered, a remedy for taking

into account the sparse and empty cells is needed in order to improve

the validity of the MDR classification.

2.2 Log-linear model-based multifactor dimensionality

reduction method

We propose the log-linear model-based multifactor dimensionality

reduction (LM MDR) method to improve the validity of MDR in the

classification procedure in Stage 2. The procedure in Stage 1 is the same

as MDR in selecting the best combination of multifactors that has the

minimum prediction error and the maximum CVC. In Stage 2,

however, the LM MDR method classifies multilocus genotypes into

the high-risk and low-risk groups using the estimated frequencies from

the parsimonious log-linear model, whereas the MDR method uses the

observed frequencies for its classification.

For LM MDR, the log-linear models are fitted for the best

combination of factors selected in Stage 1. To find the parsimonious

log-linear model, we compare all candidate log-linear models by

the goodness-of-fit test statistic. For simplicity, we assume that

the following three constraints are required to become candidate

parsimonious models:

(i) The model is hierarchical.

(ii) The model has an equivalent logit model.

(iii) The model contains the interaction terms between the

genotypes and the binary variable for distinguishing cases

and controls.

By way of illustration, assume that the two SNPs each with three

genotypes are selected as the best combination in Stage 1. Denote the

two SNPs X and Y, and denote by D a binary variable distinguishing

cases and controls. Then, the data for two SNPs and a binary variable

are summarized in a 3� 3� 2 contingency table. Let {�ijk}, {�ijk} and

{nijk}, for i, j ¼ 1, 2, 3, and k ¼ 1, 2, denote the cell probability, the

expected cell frequency and the observed cell frequency, respectively.

Then, the saturated log-linear model is defined by

log�i j k ¼ �þ �Xi þ �Yj þ �Dk þ �XYij þ �XDik þ �YDjk þ �XYDijk ;

where �Xi , �
Y
j and �Dk are the main effects of X, Y and D, respectively;

�XYij represents the two-way interaction effect of X and Y, and

analogously for �XDik and �YDjk ; and �XYDijk represents the three-way

interaction effect of X, Y and D. This saturated model is represented by

a symbol, (XYD), that lists the highest-order term(s). The maximum-

likelihood estimators (MLEs) of �ijk are given by �̂ijk ¼ nijk for all i, j

and k. That is, the MLEs are just the observed cell frequencies.

The list of all possible log-linear models includes (XYD),

(XD,YD,XY), (XD,XY), (YD,XY), (XD,YD), (X,YD), (XD,Y),

(D,XY) and (X,Y,D). However, the models (XYD) and (XD,YD,

XY) are the only candidate log-linear models satisfying the above three

constraints. The model (XD,YD,XY) is defined by

log�ijk ¼ �þ �Xi þ �Yj þ �Dk þ �XYij þ �XDik þ �YDjk :

For this log-linear model, the MLEs of �̂ijk are obtained by iterative

methods and the estimated cell frequencies are not equal to the

observed cell frequencies.

The adequacy of the log-linear models can be tested by the goodness-

of-fit test statistic. If there are several candidate models available with

good fit to the data, then that model with the least number of

parameters is selected. Alternatively, Akaike’s information criterion

(AIC) can be used and the model with the smallest AIC value is selected

as the best model among the several candidate models.

The estimated cell frequencies from the selected log-linear model can

be used to classify the multilocus genotypes into high or low-risk groups

depending on the ratio of the estimated number of cases to the number

of controls, i.e. �̂ij1=�̂ij2. The threshold ratio is the ratio of the estimated

number of cases to the estimated number of controls in the entire data

set. The selected log-linear model provides the MLEs of the frequencies

of both empty cells and sparse cells, and thus allows these cells to be

classified into either the high or low-risk group. Moreover, since the

selected log-linear model accounts for the significant association

between susceptible genotypes and the disease, the estimated frequen-

cies from the selected model become quite informative. As a result,

the classification of LMMDR is expected to be more accurate than that

of MDR.

When no candidate models are selected with a good fit to the data,

the saturated model is selected. The estimated cell frequencies are then

the same as the observed frequencies, i.e. �̂ijk ¼ nijk for all i, j and k.

Thus, in this case the LMMDRmethod yields the same result as that of

the MDR method. In other words, when the saturated log-linear model

is used, the MDR method becomes a special case of the LM MDR

method.

3 SIMULATION

We perform a simulation study to compare the LM MDR

method with the MDR method in terms of power, misclassi-

fication and prediction errors. We assume a case-control study

using similar two-locus epistasis models considered by Ritchie

et al. (2003) and Velez et al. (2007). However, our models differ

from theirs in that ours are based on the log-linear model.

Our simulation settings extend from a model with interaction

effects in the absence of marginal effects to a model with only

marginal effects in the absence of interaction effects.
One set of the multilocus penetrance functions assumed is

given in Table 1. This set has some main effects as well as

two-way interaction effects. Here penetrance is defined by

P [D¼ 1 j X¼ i,Y¼ j ]. We assume the major allele frequencies

of X and Y are each 0.8, and joint Hardy-Weinberg equilibrium

at the two loci. Then, the probabilities of the genotypes are

given by

P X ¼ 1;Y ¼ 1½ � ¼ 0:4096;

P X ¼ 2;Y ¼ 2½ � ¼ 0:1024;

P X ¼ 3;Y ¼ 3½ � ¼ 0:0016;

P X ¼ 1;Y ¼ 2½ � ¼ P X ¼ 2;Y ¼ 1½ � ¼ 0:2048;

P X ¼ 1;Y ¼ 3½ � ¼ P X ¼ 3;Y ¼ 1½ � ¼ 0:0256;

P X ¼ 2;Y ¼ 3½ � ¼ P X ¼ 3;Y ¼ 2½ � ¼ 0:0128:

Here, the values of 1, 2 and 3 represent the three different

genotypes, e.g. AA, Aa and aa, respectively. Using P[X,Y] and

the penetrance functions given in Table 1, we generated

100 different data sets each with 100 cases and 100 controls.

The true high-risk and low-risk groups are shown in Table 2.
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Since the LM MDR method has the same selection

procedure as the MDR method, we assume that the best

combination of SNPs is (X,Y) in Stage 1. For the LM MDR

method, a model, (XD,YD,XY), is fitted to each of the 100

data sets. The average values of the 100 goodness-of-fit test

statistics and P-values are 1.15 and 0.86 with df¼ 4, respec-

tively, showing that this model fits the 100 data sets well.

We compare three methods, which are LM MDR without

continuity correction, LM MDR with continuity correction

and MDR. As shown in Table 3, the two LM MDRs have

slightly smaller prediction errors than MDR, but similar

misclassification errors to MDR. However, note that the

MDR method excluded the empty cells, while the two LM

MDR methods included them in computing the misclassifica-

tion and prediction errors.
The three methods are also compared in terms of two

different measures: the number of perfectly matched data sets

and the percentage of matched cells. The number of perfectly

matched data sets represents how many times 100 data sets

have perfectly matched the true high-risk and low-risk groups.

The percentage of matched cells represents the average

percentage of the nine cells that match both the true high and

low-risk groups.
As shown in Table 3, the LM MDR methods without and

with continuity correction yielded 36 and 58 perfectly matched

sets, respectively, while the MDR method yielded 29 matched

sets. That is, these two LM MDR methods classified more

perfectly than did MDR, and LM MDR with continuity

correction classified all nine cells perfectly 22 times more often

than LM MDR without continuity correction. Furthermore,

LM MDR methods yielded a higher percentage of individual

matching cells than MDR.
We have presented in detail just one typical result from

among the many simulation studies we performed with two loci

in which several combinations of main effects and interaction

effects were considered. All these simulation, the results of

which we do not detail here, agreed qualitatively with what

might be expected from theoretical considerations, as we

summarize in the discussion. If an unsaturated model provides

a good fit to the data (defined in these simulations as no

departure from the model at the 5% significance level), then the

LM MDR methods have better power and smaller prediction

errors than the MDR method, and the classification of the LM

MDR method can be substantially improved by using the

continuity correction.

4 EXAMPLE

Alzheimer’s disease, the most common form of dementia in

elderly persons, is a progressive neurodegenerative disorder.

Deposition of amyloid �-peptide (A�) in brain from

Alzheimer’s disease patients is one of the pathological hall-

marks of Alzheimer’s disease, and neprilysin (NEP) is a major

�-amyloid peptide (A�)-degrading enzyme in vivo and reduced

mRNA levels of NEP correlates with increased plaque density.

The human NEP gene is composed of 24 exons located on

chromosome 3q25.1–q25.2 (D’Adamio et al., 1989) and familial

Alzheimer’s disease is reported to be linked to 3q23–q24

(Poduslo et al., 1999).
Recent studies have focused on enzymes in amyloid

catabolism. NEP, a putative A� degrading enzyme, is reported

to be important in the development of Alzheimer’s disease since

its decreased expression and/or activity may also result in

cerebral A� accumulation. Helisalmi et al. (2004) investigated

whether allelic variants across the NEP gene modify the risk of

Alzheimer’s disease in a Finnish population and found that two

SNPs, rs989692 and rs3736187 in the NEP gene affect the risk

of Alzheimer’s disease in a study of 390 Alzheimer’s Finnish

patients and 468 cognitively healthy controls.

Shi et al. (2005) investigated the association of the NEP

gene on the development of Alzheimer’s disease in a Chinese

sample that consisted of 257 Alzheimer’s disease patients

and 242 age-matched controls. They used denaturing high-

performance liquid chromatography (DHPLC) to screen the

NEP gene for SNPs and then each candidate SNP was

confirmed by DNA sequencing. As a result, they identified

eight novel and one known SNP and found that �204G!C

in the promoter region, and IVS17�294C!T, and

IVS22+36C!A in an intron, show a significant association

with Alzheimer’s disease. In addition, the subsequent haplotype

Table 1. Multilocus penetrance function

Genotypes Y¼ 1 Y¼ 2 Y¼ 3

X¼ 1 0.1514 0.0002 0.0232

X¼ 2 0.1033 0.0001 0.0151

X¼ 3 0.5959 0.0021 0.1647

Table 2. The true high-risk (¼ 1) and low-risk (¼ 0) simulated

Genotypes Y¼ 1 Y¼ 2 Y¼ 3

X¼ 1 1 0 0

X¼ 2 1 0 0

X¼ 3 1 0 1

Table 3. Comparison of results between three methods

Methods MDR LM MDR1 LM MDR2

Classification error 0.2960 0.2967 0.3052

Prediction error 0.3137 0.3091 0.3065

Number of perfect

matching data sets3 29 36 58

Percentage of matching

cells4 86.22 90.33 94.56

1LM MDR without continuity correction.
2LM MDR with a continuity correction.
3The number of data sets among the 100 data sets that perfectly matched the true

high-and low-risk groups.
4The average percentage of cells that matched the true high- or low-risk groups.
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analysis involving these three SNPs further confirmed a

significant association with Alzheimer’s disease.
In this article, we applied the MDR and the LM MDR

methods to the data from Shi et al. (2005) with all possible

combinations of the eight SNPs up to the fourth order. One of

the nine SNPs was excluded from the analysis owing to its rare

allele frequency (50.01). Table 4 summarizes the CVC and the

prediction errors obtained from the MDR method.
As shown in Table 4, the best combination set for the two-

locus models has a maximum CVC of 9 with a prediction error

of 0.4510, whereas the best combination set for the three-locus

models has a minimum prediction error of 0.4177 with the CVC

of 9. Thus the three-locus model should be selected as the best

MDR model since it has the maximum CVC as well as the

minimum prediction error. However, since the difference of

the prediction errors between these two models is very small,

the two-locus model was selected as the best MDR model to

investigate the association of SNPs on Alzheimer’s disease. In

fact, when the three-locus model is considered, more than half

of the cells are empty and excluded from the classification

procedure by MDR. Furthermore, the fitted log-linear model
for the LM MDR method yields no meaningful interaction

effects among the three SNPs.

To classify the two-locus genotypes into the high-risk and

low-risk groups in Stage 2, the MDR method uses the observed

frequencies in a 3� 3� 2 contingency table, while the LM
MDR method uses the estimated frequencies from the

parsimonious log-linear model. For the LM MDR method,

we fit the model (XD,YD,XY), where D denotes a binary

response variable representing Alzheimer’s disease and control,

X denotes a categorical variable representing the genotypes for

SNP IVS22þ36C ! A, and Y for SNP 30UTR159C ! T,

respectively. The goodness-of-fit test statistic is 4.97 with p40.1

(df¼ 4), which implies that this model fits the data well. Since

this model is the only candidate model satisfying the three

constraints, this log-linear model is used for classifying the two-

locus genotypes.
The two tables in Figure 1 show how the two genotype

combinations are classified into the high-risk and low-risk

groups by MDR and LM MDR, respectively. Here note that

the two LM MDR methods yielded the same classification

results regardless of using the continuity correction or not. As a

result, the LM MDR method classified five genotype combina-

tions into the high-risk group and four genotype combinations

into the low-risk group (Fig. 1a), whereas the MDR method

classified four into the high-risk group and four into the

low-risk groups with one empty cell undetermined (Fig. 1b).

The MDR classification procedure excluded the empty cell,
(X,Y)¼ (AA,CT), while the LM MDR method classified it into

the low-risk group. Comparing MDR with LMMDR, there are

three inconsistent results for the cell (X,Y)¼ {(CA,TT),

(AA,CC), (AA,TT)}. These cells have equal frequencies of

cases and controls, (5:5), or too small frequencies of case and

controls, (0:1) and (1:0). Among those, (5:5) and (0:1) are

classified into the low-risk groups by MDR but into the high-

risk groups by LM MDR, whereas (1:0) is classified into the

high-risk group by MDR but into the low-risk group by LM

MDR. This implies that the classification procedure is
vulnerable to false positive or false negative errors when the

numbers of cases and controls are equal, or too small. The two

methods, however, yielded consistent classification results when

there was a large difference in the numbers of cases and

controls in the cells.
From the results of the LM MDR method, it seems that the

combination of IVS22þ36C/A and 30UTR159C/C has signifi-

cant association with increased risk of Alzheimer’s disease while

the MDR method yields a rather inconsistent trend. According

to the results of Shi et al. (2005), IVS22þ36C/A is one of the

significant SNPs associated with Alzheimer’s disease. However,

it was reported that IVS22þ36C/A seemed unlikely to influence

Table 4. Result of stage 1

SNPs in the best combination in each model Prediction error CV consistency

IVS22þ36C! A, 30UTR159C!T, 0.4510 9

�204G ! C, IVS22þ36C! A, 30UTR159C ! T 0.4177 9

IVS10-5C ! T, IVS15þ144T ! A, IVS22þ36C! A, 30UTR159C ! T 0.4254 7

The maximum cross-validation consistency and minimum predicition error is indicated in bold type.

Fig. 1. (a) LM MDR method (b) MDR method. Distribution of high-risk and low-risk genotypes for the best two-locus model, where X denote

a categorical variable representing the genotypes for SNP of IVS22þ36C! A and Y for SNP of 30UTR159C! T. This summary of the distribution

shows high-risk (dark shading), low-risk (light shading) and undetermined risk (empty cell, white) genotypes provided by the LM MDR method and

MDR method. The numbers in the cell represent the number of case (left) and control (right).
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neprilysin expression levels or activity, because it is located in
an intron and is 36 bp and � 300 bp away from the flanking
splice sites. Instead, it was proposed that IVS22þ36C/A is

in linkage disequilibrium with other ‘true’ Alzheimer’s disease
risk variants within or near the NEP gene. For example,
c.401A ! G might be such a candidate, although it has no

significant association with Alzheimer’s disease in this study.
On the other hand, 30UTR159C/C was found by Clarimon
et al. (2003) to be associated with Alzheimer’s disease in persons

less than 75 years old in a Spanish population.
In summary, it has been shown that two SNPs,

IVS22þ36C!A and 30UTR159C!T in the introns, are

interactively associated with Alzheimer’s disease. In particular,
the combinations of IVS22þ36A and 30UTR159C are sig-
nificantly associated with increased risk of Alzheimer’s disease.

These results are also in line with those of the haplotype
analysis (Shi et al., 2005). As a result, comparing the LM MDR

method with the MDR method, LM MDR provides more
consistent results than MDR as well as including all empty cells
in the classification procedure, while MDR excludes them.

5 DISCUSSION

In this article, we have proposed the LM MDR method to

improve MDR in classifying sparse or empty cells. LM MDR
uses the log-linear model to estimate the cell frequencies for the

best combination of factors selected in Stage 1. The LM MDR
method includes the MDR method as a special case when the
saturated model is selected.

We performed many simulation studies with two loci in
which several combinations of main effects and interaction
effects were considered. All these simulation agreed qualita-

tively with what might be expected from the following
theoretical considerations. In general, the unsaturated log-
linear model provides the maximum-likelihood (ML) estimates

that smooth the sample frequencies. The unsaturated log-linear
model can result in a smaller mean square error (MSE), defined
as the sum of the variance and the squared bias, than the

saturated model. Although they may be biased, the estimates
have smaller variances because they are based on estimating
fewer parameters than are required for the saturated model,

unless the sample size is so large that the bias term dominates
the variance. A simple illustration is given in Agresti (2002).
It is well known that empty cells and sparse tables can cause

problems with the existence of estimates for log-linear model
parameters, problems with severe bias of odds ratios, problems

with the performance of computational algorithms, as well as
problems with asymptotic approximations of chi-squared
statistics. The ML estimate for the empty cell is equal to zero

for the saturated model since the ML estimates are equal to the
observed frequencies for the saturated model. On the other
hand, the unsaturated models tend to provide non-zero ML

estimates (Agresti, 2002). The MSEs of the empty cells or
sparse cells can be computed for both saturated and
unsaturated models. In most cases, the unsaturated model

provides smaller MSEs for these cells than the saturated model.
As expected, the extensive simulation studies showed that the

LM MDR has less prediction errors than MDR when there are

some marginal effects. However, LM MDR tends to have

similar prediction errors to MDR as the marginal effects

decrease. In this case, the unsaturated model does not fit the

data well. Thus, LM MDR uses the saturated model, which

yields the same result as MDR. However, MDR and LMMDR

do not show much difference in misclassification errors and

prediction errors when the interaction effects are small. This

reflects the importance of the presence of marginal effects on

fitting the log-linear model and the importance of including in

the LM MDR procedure a goodness-of-fit test to obtain the

best parsimonious model.

We also compared the power, in which power is defined as

either the number of perfectly matched data sets or percentage

of matched individual cells. LM MDR has larger power than

MDR in terms of the number of perfectly matched data sets,

when there are some marginal effects, regardless of the presence

of interaction effects. Further, LMMDR has larger power than

MDR in terms of percentage of matched individual cells, when

there are some marginal effects. The reason for this is that

MDR excludes empty cells but LM MDR classifies empty cells

by using the estimated frequencies from the unsaturated log-

linear model. LM MDR has less power than MDR only when

there are no marginal effects. These simulation results imply

that LM MDR is better than MDR for a model in which there

are even small marginal effects, whereas MDR is better when

there are only higher-order interaction effects in the absence of

marginal effects, and then only provided the individual sample

cell frequencies are large enough.

In summary, when there is high-order epistasis in the absence

of marginal effects, the LM MDR procedure that includes

finding a parsimonious model provides a similar result to that

of the original MDR approach. Otherwise, LM MDR provides

a better result than the original MDR approach, because one of

the strengths of the unsaturated log-linear model is to estimate

the cell frequencies in the sparse or empty cells when the

unsaturated model gives a good fit to the data.
Both MDR and LM MDR are model free in the sense that

no particular genetic model is assumed, and are non-parametric

in the sense that no genetic model parameters are estimated

(Ritchie et al., 2001). However, it is easier to interpret the

result of the LM MDR model than that of the MDR model,

because log-linear models have equivalent logit models that are

useful in describing obvious trends or patterns in terms of odds

ratios. In addition, empty cell and sparseness problems become

more serious the larger the number of loci in the model, so that

when high-order interactions with multifactors are considered,

LM MDR is more informative than MDR: LM MDR provides

the estimated frequencies of the empty cells using the log-linear

model while MDR excludes the empty cells from the analysis.
For further study, we are considering extending the LM

MDR to use the log-linear model in selecting the best

combination of genotypes in Stage 1. The best combination

of factors is selected by evaluating the prediction errors and

CVC among all possible combinations of factors. Since the

prediction errors and CVC depend on how correctly each cell is

classified, it may be more informative to use the log-linear

model in this stage as well. This may end up with a biologically

more meaningful model to reflect the relationship between the

disease and multifactors.
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The higher-order model involving three of four SNPs

includes a more complicated process for fitting the unsatu-

rated model and we are now developing a more efficient

way of model-fitting. Typically, the number of empty cells

increases very rapidly with the number of loci, because the

model then introduces a contingency table with many cells.

We anticipate that the LM MDR will handle this problem

appropriately.

When applying the MDR and LM MDR methods, the

presence of missing observations reduces the number of

observations available in the analysis. Although an extension

of MDR has been proposed for handling missing observations,

it is still at an early stage of development. The most appropriate

approach at present is to use only subjects with complete

observations. However, as the number of genotypes increases,

the number of subjects with complete observations decreases

rapidly, because any subject with at least one missing

observation for any genotype has incomplete observations.

One solution to handle this situation is to impute missing

observations. Imputation of missing observations can reduce

empty or sparse observations. We will combine the imputation

of missing observations and the LM MDR method in a

future study.
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